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Abstract. We present DASHMM, a general library implementing multipole methods
(including both Barnes-Hut and the Fast Multipole Method). DASHMM relies on dy-
namic adaptive runtime techniques provided by the HPX-5 system to parallelize the
resulting multipole moment computation. The result is a library that is easy-to-use,
extensible, scalable, efficient, and portable. We present both the abstractions defined
by DASHMM as well as the specific features of HPX-5 that allow the library to execute
scalably and efficiently.
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Computer platform: x86 64

Operating system: Linux
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RAM:

External routines/libraries: HPX-5 2.1.0 or later
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Restrictions: Currently only supports shared memory, but library will be extended to multiple
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Additional Comments:

1 Introduction

Multipole methods are a key computational kernel in a wide variety of scientific applica-
tions spanning multiple disciplines. However, these applications are emerging as scaling-
constrained when using conventional parallelization practices. Emerging, dynamic task
management execution models can go beyond conventional programming practices to
significantly improve both efficiency and scalability for algorithms exhibiting irregular
and time-varying executions. Multipole method calculations are an example of an irreg-
ular application that would benefit from the use of a dynamic adaptive runtime system
approach. In this paper, we present DASHMM, a library leveraging the power and ex-
pressibility of an experimental runtime system to improve the efficiency and scalability of
multipole method calculations, to solve ever more challenging end-user problem domain
applications.

The Barnes-Hut (BH) [5] method and the Fast Multipole Method (FMM) [11], both
exemplars of multipole methods, are used extensively in applications [7, 10, 19, 23]. The
fundamental building blocks of these methods are quite similar, and so it is worth con-
structing a generalization of multipole methods that encompasses both BH and FMM.
In practice, many variations and improvements on the original forms of these methods
are used; a library that provides only a few rigidly defined methods would be of little
use. Instead, DASHMM outlines a set of abstractions that are general enough to allow
both BH and the FMM to be implemented as well as many variations on the theme of
multipole methods. With the abstractions defined, the task is to effectively parallelize the
resulting general multipole method.

Considerable prior effort has been exerted on multipole methods. The first paral-
lel FMM algorithm is introduced by Greengard and Gropp in its 2D uniform version
on shared memory architecture [9]. Zhao and Johnsson studied the parallelization of
3D uniform FMM on the connection machine [34]. The parallelization strategy follows
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closely to the levelwise implementation of the sequential FMM. This means, operations
at any scale do not start until those at the level below (above) in the upward (downward)
pass finish. This approach has been kept mostly intact in many following works. The
first work on adaptive FMM came from Board et al. [13, 14] in the context of molecu-
lar dynamics simulation. Subsequent work on parallel multipole methods focused on
load balancing among available computing resources. On distributed memory archi-
tectures methods like orthogonal recursive bisection, locally essential tree, and hashed
oct-tree [26, 27] are used in different application contexts [15–17, 20, 25, 29, 31]. Special
attention was taken to hide communication latency within the computation. Other rep-
resentative work on distributed-memory machines include the distribution independent
adaptive tree [3], the parallel graph partitioning algorithm from Teng [24], and the one
used in PetFMM [8]. These works consider not only the tree structure but also the interac-
tion edges in the FMM when making their load balancing decision. On shared memory
architecture, the most representative early work is the costzone method [21, 22]. With
the deployment of multicore, GPUs, and coprocessors, there have been many efforts on
porting the multipole methods on these architectures [12, 30] and a new focus is on the
data-driven implementation that tries to address the strong scaling challenges in tradi-
tional implementations [2, 4, 18, 32, 33].

Multipole method computations are naturally expressible as a directed acyclic graph
(DAG). Effective parallelization of multipole methods then amounts to an effective paral-
lelization of the traversal of this DAG [6,28]. The structure of the DAG depends critically
on the details of the source and target locations. This dependence requires that the DAG,
and the resulting execution, be discovered at runtime. DASHMM uses an advanced run-
time system to map the nodes and edges of the DAG into literal execution constructs.
This allows for sophisticated control of the execution that can make better use of the
computational resources leading to improved efficiency and scalability.

