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Abstract. It is well known that nonlinear integro-differential equations play vital
role in modeling of many physical processes, such as nano-hydrodynamics, drop
wise condensation, oceanography, earthquake and wind ripple in desert. Inspired
and motivated by these facts, we use the variation of parameters method for solv-
ing system of nonlinear Volterra integro-differential equations. The proposed tech-
nique is applied without any discretization, perturbation, transformation, restric-
tive assumptions and is free from Adomian’s polynomials. Several examples are
given to verify the reliability and efficiency of the proposed technique.
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1 Introduction

It is well-known fact that a wide class of problems in physical and engineering sci-
ences including oceanography, nano-hydrodynamics, drop wise condensation, glass-
forming process, and wind ripple in desert can be studied in the general and uni-
fied framework of integro-differential equations, see [1–6, 14–33] and the references
therein. It has been shown in [7] that fractional order integro-differential equations
can be used to model nonlinear oscillations of earthquake. Oceanography is the study
of the ocean making use of the various sciences including physics, chemistry, biology,
gelogy and mathematics. Physical studies are carried out both by direct observation
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of the properties and movements and also by applying the basic physical principles of
mechanics and thermodynamics to determine the motion. The observational approach
is known as descriptive or geomathematical oceanography. The dynamical oceanog-
raphy is used to endeavor to obtain mathematical relations between the forces acting
on the ocean water and their consequent motions.

Due to the importance of nonlinear integro-differential equations, several nu-
merical and analytic techniques including modified Adomian’s decomposition
method [31], Adomian’s decomposition method [3], rationalized Haar functions
method [14], homotopy peturbation method [1, 4, 5, 19], variational iteration
method [15–17, 24–26] and modified variation of parameters method [20] have been
developed. Wazwaz [32] used Modified Adomian’s decomposition method to solve
some integro-differential equations related to Blasius problems. Sayed et al. [3] ap-
plied decomposition method to solve linear Voltera Fredholm integro-differential
equations. Maleknejad et al. [14] solved system of linear integro-differential equa-
tions by using rationalized Haar functions method and Biazar et al. [1] applied ho-
motoppy perturbation method to solve nonlinear system of integro-differential equa-
tions. Ghasemi et al. [5] and Yusufoglu [34] used homotopy perturbation method for
solving Volterra integro-differential equations. Wang et. al. [31] and Nadjafi et al. [18]
applied variational iteration method to solve system of nonlinear integro-differential
equations. Mohyud-Din et al. [16] have solved nonlinear system of integro-differential
equations by modified variation of parameters method in which he coupled both ho-
motopy perturbation method and variation of parameters method. Most of these
methods have their inbuilt deficiencies like calculation of Adomian’s polynomials, use
of small parameters, identification of Lagrange multiplier, divergent results and huge
computational work. These facts motivated us to consider variation of parameters
method [8–10, 15–17, 24–26] for solving system of nonlinear integro-differential equa-
tions. This technique is a very useful tool in analytic studies and helps to improve our
understanding of what dynamical effects may be important. The use of multiplier in
variation of parameters method increase the rate of convergence by reducing the num-
ber of iterations, reduce the successive applications of integral operator and make the
solution procedure simple while still maintaining a very high level of accuracy. The
multiplier used in variation of parameters method is obtained by Wronskian technique
and is totally different from Lagrange multiplier of variational iteration method.

Moreover, variation of parameters method removes the higher order derivative
term from its iterative scheme which is clear advantage over the variational iteration
method as the term may cause of repeated computation and calculations of unneeded
terms, which consumes both the time and effort, in most of the cases. Thus variation
of parameters method has reduced lot of computational work involved due to this
term as compared to some other existing techniques using this term which is clear
advantage of proposed technique over them. Hence, variation of parameters method
provides a wider and better applicability as compare to other classical techniques. Ma
et al. [8–10] presented variation of parameters method to solve some nonhomogenous
partial differential equations. Ramos [28] used variation of parameters method to find
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frequency of some non linear oscillators.
In this paper, we have applied variation of parameters method to solve systems

of second-order nonlinear Volterra integro-differential equations. In Section 2, we dis-
cuss the derivation of the variation of parameters method to convey the idea. Some
examples are considered in Section 3 to illustrate the implementation and efficiency of
the variation of parameters method. Results are quite encouraging and may stimulate
further research in the applications of this method.

