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Abstract. We propose and investigate a novel solution strategy to efficiently and ac-
curately compute approximate solutions to semilinear optimal control problems, fo-
cusing on the optimal control of phase field formulations of geometric evolution laws.
The optimal control of geometric evolution laws arises in a number of applications
in fields including material science, image processing, tumour growth and cell motil-
ity. Despite this, many open problems remain in the analysis and approximation of
such problems. In the current work we focus on a phase field formulation of the op-
timal control problem, hence exploiting the well developed mathematical theory for
the optimal control of semilinear parabolic partial differential equations. Approxima-
tion of the resulting optimal control problem is computationally challenging, requiring
massive amounts of computational time and memory storage. The main focus of this
work is to propose, derive, implement and test an efficient solution method for such
problems. The solver for the discretised partial differential equations is based upon a
geometric multigrid method incorporating advanced techniques to deal with the non-
linearities in the problem and utilising adaptive mesh refinement. An in-house two-
grid solution strategy for the forward and adjoint problems, that significantly reduces
memory requirements and CPU time, is proposed and investigated computationally.
Furthermore, parallelisation as well as an adaptive-step gradient update for the con-
trol are employed to further improve efficiency. Along with a detailed description of
our proposed solution method together with its implementation we present a number
of computational results that demonstrate and evaluate our algorithms with respect to
accuracy and efficiency. A highlight of the present work is simulation results on the
optimal control of phase field formulations of geometric evolution laws in 3-D which
would be computationally infeasible without the solution strategies proposed in the
present work.
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1 Introduction

The optimal control of geometric evolution equations or more generally free boundary
problems arises in a number of applications. In image processing the tracking of de-
formable objects may be formulated as the optimal control of a suitably chosen evolution
law [1]. A number of applications arise from problems in material science such as the con-
trol of nanostructure through electric fields [2, 3]. An important and topical application
area is the image driven modelling of biological processes, such as tumour growth [4]
or cell migration [5], in which parameters (or functions) in a model are estimated from
experimental imaging data. In a recent study we proposed an optimal control approach
to whole cell tracking [6], i.e., the reconstruction of whole cell morphologies in time from
a set of static images, in which the cell tracking problem was formulated as the optimal
control of a geometric evolution equation [6]. In general the approximation of such op-
timal control problems is computationally intensive both in terms of central processing
unit (CPU) time and memory. Hence, the development of robust and efficient solvers
for such problems with a view to reducing CPU time (or simply wall-clock time) and
memory requirements is a worthwhile research direction.

In the current work we consider the optimal control of geometric evolution laws of
forced mean curvature flow type. We denote by Γ(t), a closed oriented smoothly evolv-
ing d−1 dimensional hypersurface in R

d, d= 2,3 with outward pointing unit normal υυυ.
The motion of Γ(t) satisfies a volume constrained mean curvature flow with forcing, i.e.,
given an initial surface Γ(0), the velocity VVV of Γ is given by

VVV(xxx,t)=(−σH(xxx,t)+η(xxx,t)+λV(t))υυυ(xxx,t), xxx∈Γ(t), t∈ (0,T], (1.1)

where σ>0 represents the surface tension, H denotes the mean curvature (which we take
to be the sum of the principal curvatures) of Γ, η is a space time distributed forcing and
λV is a spatially uniform Lagrange multiplier enforcing volume constraint. We assume
we are given an initial interface Γ0 and a target interface Γobs both of which are smooth
closed oriented d−1 dimensional hypersurfaces.

The optimal control problem, which is the focus of the current work, consists of find-
ing a space time distributed forcing η in (1.1) such that with Γ(0)=Γ0, the interface posi-
tion at time T corresponding to the solution of (1.1), Γ(T), is “close” to the observed data
Γobs. We have deliberately refrained from stating precisely what is meant by Γ(T) being
close to Γobs as in the sharp interface setting it is not obvious what constitutes a good
choice of metric to measure the difference between two surfaces. In particular standard
measures such as the Haussdorff distance are typically non-smooth and this complicates
the approximation of the optimal control problem. Moreover, the theory of optimal con-
trol of geometric evolution laws is in its infancy, in fact only recently has progress been



F. W. Yang et al. / Commun. Comput. Phys., 21 (2017), pp. 65-92 67

made on the optimal control of parabolic equations on evolving surfaces even in the case
of prescribed evolution [7]. On the other hand, the theory for the optimal control of semi-
linear parabolic equations is more mature (see, for example, [8]) and if one considers a
diffuse interface representation of the surfaces then standard measures of distance may
be used (e.g., L2). In light of the above, we consider the phase field approximation of
(1.1) given by the volume constrained Allen-Cahn equation, see (2.1). We approximate
our initial and target data Γ0 and Γobs by diffuse interface representations φ0 and φobs

respectively (see for example [5] for details on how to construct such representations).

Our strategy for approximating the solution to the optimal control problem consists
of an iterative adjoint based solution method, c.f., Sections 2 and 3. The method is partic-
ularly computationally intensive for a number of reasons.

1. The iterative adjoint based solution method we employ necessitates multiple solves
of the forward and adjoint problems.

2. As the state equation is of Allen-Cahn type grid adaptivity for the solution of the
forward equation is mandatory for large simulations particularly in 3-D.

3. The computed state enters the adjoint equation which is posed backwards in time.
Hence the state equation must first be solved over the whole time interval with the
computed states stored and then the adjoint equation is solved backwards in time.
Thus the algorithm requires large amounts of data storage.

4. We want to consider small values of the interfacial width parameter as many of the
applications from cell biology that we are interested in involve interfaces with large
curvatures and small scale features which we wish to resolve with our diffuse in-
terface approximation. This imposes strong restrictions on the grid for the solution
of the state problem.

In this work we focus on developing a robust and efficient solver for the problem. We
employ a fast parallel adaptive multigrid solution method for the forward equation. The
use of adaptive grids and parallelisation allows us to compute with relatively small val-
ues of the interfacial width parameter. For the adjoint equation we make the observation
that as the PDE is linear it may be possible to relax the restrictions on the grid needed for
the solution of the state equation. Hence we employ a parallel multigrid solver for the
adjoint equation on a uniform grid that is typically coarser than the adaptive grid used
for the approximation of the state. We also consider a simple adaptive strategy for our
iterative steepest descent based algorithm for the update of the control.

