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Abstract. This paper is concerned with numerical approximations of a nonlocal heat
equation define on an infinite domain. Two classes of artificial boundary condi-
tions (ABCs) are designed, namely, nonlocal analog Dirichlet-to-Neumann-type ABCs
(global in time) and high-order Padé approximate ABCs (local in time). These ABCs
reformulate the original problem into an initial-boundary-value (IBV) problem on a
bounded domain. For the global ABCs, we adopt a fast evolution to enhance com-
putational efficiency and reduce memory storage. High order fully discrete schemes,
both second-order in time and space, are given to discretize two reduced problems.
Extensive numerical experiments are carried out to show the accuracy and efficiency
of the proposed methods.
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1 Introduction

In this paper, we consider the numerical computation of 1D nonlocal heat equations on
an unbounded spatial domain, given by

ut(x,t)=Lδu(x,t)+ f (x,t), (x,t)∈R×(0,T], (1.1)

u(x,0)= g(x), x∈R, (1.2)

u(x,t)→0, as |x|→∞, ∀t>0, (1.3)
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where the initial value g= g(x) and the source f = f (x,t) are the given compactly sup-
ported functions. The nonlocal operator Lδ is defined as

Lδu(x)=
∫

Bδ(x)
(u(x′)−u(x))γδ(x,x′)dx′, ∀x∈R

d,

where Bδ(x)={x′|x′∈R
d : |x′−x|<δ} is a neighborhood of x with radius δ. Usually, γδ=

γδ(x,x′) :Rd×R
d→R is a nonnegative, radial-type kernel, namely, γδ(x,x′)=γδ(|x−x′|).

Furthermore, it is compactly supported by x′ /∈Bδ(x) and satisfies the following second
moment condition

0<
∫ δ

0
τ2γδ(τ)dτ=Cδ<∞. (1.4)

Eq. (1.3) may be viewed as a nonlocal-in-space analog of the the classical heat equa-
tions [13]. Although the latter have been widely applied in many fields based on Fick’s
first law for local diffusive fluxes [4, 36, 37], nonlocal heat equations offer better models
for anomalous diffusion behavior. Nonlocal integral operators in the form of Lδ have
also been used in nonlocal peridynamics models of mechanics [12, 18, 23, 39–41], thermal
diffusion and electromigration [3, 7–9, 15, 17, 20]. A mathematical framework of nonlocal
vector calculus and nonlocal balance laws has been developed in [14, 22]. It has been ap-
plied to study related volume-constraint problem [13, 14, 34]. Aside from mathematical
analysis of PD/nonlocal models, there are also various numerical methods such as finite
difference, finite element, quadrature and particle-based methods [10,16,33,49]. Recently,
Tian and Du [43,44] present the deep insight for the numerical approximations to nonlo-
cal models. Most importantly, their works address the issue of convergence in both the
nonlocal setting and the local limit, and find the asymptotically compatible schemes for
nonlocal models. All the above PD/nonlocal simulations focus on numerically solving
problems with fixed boundary conditions on bounded domain. In fact, there are many
applications in which the simulation of an infinite medium may be useful, such as wave
or crack propagation, superdiffusion in a whole space.

The nonlocal heat equations/peridynamic thermal diffusion models under consider-
ation can be formulated by the nonlocal heat transfer between material points [7, 8]. In
one dimensional space, the nonlocal operator becomes

Lδu(x)=
∫ δ

−δ
[u(x+τ)−u(x)]γδ(τ)dτ. (1.5)

With a suitably defined kernel, as δ → 0, for a smooth function u= u(x), we may have
Lδu→ a2d2u/dx2 for some constant a>0 [13, 34]. Thus, the nonlocal model (1.1)-(1.3) in
the local limit tends to the classical heat equation

ut(x,t)= a2uxx(x,t)+ f (x,t), (x,t)∈R×(0,T], (1.6)

u(x,0)= g(x), x∈R, (1.7)

u→0, as |x|→∞. (1.8)
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The artificial boundary method (ABM) is a useful approach to deal with problems on un-
bounded domain [26]. The main idea of ABM is firstly to introduce artificial boundaries
to limit the computational domain of interest, then construct suitable artificial/absorbing
boundary conditions (ABCs) on artificial boundaries, finally reformulate the problem on
unbounded domain into a problem on bounded domain. Another approach to simulate
an infinite medium by absorbing any impinging waves at the computational boundaries
is the perfectly matched layer (PML), which was originally introduced for electromag-
netic simulations [6, 11]. Recently, PML approach facilitated with an auxiliary field for-
mulation has been applied to simulate peridynamics [45, 46].

In the last three decades, there have been numerous studies on the numerical solution
of the classical heat equation in an unbounded domain via global and local ABCs, see
[21, 24, 25, 47]. However, the design of ABCs for nonlocal heat equation remains open. In
this paper, we consider effective ABCs for nonlocal heat equation on unbounded domain.
The main challenge is that a nonlocal operator is generically associated with volume
constrained boundary conditions. This motivates us to introduce a layer to surround
the computational domain of interest, and design suitable boundary conditions on the
artificial layer. This differs from the traditional ABCs defined on a co-dimensional one
surface. Inspired by the derivation of ABCs for local heat equations in [47], we first
consider a problem on exterior domain, and obtain an approximate general solution to
a nonlocal differential equations in the Laplace space. Using boundary conditions at
infinity and the inverse Laplace transformation, we enforce the out-going wave condition
and obtain a relationship between the differential operator in nonlocal sense, which is
like a one-way operator similar to the classical Dirichlet-to-Neumann (DtN)-type ABCs.
These one-side nonlocal operators make the system solvable on the bounded domain.