The runtime system used for DASHMM, HPX-5 [1], provides a rich set of tools for
parallelizing applications. Along with this richness comes a certain level of complication
in using the runtime system. To effectively use HPX-5, one must rethink how to perform
parallel computations. If DASHMM cannot hide this complication from the user – unless
they want to discover it – then it will fail to provide a general framework that is also easy
to use.

These considerations lead us to the following desiderata for DASHMM:

• Ease of use: The time from selection of DASHMM to a working application should
be minimized where possible. This means providing common use cases as well
as hiding the details of the parallelization until the user is ready to explore the
available options.

• Extensible: The library must provide a means to apply the dynamic adaptive tech-
niques to user-specified problems. Without this ability, the ultimate utility of the
library is severely restricted to only those kernels provided by the library.
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• Efficient: If the computational resources are not used effectively, there will be times
during which some computational elements are not being used. Many problems
use less than 10% of the system’s peak performance. This is a waste of both time
and energy.

• Scalable: Many problems have grown so large that parallel computing is not op-
tional, and so the library should provide benefits beyond the increase in total mem-
ory as more computational resources are used for a given problem.

• Portable: Time spent porting code to take advantage of emerging hardware is time
not spent doing end-science.

All of these goals taken together speak to productivity and performance, not only of the
DASHMM user, but of the computational resources employed by DASHMM.

The organization of this paper is as follows. Section 2 presents the abstractions em-
ployed by DASHMM to produce a general and extensible library. The conceptual frame-
work for the parallel computation, and the resulting runtime system, are presented in
Section 3. The installation, use of the demonstration code, and some performance results
are outlined in Section 4. In Section 5 we conclude with a discussion of future extensions
of DASHMM.

2 Generalizing multipole methods

This section starts with a brief review of the algorithmic structures of BH and FMM,
two exemplars of the multipole method. Then, it presents the abstractions employed by
DASHMM to produce a general and extensible library. Here, each source point si has
strength mi, and each target point tj is a location where force field or potential needs to be
computed. Depending on applications, the source ensemble {si} and the target ensemble
{tj} can be the same, partially overlapping, or completely disjoint. The computational
domain is defined to be the smallest box that contains {si} and {tj}.

2.1 Barnes-Hut

The first phase of the BH method hierarchically subdivides the computational domain,
creating a tree structure of the source ensemble. The root node of the source tree rep-
resents the entire computational volume, with each child node representing a fraction
of the volume of its parent. The hierarchy continues until the leaves of the source tree
contain fewer than a given number of sources.

Next, BH contains an upward pass of the source tree that generates the multipole
expansion for each node. This uses two fundamental operations, the source-to-multipole
(S2M) operator, which generates the multipole expansion for a single leaf of the tree,
and the multipole-to-multipole (M2M) operator, which uses the multipole expansion of a
child of a given node to compute the multipole expansion for that node itself. In this way,



1110 J. DeBuhr et al. / Commun. Comput. Phys., 20 (2016), pp. 1106-1126

····
····

····
····

····
····

····
····

····
····

····
····

····
····

····
····

S2M

················M2M
· · · ·· ·· ·· ·· · · ·· · · ·· ·· ·· ·· · · ·×

...

············· ·····
·

········×

BARNES-HUT

M2L

·M2L L2L
·

L2T

FAST MULTIPOLE METHOD

Figure 1: Illustration of the two dimensional BH and FMM algorithms using four levels of subdivisions. A blue
(red) shaded box (node) represents a cluster of source (target) locations while a blue (red) dot represents the
multipole (local) expansion. The red cross marked on the left represents one particular target location. The
gray shaded region is the interaction list region for the FMM.

information about the particle distribution propagates upward toward the root of the
source tree, with each source node having a multipole expansion for the set of particles
inside its volume.