Major findings in the present work include that the two-grid solution strategy we
propose in which the state equation is solved on an adaptive grid and the adjoint prob-
lem is solved on a coarse uniform grid appears to have only a minor detrimental impact
on accuracy whilst the savings in terms of memory and CPU time are considerable as
the state is only stored on the coarse grid. We also propose an adaptive algorithm for
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the iterative update for approximating the optimal control η. We expect that our find-
ings are of relevance beyond the optimal control of Allen-Cahn equations alone and this
could include the development of efficient schemes for the optimal control of semilinear
parabolic equations in general.

The remainder of this article is structured as follows. In Section 2 we present the opti-
mal control problem and formally derive the optimality conditions used in the algorithm
for its approximation. In Section 3 we describe our solver for the optimal control problem
which is the main focus in this work. Firstly, in Section 3.1 we summarise the procedures
required for solving this optimal control problem. We also outline the fully discrete meth-
ods for the approximation of the state and adjoint equations in Section 3.2. We discuss
the two-grid solution strategy in Section 3.3; and the adaptive-α algorithm in Section 3.1
which improves the control update. Section 4 contains results of our numerical experi-
ments with the implemented solver. We use a 2-D benchmark problem to demonstrate
the convergence of the proposed model, our multigrid performance where a linear com-
plexity is shown, effectiveness of the adaptive-α algorithm and two-grid strategy. We
use a 3-D benchmark problem to illustrate the importance of the proposed two-grid solu-
tion strategy in terms of the saved memory spaces. We also show 2-D and 3-D irregular
shapes. Finally in Section 5 we summarise our major findings and discuss directions for
future work.

2 Optimal control of a forced Allen-Cahn equation with volume

constraint

As outlined in Section 1 the prototype state equation we consider in this work consists of
the volume constrained Allen-Cahn equation with forcing,











ǫ ∂
∂t φ(xxx,t)=ǫ△φ(xxx,t)−ǫ−1G′(φ(xxx,t))+η(xxx,t)+λ(t), in Ω×(0,T],

φ(xxx,0)=φ0(xxx), in Ω,

∇φ(xxx,t)·υυυΩ(xxx)=0, on ∂Ω,

(2.1)

where φ(xxx,t) is the phase field variable, Ω is the spatial domain, ǫ> 0 is the parameter
governing the width of the diffuse interface, G(φ)= 1

4(1−φ2)2 is a double well potential
which has minima at ±1 and λ is a time-dependent constraint on the mass that models a
volume constraint [9] and υυυΩ is the normal to ∂Ω.

As the volume enclosed by the target and initial interfaces may differ, i.e.,
∫

Ω
φ0 6=

∫

Ω
φobs, enforcing conservation of mass is inappropriate, instead we proceed as in [6]

and enforce a constraint on the linear interpolation of the mass of the initial and target
diffusive interfaces. To this end we define

Mφ(t) :=
∫

Ω

[

φ0(xxx)+
t

T

(

φobs(xxx)−φ0(xxx)
)

]

, (2.2)
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and the volume constraint λ(t) in (2.1) is then determined such that for t∈ (0,T]
∫

Ω
φ(xxx,t)=Mφ(t). (2.3)

In order to formulate our optimal control problem we introduce the objective func-
tional J, which we seek to minimise

J(φ,η)=
1

2

∫

Ω
(φ(xxx,T)−φobs(xxx))

2
dxxx+

θ

2

∫ T

0

∫

Ω
η2(xxx,t)dxxxdt, (2.4)

where θ>0 is a regularisation parameter. The first term of the right-hand side of (2.4) is
the so called fidelity term which measures the distance between the solution of the model
and the target data φobs and the second term is the regularisation which is necessary to
ensure a well-posed problem [8].

The optimal control problem we consider in this work may now be stated as the fol-
lowing minimisation problem. Given initial data φ0 and target data φobs, find a space-
time distributed forcing η∗ : Ω×[0,T)→R such that with φ a solution of (2.1) with initial
condition φ(·,0)=φ0(·), the forcing η∗ solves the minimisation problem

minη J(φ,η), with J given by (2.4). (2.5)

In order to apply the theory of optimal control of semilinear PDEs for the solution of
the minimisation problem, we briefly outline the derivation of the optimality conditions,
for further details see for example [8,10]. Adopting a Lagrangian approach, we introduce
the Lagrange multiplier (adjoint state) p and the Lagrangian functional L(φ,η,p) defined
by

L(φ,η,p)= J(φ,η)−
∫ T

0

∫

Ω

(

ǫ
∂

∂t
φ−ǫ△φ+ǫ−1G′(φ)+η+λ

)

p. (2.6)

Assuming the existence of an optimal control η∗ and the associated optimal state φ∗

and requiring stationarity of the Lagrangian at (φ∗,η∗) yields the (formal) first order op-
timality conditions [8, 10]

δφL(φ
∗,η∗,p)φ=0, ∀φ : φ(xxx,t=0)=0, (2.7)

δηL(φ
∗,η∗,p)η=0, ∀η. (2.8)

Condition (2.7) yields the linear parabolic adjoint equation posed backwards in time











∂
∂t p(xxx,t)=−△p(xxx,t)+ǫ−2G′′(φ(xxx,t))p(xxx,t), in Ω×[0,T),

p(xxx,T)=φ(xxx,T)−φobs(xxx), in Ω,

∇p(xxx,t)·υυυΩ(xxx)=0, on ∂Ω×[0,T).

(2.9)

Condition (2.8) together with the Riesz representation theorem yields the optimality con-
dition for the control [8]

δηL(φ
∗,η∗,p)= θη∗+

1

ǫ
p=0. (2.10)
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We note that our approach to the optimal control problem involving the formulation
of the adjoint problem appears to require a smooth potential G. The formulation of the
adjoint problem is to our best knowledge an open problem for other widely used, but
non smooth or unbounded, potentials such as the obstacle or logarithmic potential.