The above obtained ABCs on artificial layers involve the time fractional Caputo deriva-
tive C

0 Dα
t u(t) of order α= 1

2 , which can be expressed as a convolution of u′(t) with the ker-
nel t−α. When the direct method such as L1-approximation [32,38,42] is used to calculate
Caputo derivative, the resulting algorithm need O(N2

T) overall computational cost with
NT the total number of time steps. To overcome this excessive computational cost, we
use a fast evaluation of the Caputo fractional derivative with only O(NTnexp) operations
needed (nexp being the number of exponentials, see the discussions in [30] and references
therein). Another contribution of this paper is to construct high-order local ABCs by Padé
expansion and the introduction of suitable auxiliary variables. The local ABCs can not
only enhance the efficiency but also reduce the memory storage.

The paper is organized as follows. In Section 2, we consider the constructions of
ABCs, which reformulate the problem on an unbounded domain into a problem defined
on a finite domain. In Section 3, discrete schemes obtained by quadrature-based finite
difference approximations are given. In Section 4, numerical experiments are presented.
the numerical efficiency and stability of our approach are elucidated. A conclusion is
given at the end.
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2 Design of artificial boundary conditions

First, we choose the computation domain as [xl ,xr] such that both the source term f and
the initial value g are compactly supported in (xl+δ,xr−δ). Due to the nonlocality of
the operator Lδ, we introduce absorbing layers (that differ from PML since we need to
design suitable ABCs on these layers), defined by

Γ− :={x|x∈ [xl −δ,xl]} and Γ+ :={x|x∈ [xr ,xr+δ]}.

We further divide the whole domain R into three parts with some overlap as

Ω− :={x|−∞< x< xl+δ}, Ωi :={x|xl < x< xr}, Ω+ :={x|xr−δ< x<∞}.

We can put these notations in the figure below for visual illustration.

xl−δ xl xl+δ xr-δ xr xr+δ

Ω− Ωi
Ω+

Γ− Γ+

To construct effective boundary conditions, we first consider two sub-problems on
the exterior domains Ω− and Ω+. Let us denote Ωe=Ω−∪Ω+, then

ut(x,t)= a2Lδu(x,t), (x,t)∈Ωe×(0,T], (2.1)

u(x,0)=0, x∈Ωe, (2.2)

u→0, as |x|→∞. (2.3)

Applying Laplace transform to (2.1), we arrive at

sû= a2
∫ δ

−δ
[û(x+τ,s)−û(x,s)]γδ(τ)dτ. (2.4)

The Laplace transformation and its inverse transformation are given by

L{ f (t);s}= f̂ (s)=
∫ +∞

0
e−st f (t)dt, Re(s)>0,

L
−1{ĝ(s);t}= g(t)=

1

2πi

∫ +i∞

−i∞
est ĝ(s)ds, i2=−1.

Generally, it is not feasible to construct the exact solution û to Eq. (2.4) since the right-
hand-side of (2.4) is an integral having a general kernel. However, we observe that
Eq. (2.4) has a general solution in the form û(x,s)= ce−λ(s)x, in which both the constant c
and λ(s) are undetermined. Plugging such a solution into (2.4) yields

s= a2
∫ δ

0
(e−λτ−2+eλτ)γδ(τ)dτ, (2.5)
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where the symmetry of the kernel γδ is used. Although we get a nonlinear relation be-
tween s and λ(s), it is nontrivial to write down the exact expression for Eq. (2.5). Alter-
natively, we turn to its approximation by applying Taylor expansion on e−λτ and eλτ up

to order O((λτ)4), and using the fact
∫ δ

0
τ2γδ(τ)dτ=1. We then arrive at

s= a2
∫ δ

0
(λ2τ2+O((λτ)4))γδ(τ)dτ

≈ a2λ2. (2.6)

Thus we approximate λ(s) as

λ1,2(s)=± +
√

s/a2, (2.7)

where +
√· represents the square root with positive real part. Considering the boundary

conditions at infinity, we have a class of estimated solutions in the frequency domain for
two sub-problems as

û(x,s)= c1e
+√s/a2x, x∈Ω−, and û(x,s)= c2e−

+√s/a2x, x∈Ω+, ci∈R. (2.8)

To improve the order to O((λτ)6) in the Taylor expansion, we have

s= a2
∫ δ

0

(
λ2τ2+

λ4τ4

12
+O((λτ)6)

)
γδ(τ)dτ. (2.9)

This leads to more complicated and delicate approximations. As the first step, we derive
boundary conditions using approximated solutions in (2.8), taking into account of the
nonlocality of the nonlocal diffusion operator. Hence, a one-side nonlocal operator is
introduced on either the left or the right boundary layer respectively by

NR(u(x,t))=
∫ δ

0
(u(x,t)−u(x−τ,t))τγδ(τ)dτ, x∈Γ+, (2.10)

NL(u(x,t))=
∫ δ

0
(u(x+τ,t)−u(x,t))τγδ(τ)dτ, x∈Γ−. (2.11)

It can be verified that NL(u) and NR(u) tend to the left and the right derivatives of u
respectively as δ→0 [13–15, 35].