These multipole moments are used in the final phase of the BH algorithm. For each
location of interest, the source tree is traversed from the root downward, and a set of
nodes is considered. A source node under consideration is used if the approximation
represented by the multipole moments in that node would not contribute too much er-
ror compared to the exact solution. Typically, this amounts to a decision about how far
away the set of particles represented by the multipole moment is from the point of in-
terest. If the source node can be used, its effect at the target point is computed from the
approximation. If it cannot be used, the children of the source node are then considered
in turn. If the source node cannot be used and it has no children, the direct interaction for
each source in the leaf node is computed for the point of interest. This is demonstrated
schematically in part of Fig. 1.

2.2 The fast multipole method

FMM also starts with the hierarchical subdivision of the computational domain. To ac-
commodate source and target ensembles that are different, a separate tree is constructed
for both the sources and the targets. The subdivision of each tree halts either by reaching
a prescribed level of subdivision (uniform version) or when the points inside the node
of the tree are fewer than the prescribed threshold (adaptive version). The right part of
Fig. 1 illustrates a uniform version with four levels of subdivision. In the figure, the
gray shaded region at each level of the source tree is the so-called interaction list region
of the target node at the same subdivision level containing the target point of interest—
those source nodes far away enough enough that their expansions can be used, but not
so far away that their parent’s expansion can be used. In the adaptive version, the sur-
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Figure 2: Illustration of the four types of lists associated with a node of the target tree Bt in 2D.

roundings of a node of the target tree is more complicated, and is organized into four
categories, usually referred as lists (see Fig. 2 for a 2D illustration). For a target node Bt,
the definitions of the lists are as follows.

1. L1(Bt), the list-1 of Bt, is empty if Bt is a non-leaf node. Otherwise, it contains all
the leaf source nodes that are adjacent to Bt.

2. L2(Bt), the list-2 of Bt, is the interaction list of Bt.

3. L3(Bt), the list-3 of Bt, is empty if Bt is a non-leaf node. Otherwise, it contains all
the nodes that are not adjacent to Bt, but whose parents are adjacent to Bt.

4. L4(Bt), the list-4 of Bt, consists of all the leaf source nodes that are adjacent to Bt’s
parent, but not to Bt itself.

FMM shares the same upward pass that generates the multipole expansions as in BH,
but performs more operations on the target nodes afterwards. First, the multipole expan-
sion of the source nodes in the interaction list region are translated into local expansions
using the multipole-to-local (M2L) operator. This translation allows the effect of a distant
source node to be applied only once to a given target node at the same level of refine-
ment, rather than multiple times at the descendant leaves of the given node. Second,
the target node inherits the local expansion from its parent using the local-to-local (L2L)
operator. This allows the local expansion of higher level nodes to be applied to nodes at
a finer level of refinement. At the finest subdivision level, the FMM resumes operation
at the particle level; the local expansion of the target node containing the target point
is evaluated using the local-to-target (L2T) operator and interactions with neighboring
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source particles are computed via the direct pairwise interactions. In its adaptive ver-
sion, FMM has two additional operators to process lists 3 and 4. Specifically, each list 3
source node’s expansion is evaluated using the multipole-to-target (M2T) operator, and
each list 4 source node contributes a local expansion about the target node’s center using
the source-to-local (S2L) operator.

2.3 DASHMM abstraction

Despite their differences, these two methods can be unified into a more general frame-
work. The fundamental feature of these methods that allows some form of unification is
that each method essentially describes a DAG. The nodes of this DAG are the expansions
of the potential due to clusters of source particles, and translations of those expansions.
The edges of the DAG are the transformations that produce the expansions. The differ-
ence between these multipole methods is the precise topology of the DAG.