3 Numerical solution methods

In this section, we outline the numerical methods for solving the proposed optimal con-
trol of geometric evolution laws. For ease of exposition, we separate this complex solu-
tion procedure into three parts. The first part, which deals with the update of the optimal
control η, is discussed in Section 3.1, with the assumption that the solutions of φ and p
have already been obtained. In Section 3.2, we describe the second part that involves the
spatial and temporal discretization schemes for the forward (φ) and adjoint (p) problems,
i.e., the phase field Allen-Cahn equation (2.1) with volume constraint and the adjoint
equation (2.9) respectively. In order to solve this problem efficiently and accurately, we
employ several state-of-the-art algorithms, described in Section 3.3, including an impor-
tant in-house two-grid solution strategy, parallelised multigrid solution methods as well
as dynamic adaptive mesh refinement. This forms the third and last part of our solution
procedure.

3.1 Adaptive iterative update for the optimal control

The control η is updated and obtained through an iterative approach, where the Allen-
Cahn and adjoint equations (2.1) and (2.9) respectively, for each fixed time frame [0,T]
have to be solved repeatedly. The computational requirement for finding a satisfactory
η is large. This is mainly due to two reasons; first the necessity of repeatedly solving
both the Allen-Cahn and adjoint equations sequentially and second, the state (φ) and the
forcing (η) must be stored at all iterations.

We denote a superscript ℓ for the η iteration, and at ℓ=0, we take

ηℓ=0=0 on Ω×[0,T) (3.1)

as our initial guess for the control. A better initial guess for the control may be necessary
for certain examples or applications, however for the benchmark examples presented in
this paper the simple constant zero initial guess stated above was sufficient for conver-
gence.

For the purpose of demonstration, let us assume that both the state and adjoint equa-
tions are solved by some known method with an acceptable accuracy. With this assump-
tion, a gradient-based iterative update of the control, following the steepest descent ap-
proach, is employed using (2.10) and the update is given by

ηℓ+1=ηℓ−α

(

θηℓ+
1

ǫ
pℓ
)

, on Ω×[0,T), (3.2)
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where ℓ+1 denotes the next η iteration and ℓ indicates the current η iteration.

The whole procedure is repeated until the objective function J (see (2.4)) satisfies some
pre-defined tolerances. There are two criteria: an absolute criterion and a relative crite-
rion. The former terminates when the obtained J is smaller than a given fixed constant
and the latter takes the difference between the current J and the previous one, and termi-
nates when the difference between the two falls below a certain prescribed tolerance.

Due to the nature of the iterative update presented in (3.2), we expect each update on
the control η to reduce the objective functional J. Hence we design an adaptive algorithm
based upon this observation. We may start with an arbitrary value of α, namely αℓ. If the
computed objective function J with αℓ is smaller than the previous one, we increase the
value of αℓ+1 and continue the computation. However, if J gets larger, this means the
value αℓ is not suitable, and the computation with ηℓ need to be re-calculated using a
smaller α (or the default minimum choice αmin).

We summarise this adaptive procedure in Algorithm 1. Note Pl and Pu are percent-
ages, unless otherwise stated, we set them to be 50% and 110%, respectively. In Section
4.4 we illustrate the effectiveness of this adaptive-α procedure.

Algorithm 1 Adaptive-α

1.While1.While1.While the difference between consecutive Js is still large or J has not reached below
a pre-defined tolerance dododo
2.2.2. Solve the forward Allen-Cahn equation in Ω×(0,T]
3.3.3. Compute the objective functional Jℓ

4.4.4. ififif Jℓ> Jℓ−1 andandand ℓ>0 thenthenthen
α = max(α×Pl ,αmin)
restart = TRUETRUETRUE

else ifelse ifelse if Jℓ< Jℓ−1 andandand ℓ>0 thenthenthen
α = α×Pu

restart = FALSEFALSEFALSE
end ifend ifend if

5.5.5. ififif restart == FALSEFALSEFALSE thenthenthen
Solve the backward adjoint equation in Ω×[T,0)
Backup the current η
Compute the next η using α
Continue to the next η iteration

elseelseelse
Compute a new η using the latest backup with α
Restart the current η iteration

end ifend ifend if
6. End6. End6. End
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3.2 Space-time discretizations of the forward Allen-Cahn and adjoint
equations

At the beginning of each η iteration, we start by approximating the phase field equation
(2.1). The spatial discretization scheme is a central finite difference method (FDM) with
a standard seven-point stencil in 3-D on Cartesian grids with cell-centred vertices. Al-
though for illustrative purposes, the discrete system presented here is in 3-D, the use of a
standard five-point stencil in 2-D is straightforward. We assume N is the number of grid
points in each coordinate direction, h is the uniform grid spacing (i.e. h=△x=△y=△z),
subscripts i, j,k are used to indicate each grid point and each point has Cartesian coordi-
nate (x,y,z). We refer the reader to [14] for details on adaptive grid spacing and the use of
adaptive multigrids. For the temporal discretization scheme we employ a fully-implicit
second-order backward differentiation formula (BDF2) [11]. With a given end time T,
we assume a uniform time step size τ. For a time discrete sequence, f , we denote by
f n := f (tn). The standard BDF1 (also known as backward Euler method) is employed for
the very first time step.

The result after applying the described discretisation to (2.1) is the following algebraic

system arising at each time step, find φn+1,ℓ+1
i,j,k such that,

ǫ
φn+1,ℓ+1

i,j,k − 4
3 φn,ℓ+1

i,j,k + 1
3 φn−1,ℓ+1

i,j,k

τ

=
2ǫ

3
D
(

φn+1,ℓ+1
i,j,k

)

−

2

(

−φn+1,ℓ+1
i,j,k +

(

φn+1,ℓ+1
i,j,k

)3
)

3ǫ
+

2ηn+1,ℓ+1
i,j,k

3
+

2λn+1

3
, (3.3)

where ℓ+1 denotes the current η iteration, n+1, n and n−1 indicate solutions from the
current, previous and the one before the previous time steps, respectively. We denote the
3-D Laplacian operator D as

D
(

φi,j,k

)

=
φi+1,j,k+φi−1,j,k+φi,j+1,k+φi,j−1,k+φi,j,k+1+φi,j,k−1−6φi,j,k

h2
. (3.4)

Within each time step, while solving for the solution of the above system, we are also
required to satisfy a given mass constraint. This is done by iteratively determining the
time-dependent, spatially-uniform volume constraint λ for the imposed mass constraint.
Therefore, the system in (3.3) has to be solved multiple times, until a stopping criterion
for λ is met. We denote this λ iteration using a superscript Λ, and its update follows the
multi-step approach presented in [9], which is given as

λn+1,Λ+1=λn+1,Λ+

(

λn+1,Λ−λn+1,Λ−1
)

[

Mn+1
φ −

∫

Ω
φn+1,Λ

]

(∫

Ω
φn+1,Λ−

∫

Ω
φn+1,Λ−1

) , for Λ>1, (3.5)

where Mφ is defined in (2.2), Λ+1, Λ and Λ−1 indicate values of λ from the current,
previous and the one before the previous λ iterations, respectively. We follow [9] in using
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the initial guesses

λΛ=0=−
2ǫ

τ
+1, λΛ=1=

2ǫ

τ
−1. (3.6)

The stopping criterion used here is based upon the difference between consecutive values
of λ. Providing a tolerance tolλ, we consider the algorithm to have converged when
|λn+1,Λ+1−λn+1,Λ|< tolλ .