2 Variation of parameters method

To convey the basic idea of the variation of parameters method for differential equa-
tions, we consider the general differential equation of the form

Lu(x) + Ru(x) + Nu(x) = g(x), (2.1)

where L is the linear operator, R is a linear partial operator of order less than L, N is a
nonlinear operator and g is a source term. Using variation of parameters method [15–
17, 24–26], one can obtain the general solution of Eq. (2.1) in the following form:

u(x) =
n−1

∑
i=0

Bixi

i!
+

∫ x

0
λ(x, s)

(
−Nu(s)− Ru(s) + g(s)

)
ds, (2.2)

where n is a order of given differential equation and Bi
′s are unknowns which can be

further determined by initial/boundary conditions. Here λ(x, s) is multiplier which
can be obtained with the help of Wronskian technique. This multiplier removes the
successive applications of integral in iterative scheme and it depends upon the order
of equation. Noor et al. [16] have obtained the multiplier λ(x, s) in the form:

λ(x, s) =
n

∑
i=1

si−1xn−i(−1)i−1

(i − 1)!(n − i)!
. (2.3)

For different choices of n, one can obtain the following values of λ

n = 1, λ(x, s) = 1,
n = 2, λ(x, s) = x − s,

n = 3, λ(x, s) =
x2

2!
− sx +

s2

2!
,

n = 4, λ(x, s) =
x3

3!
− sx2

2!
+

s2x
2!

− s3

3!
, · · · .

Hence, we have the following iterative scheme from (2.2)

uk+1(x) = uk(x) +
∫ x

0
λ(x, s)

(
−Nuk(s)− Ruk(s) + g(s)

)
ds, k = 0, 1, 2, · · · . (2.4)
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It is observed that the fix value of initial guess in each iteration provides the better
approximation, that is, uk(x) = u0(x), for k = 1, 2, · · · . However, we can modify the
initial guess by dividing u0(x) in two parts and using one of them as initial guess. It
is more convenient way in case of more than two terms in u0(x).

Now for solving system of nonlinear system of integro-differential equations, we
have following iterative scheme

yi,k+1(x) = yk,i(x) +
∫ x

a
λ(x, s)

(
Hj

(
s, yi,k(s), · · · , y(m)

i,k (s)
)

+
∫ s

a
Kj
(
s, t, yi,k(t), · · · , y(m)

i,k (t)
)
dt
)

ds, (2.5)

where i, j = 1, 2, · · · , n and k = 0, 1, 2, · · · .

3 Numerical applications

In this section, we have applied variation of parameter method to solve system of
second-order nonlinear Volterra integro-differential equations. Such type integro-
differential equations arise in many physical processes, such as oceanography, nano-
hydrodynamics, drop wise condensation, earthquake, glass-forming process, and
wind ripple in desert, see [1–7, 13, 16–34] and references there in. For the compari-
son purpose, we consider the same examples as in [1, 16, 32].

Example 3.1. (see [1, 16]). Consider the system of second-order nonlinear integro-
differential equations as follows:

u′′(x) = 1 − 1
3

x3 − 1
2

v′2(x) +
1
2

∫ x

0

(
u2(t) + v2(t)

)
dt,

v′′(x) = −1 + x2 − xu(x) +
1
4

∫ x

0

(
u2(t)− v2(t)

)
dt,

with initial conditions u(0) = 1, u′(0) = 2, v(0) = −1, v′(0) = 0.

The exact solutions for this problem are u(x) = x + ex, v(x) = x − ex. Applying
the variation of parameters method, we have

uk+1(x) = A1 + A2x +
∫ x

0
λ(x, s)

(
1 − 1

3
s3 − 1

2
v′k

2
(s) +

1
2

∫ s

0
(uk

2(t) + vk
2(t))dt

)
ds,

vk+1(x) = B1 + B2x +
∫ x

0
λ(x, s)

(
1 − 1

3
s3 − 1

2
v′k

2
(s) +

1
2

∫ s

0
(uk

2(t) + vk
2(t))dt

)
ds.