The general framework for multipole methods provided by DASHMM comprises
trees for both sources and targets, a method, and expansions. The trees are typical struc-
tures that describe the partitioning of the source and target particles. They also act as a
scaffold on which the multipole method is evaluated. The precise topologies of the two
trees will affect the exact details of the DAG, but conceptually, the trees and the DAG
are distinct. The method is those details about how the scaffold provided by the trees
is used to generate a DAG. Finally, the expansions are the nodes of the DAG and repre-
sent the bulk of the computations in any multipole method evaluation. The trees and the
method being employed will dictate the exact set of expansions that are needed, and the
interrelations among those expansions.

In the above descriptions of BH and FMM there were no specific details of the exact
potential or interaction that is being computed. All that is needed are the general notions
of computing expansions from sources, translating expansions in various ways, and ap-
plying expansions to targets. The details of these operations will depend critically on the
potential under consideration, but the fact of needing these operations does not.

This leads to the first major unifying abstraction in DASHMM: the Expansion. Expan-
sions contain the specific details that are needed to perform the fundamental operations
on the multipole expansions. Expansions are implemented in DASHMM as subclasses
of an abstract base class called Expansion. Each subclass implements a different kernel,
and means of representing the multipole moments. In principle, a new kernel can be
used by providing the Expansion that implements the operators needed for the method
of choice. DASHMM currently provides two expansions that implement the Laplace ker-
nel with two different series, one that works well with FMM, and one specialized to BH.
However, the user is able to define and register their own expansions with DASHMM,
allowing the library to apply to any other potential for which a subclass of Expansion can
be defined.

The second major unifying abstraction in DASHMM is the Method. In the descrip-
tions of the specific cases of BH and FMM, there was similar work that had to be per-
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formed, and similar use patterns of the expansion operators. These similarities can be
lifted from the specific cases of BH and FMM to produce the Method abstraction. In
DASHMM, methods are implemented as an abstract base class, the subclasses of which
provide the specific cases of multipole methods. Currently, DASHMM provides a BH
and an FMM Method subclass. Like with Expansion, the user is able to define and regis-
ter other Method subclasses with the library.

The abstraction employed by DASHMM for methods reduces down to four opera-
tions during the traversal of the DAG: generate, aggregate, inherit and process. By varying
the work performed in these four operations, the resulting Methods are able to reproduce
both BH and FMM with ease, while allowing for variations on both methods, as well
as generalizations to other overall methods. Indeed, BH and FMM differ only in their
implementations of inherit and process.

The generate operation is responsible for producing the initial multipole expansions
from the source points at the leaves of the source tree. Then, aggregate will translate and
combine multipole expansions in the source tree from the children of a given node of the
source tree. Inherit translates an expansion from the parent of a given target node into
its children. Process, given a list of source nodes to consider, will make decisions about
the usability of the expansions in the given list relative to a given target node, and take
action on this usability, be that by translating and combining expansions from the source
tree (like the M2L operations in FMM), computing the direct interaction between a leaf
of the source tree and a leaf of the target tree, or by passing a node on to the children of
this target node for further processing.

By putting together the Expansion and Method abstractions with tree structures that
use the Method to generate and connect Expansions, DASHMM is able to support a wide
variety of multipole methods in a single framework. With this framework in place, the
task of DASHMM becomes one of efficiently and scalably executing the traversal of the
DAG.

3 Dynamic adaptive computation

Problem domains, such as that addressed by the DASHMM library, stress the capabilities
and methods of conventional programming and computing practices, requiring alterna-
tive dynamic means to adapt to changing conditions of the applications and their under-
lying computer platforms. This is due to intrinsic computational properties of irregular
time-varying data structures and data-dependent flow control that cannot be predicted
and therefore cannot be optimized by static scheduling from user- or compiler-driven ap-
proaches. These challenges are further aggravated by increasing uncertainty due to vari-
able latency-driven asynchrony of remote access and service requests. To address these
and other emerging obstacles to next generation FMM and BH algorithms on ultra-scale
computers through the end of this decade and into the next, a new strategy is required
that exposes, exploits, and employs the opportunities of dynamic adaptive computation