From our experience, using the initial guesses in (3.6) often led to more than three λ
iterations within each time step (with, say, a typical choice of tolλ =0.01). For later com-
putations, we can improve these initial guesses with known (already computed) values.
Within the first and second η iterations, from time step n = 3 onwards, we choose the
computed λn−1,ℓ and λn,ℓ, where ℓ=1,2, as our improved initial guesses. When we are at
the third η iteration or beyond, we choose the two computed λ (corresponding to the cur-
rent time step) from the previous two η iterations as initial guesses. It should be observed
that the computed solution φ at each time step has to be stored in order to compute the
adjoint state p later.

Having solved the algebraic system arising from the discretizations of the phase field
representation of (2.1) forward in time and stored the obtained solutions, we have only
completed the first of two parts of the solution procedure. The second part is to discretize
and solve (2.9). We employ the described central FDM and BDF2 as our discretization
schemes, and the resulting algebraic system for the adjoint state p is the following,

pn+1,ℓ+1
i,j,k − 4

3 pn+2,ℓ+1
i,j,k + 1

3 pn+3,ℓ+1
i,j,k

τ

=−
2

3
D
(

pn+1,ℓ+1
i,j,k

)

+
2

3







−1+3
(

φn+1,ℓ+1
i,j,k

)2

ǫ2
pn+1,ℓ+1

i,j,k






. (3.7)

Note that the adjoint equation is posed backwards in time and its terminal condition is
stated in (2.9). The BDF1 method needs to be employed for the first time step. For every
subsequent time step the corresponding solution of φ that has been previously computed
and stored enters as data in the adjoint equation.

3.3 Techniques for improving algorithm efficiency

In this section, we explain several state-of-the-art algorithms that are used for obtaining
the solution of (3.3)-(3.7) efficiently. First of all, we describe an in-house two-grid solution
strategy that significantly improves the CPU time for solving the adjoint equation as well
as massively reducing the memory requirement for storing all the solutions. Secondly,
we briefly mention a parallel, adaptive multigrid solution method that we use to solve
the arising algebraic system at each time step. Since this has been described in previous
works, here we only briefly illustrate that the two-grid solution strategy can be a natural
extension to the standard multigrid V-cycles. We refer the interested reader to [12–15] for
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further details. Thirdly, the adaptive mesh refinement (AMR) can be included in the two-
grid solution strategy in a straightforward manner. This significantly improves the CPU
time for solving the Allen-Cahn equation. The final technique is the adaptive-α algorithm
which has already been mentioned in Section 3.1, here we omit details of this algorithm.

We propose a two-grid solution strategy that exploits a key difference between the
forward Allen-Cahn and the backward adjoint equations. As is well known for the Allen-
Cahn equation the parameter ǫ determines the thickness of the diffuse interfacial region,
Γǫ, that approximates the hypersurface Γ. In order for the Allen-Cahn equation to reliably
approximate mean curvature flow the interfacial region has to be well resolved. Typically
eight grid points are required across the width of the diffusive interface, see [16]. On the
other hand, in our numerical simulations we observed that the solution of the backward
adjoint equation has less spatial variation, see Figs. 4(c) and 4(d) in which the optimised
solutions of the adjoint equation at time t = 0.0625 and t = 0.125 are displayed, and so
a milder restriction on the grid size h in the interfacial region is expected when solving
this equation. Our numerical tests (see Section 4) suggest that such a strategy can dra-
matically reduce the memory requirement and increase computational efficiency without
significantly compromising accuracy.

Within this implemented robust in-house two-grid solution strategy, we solve the
Allen-Cahn equation on a grid hierarchy where its finest grid has sufficient grid points
for the chosen ǫ; then to improve efficiency the backward adjoint equation is solved us-
ing only part of the grid hierarchy. As we stated previously, during the computation, at
least solutions from two variables of φ, p and η from all time steps in the current η iter-
ation are stored. If a very fine mesh resolution is required, this undoubtedly imposes a
severe requirement for the memory, even in a parallel setting. To relax this constraint, we
store all-time-step solutions only on the coarser grid where we solve the adjoint problem.
When the stored solutions are required on finer grids (where φ is solved), an interpola-
tion is used to transfer the stored solutions to that grid level. We illustrate this two-grid
solution strategy in Fig. 1.

One time step

One complete solve for the Allen-Cahn equation from t=(0,T]

Intermediate grid(s)

Restrict the

converged solution 

of �

Fine grid for the

Allen-Cahn equation

Coarse grid for the 

adjoint equation

One time step

One complete solve for the adjoint equation from t=[T,0)

Interpolate the

computed �

Start the next � iteration

Figure 1: Sketch illustrating our in-house two-grid solution strategy, where the adjoint equation is solved on a
much coarser grid. The storage for all-time-step solutions is done on such a grid so as to reduce the memory
requirement.
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Remark 3.1. When solving such optimal control problems we note that apart from the
computational complexity, in terms of CPU time, it should be noted that there is also a
very large memory requirement. More specifically, η exists on all internal grid points
for all time steps. The η update (3.2) requires the solution of the adjoint equation p on
every grid point at every time step. For the adjoint equation (2.9), the solution of the
state equation φ on every space-time grid point is also required. Thus, when we solve
the Allen-Cahn equation, the solutions of φ and η are stored on every grid point for all
time steps. The requirements on memory storage can become significant as the number
of grid point increases.