2.1 Designing global artificial boundary conditions

We firstly consider the right artificial boundary layer Γ+. Applying Laplace transforma-
tion to the operator (2.10), we have

L{NR(u(x,t))}=NR(û(x,s))=
∫ δ

0
(û(x,s)−û(x−τ,s))τγδ(τ)dτ, x∈Γ+. (2.12)
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As NR is defined in Γ+= [xr,xr+δ] with a nonlocal horizon parameter δ, its domain of
definition includes [xr−δ,xr+2δ]⊂Ω+. Substituting the approximated solutions û(x,s)=
ceλ1(s)x with λ1(s)=− +

√
s/a2 into (2.12) yields

NR(û(x,s))= û(x,s)
∫ δ

0
(1−e−λ1τ)τγδ(τ)dτ

≈− +
√

s/a2û− s

2a2
û
∫ δ

0
τ3γδ(τ)dτ, (2.13)

where in the last step we replace e−λ1τ with 1−λ1τ+ 1
2 λ2

1τ2. Taking Laplace inverse trans-
formation on (2.13), we get the boundary condition on the right side

NR(u(x,t))=−
√

1

a2
C
0 D

1
2
t u(x,t)− 1

2a2
∂tu(x,t)

∫ δ

0
τ3γδ(τ)dτ, x∈Γ+, (2.14)

where C
0 D

1
2
t represents the Caputo fractional derivative of order 1

2 , defined by

C
0 D

1
2
t u(x,t)=

1

Γ(1− 1
2)

∫ t

0

uτ(x,τ)

(t−τ)
1
2

dτ.

Similarly, we have the boundary condition on the left

NL(u(x,t))=

√
1

a2
C
0 D

1
2
t u(x,t)+

1

2a2
∂tu(x,t)

∫ δ

0
τ3γδ(τ)dτ, x∈Γ−. (2.15)

Combining conditions (2.14) and (2.15), the problem (1.1)-(1.3) on the unbounded domain
is reduced to an IBV problem on a bounded domain





ut= a2Lδu+ f (x,t), x∈Ωi,

u(x,0)= g(x), x∈Ωi∪Γ+∪Γ−,

NR(u(x,t))=−
√

1

a2
C
0 D

1
2
t u(x,t)− 1

2a2
∂tu(x,t)

∫ δ

0
τ3γδ(τ)dτ, x∈Γ+,

NL(u(x,t))=

√
1

a2
C
0 D

1
2
t u(x,t)+

1

2a2
∂tu(x,t)

∫ δ

0
τ3γδ(τ)dτ, x∈Γ−.

(2.16)

Remark 2.1. Our newly derived ABCs (2.14) and (2.15) are consistent with the classical
heat equation in the case δ→0. For example, taking the constant kernel γδ(τ)=3δ−3, the
ABCs becomes

NR(u(x,t))=−
√

1

a2
C
0 D

1
2
t u(x,t)− 3δ

8a2
∂tu(x,t), x∈Γ+, (2.17)

NL(u(x,t))=

√
1

a2
C
0 D

1
2
t u(x,t)+

3δ

8a2
∂tu(x,t), x∈Γ−. (2.18)
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One can see that as δ approaches to 0, the ABCs (2.17) and (2.18) respectively reduce to

ux(xr,t)=−
√

1

a2
C
0 D

1
2
t u(xr,t) (2.19)

ux(xl,t)=

√
1

a2
C
0 D

1
2
t u(xl ,t), (2.20)

which are the same as the exact global ABCs for the classical heat equations (1.6)-(1.8).
This in fact holds for all nonnegative kernels satisfying second moment condition (1.4).

Remark 2.2. We note that the approach for designing the ABCs for nonlocal models (2.17)
and (2.18) follows form the derivation of the exact global artificial boundary conditions
(2.19) and (2.20). But the idea of introducing the one-side nonlocal operators to close
the whole system is new. This is a crucial step to reduce the original problem on infinite
domain to a bounded domain. Even when the kernels in NR and NL are different from the
one in Lδ, the approach is still applicable. For simplicity, we choose the constant kernel
in both NR and NL regardless of whichever kernel is used in Lδ.

2.2 Designing high-order artificial boundary conditions

Since the nonlocal boundary conditions (2.14) and (2.15) are global in time, it is natural
to consider high-order approximate ABCs that are local in time in order to reduce the
computation and memory cost. Similar to the technique given by Engquist and Majda
[19], we use the Padé expansion to approximate the square root by

√
s≈√

z0

(
1+

p

∑
i=1

bi

ai
−

p

∑
i=1

bi

ai

z0

z0−ai(z0−s)

)
, (2.21)

where ai = cos2 iπ
2p+1 , bi =

2
2p+1 sin2 iπ

2p+1 , i= 1,··· ,p. Substituting the Padé approximation

(2.21) into (2.13), and introducing the auxiliary variables

ω̂i(x,t)=
1

z0−ai(z0−s)
û(x,t), x∈Γ+, (2.22)

we obtain an approximated system on the right-side boundary layer





aNR(û)=−√
z0

[(
1+

p

∑
i=1

bi

ai

)
û−z0

p

∑
i=1

bi

ai
ω̂i

]
− s

2a
û
∫ δ

0
τ3γδ(τ)dτ, x∈Γ+,

(z0−aiz0+ais)ω̂i= û, x∈Γ+.