Using λ(x, s) = x − s, since the governing equation are of 2nd order

uk+1(x) = A1 + A2x +
∫ x

0
(x − s)

(
1 − 1

3
s3 − 1

2
v′k

2
(s) +

1
2

∫ s

0
(uk

2(t) + vk
2(t))dt

)
ds,

vk+1(x) = B1 + B2x +
∫ x

0
(x − s)

(
1 − 1

3
s3 − 1

2
v′k

2
(s) +

1
2

∫ s

0
(uk

2(t) + vk
2(t))dt

)
ds.
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(a) (b)

Figure 1: Example 3.1: Graphical comparison between exact solution and approximate solution.

(a) (b)
Figure 2: Example 3.1: Error estimates.

Using the initial conditions, we have

A1 = 1, A2 = 2, B1 = −1, B2 = 0.

Hence, we have following iterative scheme

uk+1(x) = u0(x) +
∫ x

0
(x − s)

(
1 − 1

3
s3 − 1

2
v′k

2
(s) +

1
2

∫ s

0
(uk

2(t) + vk
2(t))dt

)
ds,

vk+1(x) = v0(x) +
∫ x

0
(x − s)

(
1 − 1

3
s3 − 1

2
v′k

2
(s) +

1
2

∫ s

0
(uk

2(t) + vk
2(t))dt

)
ds.

Consequently, we have the following approximations

u0(x) = 1 + 2x,
v0(x) = −1,
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Table 1: Example 3.1: Error estimates.

Errors
x U V

-1.0 2.16E-03 8.74E-04
-0.8 4.80E-04 1.85E-04
-0.6 6.87E-05 2.49E-05
-0.4 4.35E-06 1.46E-06
-0.2 3.71E-08 1.15E-08
0.0 0.00000 0.00000
0.2 4.50E-08 1.10E-08
0.4 6.27E-06 1.42E-06
0.6 1.17E-04 2.38E-05
0.8 9.69E-04 1.73E-04
1.0 5.06E-03 7.89E-04

u1(x) = 1 + 2x +
1
2

x2 +
1
6

x3 +
1
12

x4 +
1
60

x5,

v1(x) = −1 − 1
2

x2 − 1
6

x3 − 1
24

x4 +
1
60

x5,

u2(x) = 1 + 2x +
1
2

x2 +
1
6

x3 +
1
24

x4 +
1

120
x5 +

1
720

x6 +
17

5040
x7 +

1
672

x8

+
53

120960
x9 +

1
103680

x10 +
1

228096
x11 +

1
900800

x12 +
1

6177600
x13,

v2(x) = −1 − 1
2

x2 − 1
6

x3 − 1
24

x4 − 1
120

x5 − 1
720

x6 − 11
10080

x7 +
13

241920
x9

+
17

1036800
x10 +

47
11404800

x11 +
1

1267200
x12.

The series solution is given by

u(x) = 1 + 2x +
1
2

x2 +
1
6

x3 +
1
12

x4 +
1
60

x5 − 1
24

x4 − 1
120

x5 +
1

720
x6 +

17
5040

x7 +
1

672
x8

+
53

120960
x9 − 1

103680
x10 +

17
228096

x11 +
1

1900800
x12 +

1
6177600

x13 + · · · ,

v(x) = −1 − 1
2

x2 − 1
6

x3 − 1
24

x4 +
1
60

x5 1
120

x5 − 1
720

x6 − 11
10080

x7 +
13

241920
x9

+
17

1036800
x10 +

47
11404800

x11 +
1

1267200
x12 + · · · .

Example 3.2. (see [1, 16]). Consider the system of nonlinear integro-differential equa-
tions as follows:

u′(x) = 1 − 1
2

v′2(x) +
1
2

∫ x

0

(
(x − t)v(t) + u(t)v(t)

)
dt,

v′(x) = 2x +
∫ x

0

(
(x − t)u(t)− v2(t) + u2(t)

)
dt,

with initial conditions u(0) = 0, v(0) = 1.
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(a) (b)
Figure 3: Example 3.2: Graphical comparison between exact solution and approximate solution.