To give the reader a brief idea, say one uses a 2-D grid consisting of 5122 grid points
with 50 forward and backward time steps for the Allen-Cahn and the adjoint equation
respectively. The solutions of 2 variables (φ and η) are stored using a double-precision
format, i.e., each float-point number occupies 8 bytes in the memory. This setting requires
around 210 megabytes of memory space. However, if this simulation is done in 3-D on
a uniform grid with the resolution of 5123, the memory requirement becomes approx-
imately 107 gigabytes. Such a simulation may not be feasible if parallelism and other
advanced techniques are not employed. To this end, we couple our two-grid solution
strategy with a parallelisation of a domain decomposition approach, as well as dynamic
AMR to enable 3-D simulations.

The software framework used here is called Campfire v2.0. Comparing with its pre-
vious versions used in [12–14], the latest software received some significant changes to
its structure in order to deal with a forward and a backward solve, as well as additional
parallel memory allocations. This framework contains a geometric nonlinear multigrid
solution method with a full approximation scheme (FAS), as well as a multi-level adap-
tive technique (MLAT) variant. However, when solving the linear adjoint equation, this
FAS multigrid reduces to the standard linear multigrid method [17]. The multigrid meth-
ods are widely known to be one of the fastest numerical methods with a linear complex-
ity [17–19], and we later demonstrate this in the paper. Its parallelisation comes from a
domain decomposition technique, and the Message Passing Interface is used for paral-
lel communication. Here using Fig. 2, we illustrate that the presented in-house two-grid
solution strategy can be comfortably extended into the multigrid V-cycles.

Considering we are using phase field approximation, dynamic AMR is commonly
employed so the interfacial region is well captured and resolved and the computations
are reduced in other regions where the phase field variable tends to be constant. On the
other hand, if the adjoint equation is solved with the dynamic AMR, further complica-
tions would occur involving the storage of the structure of the evolved mesh. This can be
practically unfeasible with the memory requirement that is mentioned in the Remark 3.1
earlier. Therefore, we employ dynamic AMR for the solutions of the forward Allen-Cahn
equation and solve the backwards adjoint PDE on a fixed (and much coarser) grid. For
instance, the finest grid shown in Fig. 1 may be a dynamically adaptive grid, as well as
the intermediate grids. However, the coarse grid that we solve the adjoint equation stays
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Figure 2: Sketch demonstrating our in-house multi-depth V-cycle multigrid strategy where the adjoint equation
is solved on a much coarser grid. The storage for all-time-step solutions is done on such a grid so as to reduce
the memory requirement.

fixed. We refer the interested reader to [13, 14] for the description of the dynamic AMR
and its associated dynamic load-balancing in parallel.

4 Numerical experiments

All the results shown in this section were generated using the local HPC cluster provided
and managed by the University of Sussex. This HPC cluster consists of 3000 computa-
tional units. The models of the computational units are AMD64, x86 64 or 64 bit architec-
ture, made up of a mixture of Intel and AMD nodes varying from 8 cores up to 64 cores
per node. Each unit is associated with 2GB memory space. Most of the simulations in this
paper were executed using 4−32 cores. The parallel scalability of our multigrid solver,
Campfire, has been discussed in earlier publications such as [12–14], where in [12], they
successfully scaled up to one thousand computational cores on the UK national super-
computer HECToR in 2013. We refer the reader to [13, 14] for a detailed explanation and
related results for the parallel scalability of our software.

4.1 A 2-D benchmark example

We start with a benchmark 2-D example. The initial data is a circle centred at (2,2) with
radius 1. We use a hyperbolic tangent function to obtain a continuous interfacial region
with a width of O(ǫ)

φt=0= tanh





−
[

(x−2)2+(y−2)2−1
]

ǫ



. (4.1)
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Figure 3: (a) shows the initial data (i.e. (4.1)) and (b) shows the desired data (i.e. (4.2)). The colour version
of this figure is online.

The desired data is an ellipse:

φobs= tanh







−
[

(x−2)2

2 +(y−2)2−1
]

ǫ






. (4.2)

Both the initial and desired shapes are illustrated in Fig. 3.

For illustrative purposes, we take the computational domain Ω=(0,4)2. The choices
of parameters are given in Table 1. At each time step, the infinity norm of the residual is
assessed, and the computation is said to have converged when this norm is smaller than
1.0×10−11.

Table 1: The parameters of the optimal control problem for the 2-D examples.

Name Description Value

α Step size for the control update 0.1

θ Regularisation parameter 0.01

ǫ Width of the diffuse interface 0.1

T Total time duration 0.125

τ Time step size (varies)

We present the computed solutions from a uniform grid with a resolution of 10242.
We select a time step τ= 7.8125×10−4, which yields 160 time steps. For the purpose of
demonstration, we run 50 η iterations. In a multigrid setting, we use a 162 grid as the



78 F. W. Yang et al. / Commun. Comput. Phys., 21 (2017), pp. 65-92

coarsest grid, and grids like 322, 642 etc. are the intermediate grids in the V-cycle hierar-
chy. The multigrid hierarchy is used for all simulations (163 is used as the coarsest grid
for 3-D simulations) and is fairly standard, for clarity we forgo mentioning the multigrid
setting later on.

The computed solution of φ at t=0.0625 (halfway through the time series) is presented
in Fig. 4(a). The computed final shape after the last time step is illustrated in Fig. 4(b). The
corresponding solutions of the adjoint p at time t=0.0625 and t=T=0.125 are included
in Figs. 4(c) and (d). The corresponding solutions of η are shown in Figs. 4(e) and (f).
We can see that, as expected for a circle evolving into an ellipse, the most forcing in (c) is
placed at the left and the right. We also observe that in (d), the forcing is highly positive
on the inner side of the phase field interface, and highly negative on the other, in order
to keep the shape from further unwanted expansion or shrinking. The reductions in the
objective functional J from the 50 η iterations are shown using a semi-log plot in Fig. 7 as
“fixed alpha”.

4.2 Convergence tests for the benchmark 2-D example

In this subsection, we report on numerical evidence that the proposed optimal control
model converges as we refine both spatially and temporally.

We use the simulation that was described in the previous subsection as a benchmark.
To recap, it was solved on a grid with the resolution of 10242 and 160 of time steps.