(2.23)

In the same vein, we introduce auxiliary variables

µ̂i(x,t)=
1

z0−ai(z0−s)
û(x,t), x∈Γ−, (2.24)
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and get a corresponding approximated system on the left-side boundary layer




aNL(û)=
√

z0

[(
1+

p

∑
i=1

bi

ai

)
û−z0

p

∑
i=1

bi

ai
µ̂i

]
+

s

2a
û
∫ δ

0
τ3γδ(τ)dτ, x∈Γ−,

(z0−aiz0+ais)µ̂i = û, x∈Γ−.

(2.25)

Applying the inverse Laplace transform on nonlocal boundary conditions (2.23) and
(2.25), we reduce the original problem (1.1)-(1.3) to an IBV problem on a bounded domain
with the Padé approximation based local-in-time ABCs (abbreviated as Padé ABCs)




ut= a2Lδu+ f (x,t), x∈Ωi,

u(x,0)= g(x), x∈Ωi,

aNR(u)=−√
z0

[(
1+

p

∑
i=1

bi

ai

)
u−z0

p

∑
i=1

bi

ai
ωi

]
− 1

2a
ut

∫ δ

0
τ3γδ(τ)dτ, x∈Γ+,

(z0−aiz0)ωi+ai∂tωi=u(x,t), i=1,2,··· ,p, x∈Γ+,

aNL(u)=
√

z0

[(
1+

p

∑
i=1

bi

ai

)
u−z0

p

∑
i=1

bi

ai
µi

]
+

1

2a
ut

∫ δ

0
τ3γδ(τ)dτ, x∈Γ−,

(z0−aiz0)µi+ai∂tµi=u(x,t), i=1,2,··· ,p, x∈Γ−.

(2.26)

3 Fully discrete scheme

We adopt the quadrature-based 2nd order finite difference method examined in [43] to
discretize nonlocal operators Lδ, NL and NR on a uniform grid on Ωi := (xl ,xr) with
h = xr−xl

Nx+1 and ∆t = T
Nt

on [0,T] with Nx,Nt ∈ Z
+. Denote tn = n∆t,(n = 0,1,··· ,Nt), Ij =

((j−1)h, jh) for 1≤ j ≤ r. Here we only consider the case when δ= rh for some integer
r>1.

Let xj = xl+ jh, where j ∈ Ωh
i = {1,··· ,Nx} for internal point, j ∈ Γh

− = {−r,. . . ,0} for

left-side boundary layer and j ∈ Γh
+ = {Nx+1,··· ,Nx+r+1} for the right-side. Let the

piecewise linear hat basis functions be given by

φ1
k(x)=





(x−(k−1)h)/h, x∈ Ik,

((k+1)h−x)/h, x∈ Ik+1,

0, otherwise.

(3.1)

With un
j representing the approximation of u(xj,tn), and noticing that ∑

r
k=0φ1

k(·)=1, we

can reformulate (1.5) in the following form

Lδu(x)=
∫ δ

0

u(x+τ)−2u(x)+u(x−τ)

τα
ταγδ(τ)dτ

=
r

∑
k=0

∫ δ

0

u(x+τ)−2u(x)+u(x−τ)

τα
ταφ1

k(τ)γδ(τ)dτ. (3.2)
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Then we take the quadrature collocation scheme given in [43] to discretize the nonlocal
diffusion operator Lh

δ as

Lh
δ(uj)=

r

∑
k=1

uj+k−2uj+uj−k

(kh)α

∫ δ

0
ταφ1

k(τ)γδ(τ)dτ. (3.3)

By setting α = 1, we have the internal nonlocal stiffness matrix Aδ = (aij) based on the
quadrature collocation method that is designed to be second order accurate in space.
Denote k= |j−i|, then

aij =





−2

(
r−1

∑
k=1

1

kh

∫

Ik∪Ik+1

φ1
k(τ)τγδ(τ)dτ+

1

rh

∫

Ir

φ1
r (τ)τγδ(τ)dτ

)
, k=0,

1

kh

∫

Ik∪Ik+1

φ1
k(τ)τγδ(τ)dτ, 1≤ k≤ r−1,

1

rh

∫

Ir

φ1
r (τ)τγδ(τ)dτ, k= r,

0, otherwise.

(3.4)

On the boundary layers, or boundary interaction domains, we follow the same idea and
use quadrature-based finite difference discretization, with k= i− j for the boundary on
the right-side and k= j−i on the left-side,

Nh
R(ui)=

r

∑
k=1

ui−ui−k

(kh)α

∫ δ

0
φ1

k(τ)τ
1+αγδ(τ)dτ

=
r−1

∑
k=1

ui−ui−k

(kh)α

∫

Ik∪Ik+1

φ1
k(τ)τ

1+αγδ(τ)dτ+
(ui−ui−r)

(rh)α

∫

Ir

φ1
r (τ)τ

1+αγδ(τ)dτ,

where ui is the numerical approximation of u(xi). We take α=0 in the numerical examples
for these boundary approximations.

In time, we take the second-order Crank-Nicolson scheme to match with the second-
order spatial accuracy.