1114 J. DeBuhr et al. / Commun. Comput. Phys., 20 (2016), pp. 1106-1126

through advanced runtime system software and the innovative execution models upon
which these systems are based. Such dynamic adaptive techniques are likely to deliver
substantial gains in efficiency and scalability, both of which are essential to effective ex-
ploitation of future multi-core heterogeneous Peta/Exascale architectures. For this rea-
son, the strategy employed by DASHMM is to use a dynamic adaptive runtime system,
HPX-5, which is derived from, and is an approximation of the ParalleX execution model.

3.1 ParalleX overview

ParalleX is an experimental execution model that serves as a computational paradigm to
guide the design of interoperable system layers and govern their operation of resource
management and task scheduling. An execution model is an overall system-wide strat-
egy to define and coordinate parallel actions and the distributed data upon which they
operate. Historically, different execution models have been created to exploit the oppor-
tunities exposed by new technologies and to address the challenges they impose. Ex-
amples of such previous generation execution models include vectors, SIMD-Array, and
Communicating Sequential Processes. ParalleX is derived to minimize sources of perfor-
mance degradation including starvation, latency, overhead, and waiting due to shared
resource contention. Its strategy is to support guided computing through runtime sys-
tem hardware and software in lieu of conventional ballistic computing that statically de-
termines scheduling. The anticipated achievement through this innovation in adaptive
control is significant improvement in efficiency and scalability of future systems and the
applications they support. ParalleX addresses starvation by exposing and exploiting a
broad range of form, granularity, synchronization, and scheduling of parallelism. It ad-
dresses the challenge of latency of data movement by moving work to the data through
its parcel active messages and by hiding latency through automatic overlap of compu-
tation and communication by means of rapid task context switching. Overheads are
eliminated or substantially reduced by optimized and specialized mechanisms (poten-
tially supported in hardware) for task context switching and creation as well as synchro-
nization and parcel to task instantiation. Shrinking of overheads also reduces starvation
by enabling finer granularity of parallel tasks and thereby exposing greater concurrency
for fixed size workloads. Contention is precluded in many cases through introspection
and adaptive resource management, task scheduling, load balancing and work stealing.
Overheads are further reduced through an intrinsic global address space, allowing com-
puting to perform remote accesses directly. Global memory usage is assisted by means of
advanced local control objects such as dataflow and futures based synchronization. Each
of these semantic constructs and their implied implementations are considered in greater
detail in the following subsections.

3.1.1 Active Global Address Space (AGAS)

A system-wide name space is enabled by means of a dynamic hierarchy of ParalleX pro-
cesses, each a first-class object, that serves as a context for some subset of the entire com-



J. DeBuhr et al. / Commun. Comput. Phys., 20 (2016), pp. 1106-1126 1115

putation while still supporting access to global shared data. This is realized through an
active global address space that permits direct efficient memory usage across an entire
application data set, minimizing copies or user software data movement management. It
further enables load balancing of changing data set sizes and shapes that evolve through-
out the computation. The global address space is active in the sense that a virtual object
may be moved across a physical computer system (e.g., between processing nodes) with-
out changing its virtual address differentiating it from more common PGAS (i.e., parti-
tioned global address space) methods. AGAS also provides a naming convention that
supports performance portability across varying types, scales, and generations of ma-
chines while facilitating user productivity, especially for those problems with changing
data structures and workloads.