In order to conduct the convergence tests, the optimal control model here is solved
independently on the following grids: 642, 1282, 2562 and 5122. We use a time step size
τ = 0.0125 for the 642 simulation, giving 10 time steps. Then the choices of τ is halved
each time we use a finer grid. This results in 1282 to have 20, 2562 to have 40 and 5122 to
have 80 time steps, respectively. The other parameters for these simulations are the same
as those shown in Table 1. However, instead of running the η iteration to a constant, we
change the stopping criterion so that the η iteration stops when the objective functional J
is below 0.065. Note this new stopping criterion requires 24 η iterations to be satisfied for
the 10242 simulation and roughly the same number of iterations for other simulations.

We assess the solutions generated at three specific times: t1=0.0125, t2=T/2=0.0625
and t3 = T= 0.125. Note t1 is at the end of the first time step of the 642 simulation, and
subsequently the end of the second, fourth and eighth time steps of the 1282, 2562 and
5122 simulations respectively.

To compare the solutions spatially at the corresponding t1, t2 and t3, further proce-
dures are required. This is because the solutions are generated with different resolutions
of grids. As mentioned earlier, we use the solution from 10242 grid as the benchmark,
therefore all the solutions from other simulations other than 10242 are interpolated to the
uniform 10242 grid. Note this process uses a standard bilinear interpolation [17], which
is also the one used in our multigrid solver.

The interpolated solutions are compared with the benchmark solutions at t1, t2 and
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) illustrates the computed solution of φ halfway through (i.e. t=0.0625) and (b) shows the computed
final shape (i.e. t=T= 0.125). The corresponding solutions of adjoint p are included in (c) and (d) and the
solutions of η are shown in (e) and (f). The colour version of this figure is online.
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Table 2: The convergence tests for the solutions of φ, adjoint p and η.

L2(Ω) error for φ

m= t1 m= t2 m= t3

dm
642 3.4264×10−2 4.9226×10−2 6.8561×10−2

dm
1282 1.9721×10−2 4.8058×10−2 6.0397×10−2

dm
2562 8.1793×10−3 2.2300×10−2 3.4557×10−2

dm
5122 2.7850×10−3 8.0407×10−3 1.3192×10−2

L2(Ω) error for adjoint p

m= t1 m= t2 m= t3

dm
642 1.6773×10−2 1.8048×10−2 4.9344×10−2

dm
1282 9.9721×10−3 1.0158×10−2 3.1554×10−2

dm
2562 7.9290×10−3 8.5311×10−3 2.2551×10−2

dm
5122 6.5082×10−3 7.5551×10−3 1.4901×10−2

L2(Ω) error for η

m= t1 m= t2 m= t3

dm
642 1.6976×10−1 2.0752×10−1 7.5240×10−1

dm
1282 1.1923×10−1 1.5793×10−1 6.2554×10−1

dm
2562 8.5093×10−2 1.0601×10−1 5.3023×10−1

dm
5122 3.2344×10−2 3.9359×10−2 2.6302×10−1

t3, we use the L2(Ω) error defined as follows

dm
l :=

∑
N
i=1∑

N
j=1(φ

m,l
i,j −φm,10242

i,j )2

N×N
, m= t1,t2,t3, l=642,1282,2562,5122, (4.3)

where φm,l
i,j is the computed and interpolated value of φ on grid l and N = 1024 is the

number of internal grid points (after interpolation) on one axis. This is repeated for the
solutions of the adjoint p and η. We summarise the convergence tests in Table 2. It can be
seen from this table that as we refine both spatially and temporally, the solutions of the
model appear to converge.

4.3 The multigrid performance on the benchmark 2-D example

Within our software framework, the algebraic system arising from each time step is
solved by a multigrid solver. Here in this subsection, we assess, numerically, the per-
formance of our multigrid solver.

First of all, we present multigrid convergence rates by plotting the infinity norm of the
residual at the end of each V-cycle from a typical time step. Furthermore, since two dif-
ferent equations are solved separately, we consider them separately and illustrate these
results in Fig. 5. The eight lines in the two plots in Fig. 5 are nearly parallel to each other
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Figure 5: The multigrid convergence rates for the forward Allen-Cahn and backward adjoint equations. The
colour version of this figure is online.

which suggests the reductions in the infinity norms of the residuals are independent of
grid sizes.

We demonstrate the linear complexity of our multigrid solver in Fig. 6. Five simula-
tions (642, 1282, 2562, 5122 and 10242) are timed with a single computational core and the
averages of the CPU costs for 10 η iterations are plotted as shown in Fig. 6. For clarity, we
plot a red line of slope 1. The reason why the forward solver costs more is because, the
volume constraint typically requires 2 - 3 choices of λ (more in the first two η iterations,
since the guesses for λ are poor), meaning the algebraic system from the forward equa-
tion has to be solved 2–3 times within each time step. On the other hand, the algebraic
system for the backward equation requires only one solve.
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Figure 6: A log-log plot to illustrate the linear complexity of our multigrid solver. For comparisons, a line of
slop 1 is included. The colour version of this figure is online.
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4.4 Adaptive-α algorithm with the benchmark 2-D example

An additional improvement to the efficiency may come from using the described adaptive-
α algorithm (see Algorithm 1). In this subsection, we illustrate the effectiveness of this
approach.

The two most influential parameters in the algorithm are Pl and Pu which control the
incremental and decremental portions of the step size respectively. For the purpose of
demonstration, we use the described 10242 simulation with 160 time steps. As mentioned
previously, the reductions of the objective functional J within a fixed 50 η iterations is
shown in Fig. 7(a). The initial choice of αℓ=0=0.1 is the same as the one used in the fixed
α simulations previously.

Here we choose three different incremental parameters: P1
u = 110%, P2

u = 120% and
P3

u=130%. The corresponding decremental parameters are P1
l =50%, P2

l =40% and P3
l =

30%, respectively. Thus the more increases to the step size, the harder the penalisations
become. For comparison, simulations with these three pairs of parameters are done with
50 fixed η iterations. We plot the reductions of the objective functional J when using
the adaptive-α algorithm in Fig. 7(a). Note that in this figure, we only show the J from
the successful iterations. For completeness, we illustrate the evolutions of α from all four
simulations in Fig. 7(b), where the decreases in the values of α indicate the failed attempts.
A trade-off can be observed from these two figures: a larger incremental parameter leads
to a faster convergence, however, this may result in more failed attempts and thus in turn
results in more computational time. In this case the gains in efficiency of the adaptive-α
approach against a fixed value of α are evident. The use of an adaptive α is motivated by
the fact that in general our initial guess for the solution to the optimal control problem
may be poor and hence large step sizes may be admissible in the steepest descent update
as we are far from local minima. As we approach the local minima smaller step sizes are
necessary to prevent overshoot and hence some adaptivity in the parameter α is expected

(a) (b)

Figure 7: A semi-log plot shows the reductions of the objective functional J from using constant and adaptive
αs in (a). A semi-log plot shows the changes in the values of α in (b). The colour version of this figure is online.
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to be desirable. More involved algorithms for the selection of an optimal parameter α,
e.g., via a line search [8], may also be worthwhile topics of future investigation.