3.1 Discrete scheme of global artificial boundary conditions

In this section, we present the fast evaluation of the fractional Caputo derivative to nu-
merically solve the problem (2.16). The main procedure is to split the convolution integral
of the fractional Caputo derivative (2.1) into the sum of a local part and a historical part,
given by

C
0 D

1
2
t un =

1

Γ(1− 1
2)

∫ tn

tn−1

u′(s)ds

(tn−s)
1
2

+
1

Γ(1− 1
2 )

∫ tn−1

0

u′(s)ds

(tn−s)
1
2

:=Cl(tn)+Ch(tn). (3.5)
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For the local part Cl(tn), we apply the standard L1-approximation given by

Cl(tn)≈
u(tn)−u(tn−1)

∆tΓ(1− 1
2)

∫ tn

tn−1

1

(tn−s)
1
2

ds=
u(tn)−u(tn−1)

∆t
1
2 Γ( 3

2)
. (3.6)

For the historical part, we apply the integration by part to eliminate u′(s) and get

Ch(tn)=
1

Γ( 3
2)

[
u(tn−1)

∆t
1
2

− u(t0)

t
1
2
n

− 1

2

∫ tn−1

0

u(s)ds

(tn−s)
3
2

]
. (3.7)

The sum-of-exponentials approximations have been applied to speed up the evalu-
ation of the convolution integrals in many applications, for instances, to accelerate the
evaluation of the exact ABCs for the wave, Schrödinger, heat equations and fractional in-
tegrals in [1,2,5,27–31,48]. In our work, we use the approach proposed in [30] to approx-

imate t−
3
2 via a sum-of-exponentials approximation for the given interval [∆t,T] and the

absolute error ε. That is to say, there exist positive real numbers si and wi (i=1,··· ,Nexp)
such that ∣∣∣∣∣

1

t1+ 1
2

−
Nexp

∑
i=1

ωie
−sit

∣∣∣∣∣≤ ε, t∈ [∆t,T], (3.8)

where the number of exponentials Nexp needed is of the order (see Table 1 for example)

O
(

log
1

ε

(
loglog

1

ε
+log

T

∆t

)
+log

1

∆t

(
loglog

1

ε
+log

1

∆t

))
.

Table 1: Number of exponentials Nexp needed to approximate t−
3
2 with fixed ∆t=10−3.

ε

∖
T
∆t 103 104 105 106

10−3 28 30 35 38

10−6 42 47 47 51

10−9 49 55 64 72

Replacing the convolution kernel t−
3
2 in (3.7) by its sum-of-exponentials approxima-

tion in (3.8), we have the historical part defined as follows:

Ch(tn)≈
1

Γ(1− 1
2 )

[
u(tn−1)

∆t
1
2

− u(t0)

t
1
2
n

− 1

2

Nexp

∑
i=1

Uhist,i(tn)

]
, (3.9)

where Uhist,i(tn) is given by

Uhist,i(tn)=ωi

∫ tn−1

0
e−(tn−τ)siu(τ)dτ. (3.10)
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We note that Uhist,i(tn) satisfies the simple recurrence relation:

Uhist,i(tn)= e−si∆tUhist,i(tn−1)+
∫ tn−1

tn−2

e−si(tn−τ)u(τ)dτ, for n=1,2,··· ,NT (3.11)

with Uhist,i(t0)= 0 for i= 1,··· ,Nexp. The integral on the right hand side of (3.11) is cal-
culated by interpolating u via a linear function, and the resulting approximation is given
by

∫ tn−1

tn−2

e−si(tn−τ)u(τ)dτ≈ e−si∆t

s2
i ∆t

[
(e−si∆t−1+si∆t)un−1+(1−e−si∆t−e−si∆tsi∆t)un−2

]
.

We now denote the fast evaluation of the Caputo derivative by

FC
0 D

1
2
t un=

u(tn)−u(tn−1)

∆t
1
2 Γ( 3

2)
+

1

Γ(1− 1
2)

[
u(tn−1)

∆t
1
2

− u(t0)

t
1
2
n

− 1

2

Nexp

∑
i=1

Uhist,i(tn)

]
. (3.12)

One can observe that the above fast evaluation for the fractional Caputo derivative only
needs O(1) work to compute Uhist,i(tn) at each time step since Uhist,i(tn−1) is known at
that point. Thus, the total work is reduced from O(N2

T) for direct method to O(NT Nexp),
and the total memory requirement is reduced from O(NT) for direct method to O(Nexp).

Remark 3.1. The approximation FC
0 D

1
2
t un in (3.12) has an error bound as follows. Suppose

that u(t)∈C2[0,tn] and let FRnu :=C
0 D

1
2
t u(t)

∣∣
t=tn

−FC
0 D

1
2
t un, then

|FRnu|≤C∆t
3
2 max

0≤t≤tn

|u′′
(t)|+tn−1ε max

0≤t≤tn−1

|u(t)|. (3.13)

Combining with the fast evaluation of Caputo fractional derivative, we can discrete
the problem (2.16) by





D+
t un

j = a2Lh
δu

n+ 1
2

j + f n+1/2
j , j∈Ωh

i ,

u0
j = g0

j , j∈Ωh
i ,

Nh
R(u

n+ 1
2

j )=−
√

1

a2
FC
0 D

1
2
t un

j −
1

2a2
D+

t un
j

∫ δ

0
τ3γδ(τ)dτ, j∈Γh

+,

Nh
L(u

n+ 1
2

j )=

√
1

a2 0
FCD

1
2
t un

j +
1

2a2
D+

t un
j

∫ δ

0
τ3γδ(τ)dτ, j∈Γh

−,

(3.14)

where notations like

v
n+ 1

2
j =

vn+1
j +vn

j

2
, D+

t vn
j =

vn+1
j −vn

j

∆t

are used.
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3.2 Discrete scheme of Padé ABCs

Adopting the same finite difference method and notation, we readily have the discrete
form of the reduced problem with the Padé based local-in-time ABCs (2.26) as follows:





D+
t un

j = a2Lh
δu

n+ 1
2

j + f
n+ 1

2
j , j∈Ωh

i ,

u0
j = g0

j , j∈Ωh
i ,

aNh
R(u

n+ 1
2

j )=−√
z0

[
(1+

p

∑
i=1

bi

ai
)u

n+ 1
2

j −z0

p

∑
i=1

bi

ai
ω

n+ 1
2

i,j

]
−

D+
t un

j

2a

∫ δ

0
τ3γδ(τ)dτ, j∈Γh

+,

(z0−aiz0)ω
n+ 1

2
i,j +aiD

+
t ω

n+ 1
2

i,j =u
n+ 1

2
j , i=1,2,··· ,p, j∈Γh

+,

aNh
L(u

n+ 1
2

j )=
√

z0

[
(1+

p

∑
i=1

bi

ai
)u

n+ 1
2

j −z0

p

∑
i=1

bi

ai
µ

n+ 1
2

i,j

]
+

D+
t un

j

2a

∫ δ

0
τ3γδ(τ)dτ, j∈Γh

−,

(z0−aiz0)µ
n+ 1

2
i,j +aiD

+
t µ

n+ 1
2

i,j =u
n+ 1

2
j , i=1,2,··· ,p, j∈Γh

−.

4 Numerical results

We now give numerical examples to demonstrate the effectiveness of our ABCs, espe-
cially for high-order Padé ABCs. We check various aspects such as the dependence of
the parameters z0 and p for the Padé expansion and the dependence on the length of the
computational interval. Furthermore, we investigate the asymptotic behavior of nonlo-
cal numerical solutions as δ→ 0. In the two numerical examples including high energy
source and high frequency initial values, we show that our designed ABCs can absorb
energy effectively. To calculate the convergence rate in space and time, we define the
relative error by

L2,ReErr(h,∆t)=
‖en‖2

‖uδ,ex‖2
=

√√√√√√√√

Nx

∑
j=1

|en
j |2

Nx

∑
j=1

u2
δ,ex

, (4.1)

where en
j = uδ,ex(xj,tn)−un

δ,j denotes the error on the grid point, uδ,ex(xj,tn) denotes the

exact solution of the problem (1.1)-(1.3), and un
δ,j denotes the numerical solution of the

reduced problem.

4.1 Padé ABCs and global ABCs

In this part, we illustrate the effectiveness of global ABCs and Padé ABCs. In particular,
we test the parameter dependence for the latter one, on P and z0 in Padé approximation
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and the length of computation domain. In this subsection, we consider a nonlocal prob-
lem in the semi-infinite interval [−δ,∞) by imposing Dirichlet boundary conditions on
left side. We construct the following exact solutions on [−δ,∞)×(0,T]

uδ,ex(x,t)= et−cx, (x,t)∈ [−δ,∞)×[0,T],

by setting the source term and initial value respectively as

f (x,t)=0, u(x,0)= e−cx, (4.2)

and the diffusion coefficient

a2(δ)=1/

(∫ δ

0
(e−cτ−2+ecτ)γδ(τ)dτ

)
, (4.3)

and imposing the exact Dirichlet boundary conditions on [−δ,0] as

u(x,t)= et−cx, x∈ [−δ,0]. (4.4)

Hence, in the following two examples, we only need to use ABCs for the right side.

Example 4.1. We consider the problem (1.1)-(1.3) in the setting given by (4.2)-(4.4). The
approximate Padé ABCs are used to solve the nonlocal equation.

First of all, we test the spatial convergence of the reduced problem with Padè ABCs
(2.26). We set xl=1 and xr=6 such that the initial value at the artificial boundary u(xr,0) is
very close to 0. We simulate the problem till the final time T=11 to test the effectiveness
of ABCs. With a time step ∆t = 2.75×10−4, Figs. 1 and 2 show the effect of two Padé
parameters z0 and p respectively on the spacial convergence of the numerical scheme
when taking ∆x = { 1

16 , 1
32 , 1

64 , 1
128}. We compare the numerical solution un

δ,j against exact

solution uδ,ex on [1,6] at T=11 and plot the relative error under δ= {1,0.5,0.125,0.0625}.
In Fig. 1, we fix P=40 and vary z0. In Fig. 2 we fix z0 =1, change P. We observe that all
spatial convergence rates are almost parallel to the second-order baseline in each subplot;
the Padé ABCs are not sensitive to the choices of parameters z0 and P involved in the
Padè approximation, and the accuracy gets improved as δ is reduced. In Fig. 3, we take
the same mesh size as before, fix z0 =1 and P=20, but expand the computational range
gradually. Similar to last two simulations, the accuracy grows as δ gets smaller. Generally,
the accuracy should increase with extended computational range. In this case, however,
the change is too small to be visible. In Fig. 4, the numerical solution is shown to match
with the exact solution very well. It also illustrates that the reflection is negligible at the
artificial boundary. From the figures above, one can observe that long time calculations
with Padè ABCs are stable.