3.1.2 Compute complexes

Almost all computation is directed and performed by a localized construct referred to as a
compute complex. A compute complex is local in the sense that all of its operations are per-
formed within the resident locality, the physical compute element (sometimes referred to
as a “node”) that guarantees bounded response time and integrity of atomic sequences
of operations. A simple example of a compute complex is a thread or task as used by
more conventional models. However, a compute complex can differ in a number of ways
that may prove important in the management and execution of dynamic adaptive appli-
cations like DASHMM. Compute complexes provide a wide range of parallelism gran-
ularity from near fine grain to heavy weight. Unlike some alternatives (e.g., codelets), a
complex is preemptive such that it can be started and stopped at will when necessary ei-
ther due to computational restrictions (waiting for an intermediate result) or to optimize
ordering of execution to best adjust to prevailing system hardware conditions. Perhaps
of greater importance is that a complex can access global data and perform global mu-
table side-effects. Some other task-oriented computation is purely functional with value
exchanges limited to input argument and output results. Finally, an essential feature that
distinguishes a compute complex from more conventional models is that it too is a first-
class object. This means that a computation can refer to and manipulate itself; this is a
very elegant and powerful capability critical to efficiency of dynamic applications.

Within a compute complex is fine-grained parallelism most closely associated with
the venerable static data flow model, replacing the diversity of alternative conventional
fine-grain operations like speculative execution, branch prediction, prefetching, instruc-
tion level parallelism, among others. However, for conventional processor cores, this
generalized dataflow technique can be transformed into these more usual forms through
compilation techniques and therefore prove effective in the short term within the limits of
the processor. When instantiated, a compute complex does not require strict initialization
where all the operands need to be available in order to start. Rather, a critical minimum
set of arguments is sufficient with internal synchronization managing late binding. This
avoids the inadvertent consequences of an implicit barrier, permits greater overlapping
of operations, and supports eager evaluation.
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A runtime system consumes precious resources and, as suspended complexes accrue,
can be starved of sufficient capacity to continue. To ensure scalability ParalleX supports a
unique modality for suspended complexes when appropriate: as depleted threads. This is
an important unifying principle that treats complexes waiting for progress of computa-
tion as a not-so-simple form of synchronization object referred to as a local control object
(see below). For the purposes of this discussion the important aspect of depleted threads
is that they exploit their status as first class objects and do not require any runtime system
resources in this state. Also, compute complexes can be moved from one locality to an-
other in the migration state. Although not anticipated to be a frequently used mechanism,
migration permits load balancing and supports resilience as well as dynamic resource us-
age (for example when the operating system can provide more resources than originally
available or requires some resources back for other purposes).

3.1.3 Parcels

ParalleX parcels support event-driven computation and are transaction-oriented means
of invoking actions at the physical site of data elements upon which to be operated. A
parcel is a specification of an action, an object upon which the action is performed, some
data or references to be employed by the operation, and an indication of what is to hap-
pen upon completion of the specified action. This serves as a general template for de-
scribing any generalized action anywhere in the system.

Parcels are critical for a number of reasons. From an abstract point of view of the com-
putation, they guarantee symmetry of semantics independent of whether the spawned
task is relatively local to the calling complex (on the same locality) or remote (on a sep-
arate locality). The semantics are the same and the distributed positioning of data and
actions can change between execution instances without changes to the work characteri-
zation (i.e., program). In order to facilitate this, a parcel is not a first-class object, thereby
keeping the flexibility needed for different operational modalities. Parcels also address
the challenge of operational latency. A parcel reduces latency by moving work to the data
in a physically distributed structure assuming that most of the data to be processed is sep-
arated from the operational requirement. It can also hide latencies when combined with
pre-emptible compute complexes by overlapping computation with communication. A
special case of the parcel is “percolation” which supports heterogeneous computing as in
the instance of GPUs integrated within a distributed system. Here the destination is not
an abstract name/address of an argument object but a physical function system compo-
nent. Values and task specifications are passed to the function unit while it is performing
a different task and possibly returning computed results from a third task previously per-
formed. The data movement is overlapped with the work being performed thus hiding
the latencies and overhead of the relatively precious resource.