(a) (b)
Figure 4: Example 3.2: Error estimates.

The exact solutions for this problem are u(x) = sinh x, v(x) = cosh x. Applying
the variation of parameters method, we have

uk+1(x) = A1 +
∫ x

0
λ(x, s)

(
1 − 1

2
v′2(s) +

1
2

∫ s

0

(
(s − t)v(t) + u(t)v(t)

)
dt
)

ds,

vk+1(x) = B1 +
∫ x

0
λ(x, s)

(
2s +

∫ x

0
((s − t)u(t)− v2(t) + u2(t))dt

)
ds.

Using λ(x, s) = 1, since the governing equation are of 1st order

uk+1(x) = A1 +
∫ x

0

(
1 − 1

2
v′2(s) +

1
2

∫ s

0
((s − t)v(t) + u(t)v(t))dt

)
ds,

vk+1(x) = B1 +
∫ x

0

(
2s +

∫ x

0
((s − t)u(t)− v2(t) + u2(t))dt

)
ds.
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Table 2: Example 3.2: Error estimates.

Errors
x U V

-1.0 3.51E-02 3.24E-02
-0.8 1.12E-02 8.07E-02
-0.6 2.64E-03 1.37E-03
-0.4 3.44E-04 1.16E-04
-0.2 1.06E-05 1.79E-05
0.0 0.00000 0.00000
0.2 1.06E-05 1.79E-05
0.4 3.44E-04 1.16E-04
0.6 2.64E-03 1.37E-03
0.8 3.12E-02 8.07E-02
1.0 3.51E-02 3.24E-02

Using the initial conditions, we have

A1 = 0, B1 = 1.

Hence, we have following iterative scheme

uk+1(x) = u0(x) +
∫ x

0

(
1 − 1

2
v′2(s) +

1
2

∫ s

0
((s − t)v(t) + u(t)v(t))dt

)
ds,

vk+1(x) = u0(x) +
∫ x

0

(
2s +

∫ x

0
((s − t)u(t)− v2(t) + u2(t))dt

)
ds.

Consequently, we have the following approximations

u0(x) = 0,
v0(x) = 1,

u1(x) = x +
1
6

x3,

v1(x) = 1 +
1
2

x2,

u2(x) = x +
1
6

x3 +
1

24
x5 +

1
504

x7,

v2(x) = 1 +
1
2

x2 +
1

24
x4 +

1
240

x6 +
1

2016
x8.

The series solution is given by

u(x) = x +
1
6

x3 +
1

24
x5 +

1
504

x7 + · · · ,

v(x) = 1 +
1
2

x2 +
1

24
x4 +

1
240

x6 +
1

2016
x8 + · · · .
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Example 3.3. (see [1, 16]). Consider the following another nonlinear system of three
integro-differential equations:

u′′(x) = x + 2x3 + 2v′2(x)−
∫ x

0

(
v′2(t) + u(t)w′′(t)

)
dt,

v′′(x) = 3x2 − xu(x) +
∫ x

0

(
txv′(t)u′′(t)− w′(t)

)
dt,

w′′(x) = 2 − 4
3

x3 + u′′2(x)− 2u2(x) +
∫ x

0

(
x2v(t) + u′2(t) + t3w′′(t)

)
dt,

with initial conditions

u(0) = 1, u′(0) = 0, v(0) = 0, v′(0) = 1, w(0) = 0, w′(0) = 0.

The exact solutions for this problem are u(x) = x2, v(x) = x, w(x) = 3x2. Applying
the variation of parameters method, we have

uk+1(x) = A1 + A2x +
∫ x

0
λ(x, s)

(
s + 2s3 + 2v′k

2
(s)−

∫ s

0
(v′k

2
(t) + uk(t)w′′

k(t))dt
)

ds,

vk+1(x) = B1 + B2x +
∫ x

0
λ(x, s)

(
3s2 − suk(s) +

∫ s

0
(tsv′k(t)u′′

k(t)− w′
k(t))dt

)
ds,

w′′(x) = C1 + C2x +
∫ x

0
λ(x, s)

(
2 − 4

3
s3 + u′′

k
2
(s)− 2uk

2(s)

+
∫ s

0
(s2v(t) + u′2(t) + t3w′′(t))dt

)
ds.