Next we demonstrate the effectiveness of global ABCs (2.16) implemented with the
fast evaluation method.
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Figure 1: (Example 4.1)L2- relative error of un
δ,j compared with nonlocal exact solutions uδ,ex with different

δ={1,0.5,0.125,0.0625} in [1,6] at T=11 with parameters z0 ={1,5,10,20}.
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Figure 2: (Example 4.1) L2- relative error of un
δ,j compared with nonlocal exact solutions uδ,ex in [1,6] at T=11

with different δ={1,0.5,0.125,0.0625} and P={5,10,20,40}.
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Figure 3: (Example 4.1) L2- relative error of un
δ,j compared with nonlocal exact solutions uδ,ex at T= 11 with

different computation range, and δ={1,0.5,0.125,0.0625}, z0=1,P=20.
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Figure 4: (Example 4.1) un
δ,j compared with nonlocal exact solutions uδ,ex in [1,6] at T = 11 δ =

{1,0.5,0.125,0.0625}, and z0 =1,P=20.
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Example 4.2. We consider the same setting as in Example 4.1, except for adopting global
ABCs and fast evaluation method. The reduced problem has the form (2.16).

In this example, we take ∆t=2.5×10−6 and vary δ among {1,0.5,0.25,0.125} and T=2.
As seen in Fig. 5, the global ABCs work well and the spacial convergence of the scheme
meets our expectation. The accuracy also increases as δ gets smaller. In comparison with
global ABCs without fast evaluation method, this scheme works much more efficiently.
In comparison with the Padé ABCs, global ones are more accurate, at the cost of more
computation and memory to achieve similar accuracy. In practice, one may prefer trun-
cated artificial boundary conditions to replace global ones without fast evaluation, this
allows faster computation without significant loss in accuracy.
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Figure 5: (Example 4.2) L2- relative error of un
δ,j compared with nonlocal exact solutions uδ,ex at T= 2 with

different computation range, δ={1,0.5,0.25,0.125}.

4.2 Asymptotically compatible Padé approximating ABCs

In this part, we investigate the limiting process of the nonlocal model to the classical
heat equation as δ → 0, i.e. the asymptotic compatibility as first proposed and studied
in [43, 44]. Here we only adopt the Padé ABCs to solve nonlocal models.



32 W. Zhang et al. / Commun. Comput. Phys., 21 (2017), pp. 16-39

Example 4.3. First, we let the local heat equations (1.6)-(1.8) have the following Gaussian-
type exact solution

u0,ex(x,t)=
1√

4a2π(t+t0)
exp

(
− x2

4a2(t+t0)

)
,

by choosing source term f ≡ 0 and imposing the local heat models with the exact initial
value as

u0,ex(x,0)=
1√

4a2πt0

exp
(
− x2

4a2t0

)
,

with t0 = 0.1, a= 1. For the nonlocal problem, we take the same source term and initial
data as the local one, and a(δ) is always chosen as 1. We fix the computational domain as
[−3,3], the final computational time T=6, and ∆t=1.5×10−4.

We let z0 = 1, P = 20 and decrease δ from 1 to 0.0625. Fig. 6 and Fig. 7 show the
convergence of uδ to the solution u0 of classical local model as δ→ 0. To save space, we
do not plot of solution over time here. We also observe that our ABCs perform well for
this nonlocal problem since no reflection is captured during simulation. Moreover, the
nonlocal solutions converge to the exact local solution as δ decreases. This again confirms
the asymptotic compatibility of the Padé ABCs.
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Figure 6: (Example 4.3) un
δ,j compared with local exact solution.
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Figure 7: (Example 4.3) un
δ,j compared with local exact solution.

4.3 High energy source and highly oscillatory initial data

Using Padé ABCs, we now test two nonlocal problems with no exact solutions known a
priori. One of these problems has high energy source constantly around the origin with
zero initial data and the other one has high oscillating initial data with zero source term.
The effectiveness of our method and numerical convergence of the difference scheme are
observed. Moreover, to make a comparison, we compute the local heat problem (1.6)-
(1.8) based on local Padé ABCs with the same source function and initial data. We again
observe the asymptotic compatibility in the sense that uh

δ →uh
0 as δ→0.

Example 4.4. For problem (1.1)-(1.3), we choose the source term f = e−x2
(x2−9)2χ[−3,3]

and initial data u(x,0)≡ 0, both compactly supported in [−3,3]. For Padé ABCs, we
choose P = 20, z0 = 1, and set the computational domain as [−5,5] and computational
time T=6.

We first test the spatial convergence rate of out numerical scheme by fixing ∆t=1.5×
10−4 and taking δ={0.125,0.5,1}, respectively. In Table 2, the spatial convergence order is
seen to be approximately 2. When δ is large, the spatial convergence orders do not seem
to be as good as those for smaller δ due to the large ratio of δ

∆x . Then, we test the temporal

Table 2: (Example 4.4) Spatial convergence order at T=6.

∆x= 1
8 ∆x= 1

16 ∆x= 1
32 ∆x= 1

64 ∆x= 1
128

δ=1 - - 1.9182 1.7447 1.4339

δ=0.5 - - 1.9812 1.9691 1.8968

δ=0.125 - - 1.9493 1.9869 1.9988
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Table 3: (Example 4.4) Temporal convergence order at T=6.

∆t= 1
4 ∆t= 1

8 ∆t= 1
16 ∆t= 1

32 ∆t= 1
64

δ=1 - - 2.0692 2.0074 2.0007

δ=0.5 - - 2.0896 2.0102 2.0017

δ=0.0625 - - 2.1015 2.0117 2.0023

convergence order by fixing ∆x= 1
1024 . As seen in Table 3, the temporal convergence of

the numerical scheme is basically of second order. All these data substantiate the high
order accuracy of our numerical scheme.