4.5 Two-grid solution strategy with dynamic AMR on the benchmark 2-D
example

In Remark 3.1 we note that, due to the very large number of degrees of freedom that
are typically required in order to accurately resolve phase field representation of inter-
faces with large curvatures, simulations on uniform grids in three space dimensions are
unlikely to be feasible. To this end we introduce the two-grid AMR solution strategy pro-
posed in Section 3.3. In this subsection, we investigate the effectiveness of this two-grid
solution strategy, in two space dimensions, and illustrate its robustness with the use of
dynamic AMR.

We consider a two-grid simulation where we solve the forward Allen-Cahn equation
on a 10242 uniform grid while the adjoint equation and the storage of all the solutions,
η, φ, p, takes place on a 642 uniform grid. The solutions of this two-grid simulation are
compared with solutions using a standard (one-grid) 642 uniform grid simulation. We
note that in both simulations all solutions are stored on a grid with resolution of 642.

For simplicity, we take 160 time steps for both simulations so that temporal errors
have less influence. Like the convergence tests shown in Subsection 4.2, we solve the
system until J gets below 0.065. In order to compute the error, the solutions from both
simulations are interpolated and compared against solutions from the benchmark simu-
lation of Section 4.2 that used a uniform grid of 10242 for both the forward and adjoint
problems.

We illustrate the errors in Table 3, where

dm
10242−642 :=

∑
N
i=1∑

N
j=1(φ

m,10242−642

i,j −φm,10242

i,j )2

N×N
, m= t1,t2,t3,

with φm,10242−642

i,j denoting the φ solution from the two-grid simulation.

From this table we see that solving φ on a finer grid, while solving for p on a coarse
grid and storing all solutions on the coarse grid, not only results in a reduction of the
error in φ but it also results in a reduction of the errors of p and η. However, since the
number of degrees of freedom in the two-grid (10242−642) simulation is considerably
larger than the number of degrees of freedom in the standard 642 simulation, this be-
haviour is somewhat expected. In the next simulation we conduct a comparison between
a two-grid simulation that solves the Allen-Cahn equation on an adaptive 2562 grid with
dynamic AMR and the adjoint equation on a uniform 642 grid, with a simulation on a
standard 1282 uniform grid. In this comparison the number of degrees of freedom in the
two simulations is comparable, 17200 (maximum number of degrees of freedom occurred
within the forward solve) for the two-grid simulation versus 1282=16384.

Both simulations have 160 time steps. The errors are shown in Table 4. From this table,
we can see that for the two-grid simulation only the errors in φ are better. This is expected
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Table 3: Comparisons of errors between a two-grid simulation (10242−642) and a standard 642 simulation.

L2(Ω) error for φ

m= t1 m= t2 m= t3

dm
642 3.1224×10−2 4.7216×10−2 6.3531×10−2

dm
10242−642 8.1840×10−3 1.6194×10−2 8.6616×10−3

L2(Ω) error for adjoint p

m= t1 m= t2 m= t3

dm
642 1.3722×10−2 1.2018×10−2 4.0874×10−2

dm
10242−642 6.1444×10−3 4.9266×10−3 9.9998×10−3

L2(Ω) error for η

m= t1 m= t2 m= t3

dm
642 1.2176×10−1 1.8872×10−1 6.9943×10−1

dm
10242−642 9.9110×10−2 1.3768×10−1 4.2063×10−1

Table 4: Comparisons of errors between an adaptive two-grid simulation (2562−642) with AMR and a standard

1282 uniform grid simulation.

L2(Ω) error for φ

m= t1 m= t2 m= t3

dm
1282 1.2327×10−2 2.6664×10−2 3.8450×10−2

dm
2562−642 8.6270×10−3 1.6895×10−2 3.2925×10−2

L2(Ω) error for adjoint p

m= t1 m= t2 m= t3

dm
1282 9.2021×10−3 9.7122×10−3 3.0233×10−2

dm
2562−642 1.0004×10−2 1.4886×10−2 2.7392×10−2

L2(Ω) error for η

m= t1 m= t2 m= t3

dm
1282 9.7196×10−2 1.2153×10−1 5.3632×10−1

dm
2562−642 7.7932×10−2 1.4930×10−2 5.9167×10−1

as the adjoint is solved on a coarser grid (i.e. 642) and η, φ and p are stored on this coarse
grid. On the other hand, it is important to note that we can store all the solutions on
a coarser grid as well as solving the adjoint equation there without compromising too
much on accuracy; this is crucial for 3-D simulations. In Fig. 8 we show two snapshots of
our dynamic AMR at t= t1 and t=T.

4.6 3-D example

We mentioned previously in Remark 3.1 that solving a 5123 3-D simulation using a stan-
dard uniform grid requires memory of over 100 gigabytes space. Using the two-grid
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Figure 8: Two colour plots showing the dynamic AMR in our solver. The blue region shows the 644 grid; light
green region indicates the 1282 grid; and finally red region illustrates the finest 2562 grid. The colour version
of this figure is online.

solution strategy and dynamic AMR for the phase field variable, we can run a 5123 sim-
ulation with less than 20 gigabytes memory requirement. This simulation is done in a
3-D domain Ω= (0,1)3. We choose a uniform 643 to be the grid where we store all the
solutions and solve the adjoint equation. The finest grid is an adaptive grid and if it was
uniform, it would have the resolution of 5123. The temporal domain is (0,T]= (0,0.001],
with a time step size τ = 5×10−5. We use the same α and θ shown in Table 1. More
importantly, we choose an ǫ=0.02, with the finest grid, we can ensure there are roughly
10 grid points in the interfacial region in each axis direction. It is worth noting that the
interfacial region of this simulation can not be resolved accurately on any coarser grids
than proposed here [16].