Using λ(x, s) = x − s, since the governing equations are of 2nd order

uk+1(x) = A1 + A2x +
∫ x

0
(x − s)

(
s + 2s3 + 2v′k

2
(s)−

∫ s

0
(v′k

2
(t) + uk(t)w′′

k(t))dt
)

ds,

vk+1(x) = B1 + B2x +
∫ x

0
(x − s)

(
3s2 − suk(s) +

∫ s

0
(tsv′k(t)u′′

k(t)− w′
k(t))dt

)
ds,

w′′(x) = C1 + C2x +
∫ x

0
(x − s)

(
2 − 4

3
s3 + u′′

k
2
(s)− 2uk

2(s) +
∫ s

0
(s2v(t)

+ u′2(t) + t3w′′(t))dt
)

ds.

Using the initial conditions, we have

A1 = 1, A2 = 0, B1 = 0, B2 = 1, C1 = 0, C2 = 0.

And hence, we have following iterative scheme

uk+1(x) = u0(x) +
∫ x

0
(x − s)

(
s + 2s3 + 2v′k

2
(s)−

∫ s

0
(v′k

2
(t) + uk(t)w′′

k(t))dt
)

ds,

vk+1(x) = v0(x) +
∫ x

0
(x − s)

(
3s2 − suk(s) +

∫ s

0
(tsv′k(t)u′′

k(t)− w′
k(t))dt

)
ds,

wk+1(x) = w0(x) +
∫ x

0
(x − s)

(
2 − 4

3
s3 + u′′

k
2
(s)− 2uk

2(s)

+
∫ s

0
(s2v(t) + u′2(t) + t3w′′(t))dt

)
ds.



M. A. Noor, K. I. Noor, A. Waheed and E. Said / Adv. Appl. Math. Mech., 4 (2012), pp. 190-204 199

(a) (b)

(c)

Figure 5: Example 3.3: Graphical
comparison between exact solution
and approximate solution.

Consequently, we have the following approximations

u0(x) = 0,
v0(x) = x,
w0(x) = 0,

u1(x) = x2 +
1

10
x5,

v1(x) = x +
1
4

x4,

w1(x) = x2 − 1
15

x5 +
1

60
x6,

u2(x) = x2 +
4

15
x5 − 1

60
x6 +

197
5040

x8 − 1
336

x9 +
1

7425
x11 +

1
26400

x12,

v2(x) = x +
1
6

x4 +
1

630
x7 +

41
3360

x8 +
1

440
x11,

w2(x) = 3x2 +
2
5

x5 − 1
30

x6 +
13
168

x8 − 227
30240

x9 +
1

1440
x10 +

1
3960

x11 − 1
6600

x12, · · · .
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(a) (b)

(c)

Figure 6: Example 3.3: Error esti-
mates.

Table 3: Example 3.3: Error estimates.

Errors
x U V W

-1. 2.33E-02 3.48E-02 3.48E-01
-0.8 4.79E-03 1.25E-03 1.25E-01
-0.6 5.77E-04 3.12E-04 3.12E-02
-0.4 2.83E-05 4.17E-05 4.17E-03
-0.2 1.72E-07 1.29E-07 1.29E-04
0.0 0.00000 0.00000 0.00000
0.2 7.20E-08 1.26E-08 1.26E-04
0.4 2.80E-06 4.00E-06 4.00E-03
0.6 7.15E-05 3.07E-05 3.07E-02
0.8 1.64E-03 1.34E-03 1.34E-01
1.0 1.53E-02 4.37E-02 4.37E-01

The series solution is given by

u(x) = x2 +
4

15
x5 − 1

60
x6 +

197
5040

x8 − 1
336

x9 +
1

7425
x11 +

1
26400

x12 + · · · ,

v(x) = x +
1
6

x4 +
1

630
x7 +

41
3360

x8 +
1

440
x11 + · · · ,

w(x) = 3x2 +
2
5

x5 − 1
30

x6 +
13

168
x8 − 227

30240
x9 +

1
1440

x10 +
1

3960
x11 − 1

6600
x12 + · · · .