The snapshots of numerical nonlocal solutions and numerical local solution at T=0.1
and T = 6 are shown in Fig. 8. We note that, even with zero initial value, the source
term provides energy continually around the origin. Thus, the solutions increases in
magnitude quite fast. The solution values at both artificial boundary domains are very
large, approximately 20 at T = 6. There is no visible reflection even for the very large
energy diffusion. This indicates that the Padé approximating boundaries are indeed very
effective in absorbing energy.
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Figure 8: (Example 4.4) Nonlocal numerical solutions un
δ,j w.r.t different δ and local numerical solution un

0,j.

Furthermore, we look into the performance of our Padé ABCs on an example exhibit-
ing oscillations. To this end, we design the following example.

Example 4.5. We choose the source term f =0, the following high frequency initial data

u(x,0)=

(
1+cos(

11

3
πx)

)
e−

x2

9 χ[−3,3],

compactly supported on (−3,3), and the nonlocal diffusion coefficient a2=0.1. We fix the
computational domain as [−4,4], time step ∆t=0.001 and grid width ∆x=2−8.
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We first test numerical accuracy of our Padé ABCs. Although we do not have the
exact solution, we manage to obtain a reference solution using spectral methods as fol-
lows. We choose a large enough domain [xa,xb] such that the energy does not diffuse to
the boundary of the domain. Then we can solve the problem on the large domain with
periodic boundary conditions. Assume that the numerical solution has the following
form

uN(x,t)= ∑
|n|≤N

an(t)e
in 2πx

Lx ,

where Lx = xb−xa. Then the Fourier coefficients an(t)s satisfy following ordinary differ-
ential equations (ODEs) respectively

d

dt
an(t)= a2λδ(n)an(t),

where λδ(n) is the nth nonlocal eigenvalue of the nonlocal diffusion operator with con-
stant kernel, given by

λδ(n)=
6

δ2

(
sin( 2π

Lx
nδ)

2π
Lx

nδ
−1

)
.

We see that those ODEs can be solved exactly. So the only errors come from the spectral
methods in spatial discretization. Thus we need to make sure the computational domain
is large enough to guarantee the accuracy of the reference solution.

For the solutions computed by Padé ABCs, the time step ∆t=0.001 and grid size width
∆x= 2−8 are both fine enough to eliminate the errors contributed from discretization in
spatial and time space. Hence, the dominated error is contributed from the Padé ABCs.
The pointwise errors at different time are shown in Fig. 9. Except for T=0.1, we see that
the errors around the boundary are always larger than those inside. It is also observed
that the errors become smaller as the horizon parameter decreases. This is expected as
we can solve Eq. (2.5) more accurately for smaller δ. Overall, the Padé ABCs offer us one
effective way to get solutions with acceptable accuracy even for large δ=1.

Moreover, we plot numerical simulations of nonlocal models with different δ against
local numerical solutions uh

0 at different time in Fig. 10. Here we also compute the local
solution by Padé ABCs as given in [47] with exactly the same set-up and computation
parameters as for the nonlocal problem. We can see clearly the convergent trend from
uh

δ to uh
0 as δ goes 0. Before T = 10, the nonlocal solutions for δ = 1 still exhibit some

oscillations that disappear eventually, such as at T = 10. This provides a confirmation
that the nonlocal equation with a larger horizon parameter models a slower diffusion
process.

5 Conclusion

The constructions of ABCs for the nonlocal heat equation are presented in this work.
There are two classes of ABCs, namely, the nonlocal analog DtN-type ABCs (global in
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Figure 9: (Example 4.5) Pointwise errors for nonlocal solutions with Padé ABCs.
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Figure 10: (Example 4.5) Numerical comparisons among nonlocal solutions un
δ,j with different δ and local

solution un
0,j in [−4,4].
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time) and high-order Padé ABCs (local in time). The former ones are nonlocal operators
with the history information, and are expensive to be calculated using a direct method.
The high-order Padé ABCs are a system of ODEs, which are composed of the first-order
temporal derivative of some auxiliary variables. Numerical examples are given to show
the effectiveness of our method and to demonstrate the robustness of our ABCs. Gener-
ally, the global ABCs are stable but expensive to implement. In this paper, we also apply
the fast evaluation scheme of the Caputo fractional derivative to numerically solve the
DtN-type ABCs. The resulting algorithm for solving the fractional Caputo derivative is
both efficient and stable.

The current study is focused on constructing ABCs of a simple one-dimensional lin-
ear nonlocal diffusion model for the sake of offering insight without being impeded by
tedious calculations. In our analysis here, we need to solve the nonlocal ODE (2.4) to ob-
tain its eigenfunctions in the Laplace space first, then we distinguish the left-going wave
and right-going wave to achieve the one-way (DtN or NtD) operator. Since it is no simple
matter to get the exact expression of the solution λ in terms of s in the nonlocal ODE (2.5),
we assume that the horizon parameter δ, measuring the range of nonlocal interactions, is
small enough to produce the approximated eigenfunctions using the asymptotic method.
For large δ, the Taylor-expansion technique may not be accurate enough to approximate
(2.5). Thus, this work does not solve the nonlocality issue completely. However, the idea
of introducing the one-side nonlocal operator to close the system should work in a gen-
eral setting. Numerical examples demonstrate that our method works well even when
the horizon parameter δ is on the same order of other parameters. In the future, fur-
ther study will be carried out to address the fully nonlocal case and to consider effective
algorithms in multi-dimensions. We may also to extend the study to more general non-
local models such as nonlocal wave equations and also nonlocal continuum equations of
motion in elastic solids [45, 46].
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