We define the initial shape to be a sphere

φt=0= tanh





−
[

(x−0.5)2+(y−0.5)2+(z−0.5)2−0.252
]

ǫ



 (4.4)

and the desired data to be an ellipsoid

φobs= tanh







−
[

(x−0.5)2

2 +(y−0.5)2+(z−0.5)2−0.252
]

ǫ






. (4.5)

The zero-isosurface of φ for both the initial and desired shapes are illustrated in
Fig. 9(a) and (b) respectively. Following a fixed 15 η iterations, we present two plots
of the zero-isosurface of φ in Figs. 9(c) and (d). The solution in (c) is halfway through the
temporal domain and the solution in (d) is the computed final shape. We use colours and
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(a) (b)

(c) (d)

Figure 9: Figures (a) and (b) show the zero-isosurface of φ of initial data (i.e. (4.4)) and desired data (i.e. (4.5))
respectively; (c) and (d) illustrate the zero-isosurface of computed solutions halfway through (i.e. t=T/2) and
the final shape (i.e. t=T=0.001) respectively. We use colours to indicate the corresponding solutions of η on
the zero-isosurface. The colour version of this figure is online.

Figure 10: A semi-log plot shows the reductions of the objective function J. The colour version of this figure is
online.

colour-value indicator on the side to demonstrate the corresponding solutions of η on the
zero-isosurface. The reductions of the objective function J are shown in Fig. 10.
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4.7 Irregular shapes

In all our previous simulations we used relatively simple shapes for illustrative purposes
only. In this subsection, we show some irregular shapes in both 2-D and 3-D in order to
illustrate that the proposed optimal control approach is capable of dealing with general
interfaces.

We start with a 2-D example which takes a circle as the initial shape and the desired
shape is the following

φobs=max

{

tanh







−
[

[(x−2)+(y−2)]2

6 + [(y−2)−(x−2)]2

1 −1
]

ǫ






,

tanh







−
[

[(x−2)+(y−2)]2

6 + [(y−2)−(x−2)]2

1 −1
]

ǫ







}

. (4.6)

We take the computational domain Ω=(0,4)2 and use the parameters presented in Table
1. This simulation is solved using a two-grid approach which has a 5122 grid for the
Allen-Cahn and a 642 grid for the adjoint equation. We set T= 0.05 and use a time step
size τ=0.001. The initial and desired data are illustrated in Fig. 11. We present our results
in Fig. 12, which include the solutions of φ at the first time step, the halfway mark (i.e.
t=0.0025) and the end time, together with their corresponding control η.

Figure 11: (a) shows the initial data from (4.1) and (b) illustrates the desired data from (4.6). The colour
version of this figure is online.
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Figure 12: (a) and (b) show the solutions of φ and η at the first time step, respectively; (c) and (d) illustrate
the solutions at the halfway mark (i.e. t= 0.0025); (e) and (f) show the solutions at the final time T. The
colour version of this figure is online.
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We define two 3-D shapes as follows

φ0= tanh









−

[

2
(

(x−2)−(z−2)2
)2

+(y−2)2+(z−2)2−1

]

ǫ









, (4.7)

φobs= tanh









−

[

(

(y−2.3)−(z−2.3)2
)2

+2(x−2.3)2+(z−2.3)2−1

]

ǫ









. (4.8)

The simulation has the same setting as the one described in Subsection 4.6 and we
illustrate the zero-isosurface together with the values of the optimal control η on this
isosurface in Fig. 13.

(a) (b)

(c) (d)

Figure 13: Figures (a) and (b) show the zero-isosurface of φ of initial data and desired data respectively; (c) and
(d) illustrate the zero-isosurface of computed solutions halfway through (i.e. t=T/2) and the final shape (i.e.
t=T=0.001) respectively. We use colours to indicate the corresponding solutions of η on the zero-isosurface.
The colour version of this figure is online.
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5 Conclusion

In this work, we focussed on the development of robust and efficient solution proce-
dures for the approximation of the optimal control of geometric evolution laws using
phase field formulations. The problems under consideration arise naturally in many ap-
plications [1–3, 8, 10]. Such optimal control problems are very computationally demand-
ing and memory hungry especially when posed in three space dimensions. Thus the
development of efficient, robust and accurate solvers is of much importance. We have
described, in detail, a solution procedure that combines a number of state-of-the-art al-
gorithms to improve overall efficiency. We employed a steepest descent approach for
the iterative computation of the optimal control. We introduced an adaptive-step-size
algorithm which tries to use as large a step size as possible to reduce the number of itera-
tions needed. Robust and efficient solvers for both the forward (Allen-Cahn) and adjoint
equations, based on FAS multigrid methods with MLAT are described together with their
parallel implementation which is crucial for minimising wall clock time due to the mas-
sive memory requirements. We discussed the use of mesh refinement which dramatically
reduces the number of degrees of freedom required for the solution of the forward prob-
lem, and is crucial in terms of reducing the computational complexity. A major finding
of this work is that a two-grid solution strategy, in which the forward equation is solved
on an adaptively refined grid whilst the adjoint problem is solved on a coarser grid, thus
significantly reducing CPU and memory requirements, appears to lead to only a minor
loss in accuracy. We have implemented our algorithms and conducted detailed tests and
benchmarks of our solution methods using 2-D and 3-D examples. The conclusion is
that our solution algorithms can significantly improve efficiency while maintaining an
acceptable accuracy.

Possible further work, which is the focus of our current work is the application of
the methodologies described in this article to real world problems. In particular, as in-
vestigated in Blazakis et al. [6], the optimal control problem we solve may be useful for
whole cell tracking and reconstruction of dynamic cell morphologies from static imaging
data. A particular advantage of the present approach is that, in contrast to the majority
of existing whole cell tracking algorithms, aspects of the physics of cell migration may
be encoded in the forward model and hence in the recovered trajectories. Using the tech-
niques introduced in this paper, we may consider 3-D examples of cell tracking as well
as other scenarios involving tracking multiple cells over long time horizons which re-
quires high spatial resolution and integration over a large time interval. Our solution
methods are not restricted to forward models involving phase field formulations of geo-
metric evolution laws; we expect that our solution methodologies are likely to be a robust
and efficient option for problems involving the control of semilinear parabolic PDEs in
general.

Data Management

All the computational data output is included in the present manuscript.
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