M. A. Noor, K. I. Noor, A. Waheed and E. Said / Adv. Appl. Math. Mech., 4 (2012), pp. 190-204 201

Example 3.4. (see [16, 32]). Consider the two dimensional nonlinear inhomogeneous
initial boundary value problem for the integro differential equation related to the Bla-
sius problem

y′′(x) = α − 1
2

∫ x

0
y(t)y′′(t)dt, − ∞ < x < 0,

with initial conditions y(0) = 0, y′(0) = 1, limx→∞ y′(x) = 0, where constant α is
positive and defined by y′′(0) = α and α > 0.

Applying the variation of parameters method, we have

yk+1(x) = A1 + A2x +
∫ x

0
λ(x, s)

(
α −

∫ s

0
(yk(t)yk

′′(t))dt
)

ds.

Using λ(x, s) = x − s, since the governing equations is of second-order

yk+1(x) = A1 + A2x +
∫ x

0
(x − s)

(
α −

∫ s

0
(yk(t)yk

′′(t))dt
)

ds.

Using the initial conditions, we have

A1 = 0, A2 = 1.

Hence, we have following iterative scheme

yk+1(x) = x +
∫ x

0
(x − s)

(
α −

∫ s

0
(yk(t)yk

′′(t))dt
)

ds.

Consequently, we have the following approximations

y0(x) = x,

y1(x) = x +
1
2

αx2,

y2(x) = x +
1
2

αx2 − 1
48

αx4 − 1
240

α2x5,

y3(x) = x +
1
2

αx2 − 1
48

αx4 − 1
240

α2x5 +
1

960
αx6 +

11
20160

α2x7 +
11

161280
α3x8

− 1
193536

α2x9 − 1
5702400

α3x10 − 5
4257792

α4x11.

The series solution is given as

y(x) = x +
1
2

αx2 − 1
48

αx4 − 1
240

α2x5 +
1

960
αx6 +

11
20160

α2x7 +
11

161280
α3x8

− 1
193536

α2x9 − 1
5702400

α3x10 − 5
4257792

α4x11 + · · · ,

and consequently

y′(x) = 1 + αx − 1
12

αx3 − 1
48

α2x4 +
1

160
αx5 +

11
2880

α2x6 +
11

20160
α3x7 − 11

21504
α2x8

− 1
51840

α3x9 − 1
518400

α4x10 + 12
(
− 1

16220160
α +

1
725760

α3
)

x11 + · · · .
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Figure 7: Example 3.4: Graphical representation of solution for different α’s.

Table 4: Example 3.4: Padé approximants and numerical value of α.

Padé approximant α
[2/2] 0.5773502693
[3/3] 0.5163977793
[4/4] 0.5227030798

The diagonal Padé approximants can be applied to determine a numerical value for
the constant α by using the given condition.

Remark 3.1. We would also like to mention that Ma et al. see [11–13] have used the
multiple exp-function method, linear superposition principle and transformed ratio-
nal function technique for solving the Hirota bilinear equations for constructing a gen-
eral class of exact solutions including N-soliton solutions and other aspects of the
nonlinear equations. The multiple exp-function method is a kind of generalization of
Hirota’s bilinear method. It is an interesting and open problem to compare the mod-
ified variation of parameters method with the techniques of Ma et al. see [11–13] for
solving the system of nonlinear boundary value problems and system of nonlinear
Volterra integro-differential equations.

4 Conclusions

In this paper, we have applied the variation of parameters method for solving the
nonlinear system of integro-differential equations which arise in modeling of various
physical processes including nano hydrodynamics, earthquake, wind ripple in desert
and oceanography. The proposed technique is employed without linearization, per-
turbation, discretization and restrictive assumptions. We would like to emphasize that
the suggested method is free from round off errors, identification of Lagrange multi-
plier and use of Adomian’s polynomials. It may be concluded that the variation of
parameters method is very powerful and efficient technique in finding the analytical
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solutions for a wide class of system of integro-differential equations and can be con-
sidered as a best alternative of existing iterative techniques for solving such problems.
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