3.1.4 Local Control Objects

In addition to hardware program counters associated with each processor core, ParalleX
supports a second layer of control state: local control objects or LCOs. Like ParalleX pro-
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cesses and compute complexes, LCOs are first class objects. LCOs manage and exploit
asynchrony of operation and communication, and in many ways they are similar to con-
ventional synchronization objects such as barriers, semaphores, and mutexes. In most
cases they are variants of higher order constructs from prior art including the two most
important of these, dataflow and futures. Dataflow LCOs launch a new complex instantia-
tion when all or a necessary subset of operand values have been computed and conveyed.
Future LCOs allow metadata operations to be performed on a variable even while the ac-
tual value is being computed. In this case the computation may be either eager or lazy.
ParalleX supports global graphs of LCOs to be formed, distributed, and altered as the
computation evolves. For instance, a typical continuation response to a parcel invocation
is the creation or accessing of an LCO. A form of LCO is also employed within compute
complexes serving as single-assignment registers (write-once, read-many) incorporating
control state indicating arrival of values.

3.2 HPX-5

As a proof-of-concept and one of the early reductions to practice, HPX-5 is a runtime soft-
ware system that approximates the parallel semantics of the ParalleX execution model.
It is used both for experimentation and validation of the model, and for user applica-
tions such as DASHMM. The work presented here uses version 2.1 of HPX-5, though
any subsequent version of HPX-5 will work equally well. An added benefit of building
DASHMM using HPX-5 and standard-conforming C++11 is that DASHMM automati-
cally can be run on any system on which HPX-5 can run. In this section, we shall cover
those features of HPX-5 that are crucial to the operation of DASHMM, and how those
features are used by DASHMM to traverse the DAG.

3.2.1 Lightweight threads

HPX-5 is designed around lightweight multi-threading. The work performed by any
HPX-5 computation is handled by an HPX-5 thread. These threads are multiplexed
onto a set of heavyweight operating system-level threads (called scheduler threads).
Lightweight threads can easily be swapped into and out of an executing state, allow-
ing the HPX-5 scheduler to rapidly swap in work that can proceed when one thread of
execution becomes blocked waiting for some data or some event.

In DASHMM, all execution is performed by a lightweight HPX-5 thread. The primary
task of any HPX-5 program is to describe which threads are to be instantiated, and what
is the action of those threads.

3.2.2 Parcels

Parcels, a form of active message, are the primary means by which lightweight threads
are instantiated in HPX-5. A parcel contains a description of the action to be performed
as well as the address of the data on which the action is to be performed: a parcel is
execution transformed into data. Parcels allow the system to not only send data to work,
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as is more traditional, but also allows the system to send work to data. In this way, the
arrival of a parcel, through the arrival of a message, causes the execution to occur; HPX-5
provides message-driven computation.

For each edge of the DAG in DASHMM, a parcel is prepared that describes the opera-
tion to apply (M2L, M2M, and so on) and the data on which to operate (the expansion that
is being transformed). The result of the transformation is then accumulated into another
expansion. For example, an edge connecting two expansions with an M2M operation
will be mapped into a parcel that will read the expansion at the source of the edge, will
perform the translation, and then will send the results to the expansion at the destination
of the edge.

The large number of edges in the DAG for a typical evaluation becomes a large num-
ber of tasks to be performed in the parallel execution. However, there are some depen-
dencies on how those tasks are ordered. All input edges to a node in the DAG must be
executed before any output edges may be performed. Also, the destination expansion
must exist before the transformation can begin. In DASHMM, the creation time of the
expansions and the execution time of the transformations are not known, and so there is
a need for synchronization among the lightweight tasks.

3.2.3 Local Control Objects

Local Control Objects (LCOs) are event-driven, lightweight, globally-allocated synchro-
nization objects that encode data and control flow. Each LCO has a set of events that
must occur before the LCO is triggered, allowing threads waiting on the LCO to proceed,
or enabling new threads to be instantiated. Threads may wait on an LCO or attempt to
get the values stored in an LCO, thereby suspending the thread’s execution if the LCO
is not yet triggered. HPX-5 offers a rich set of LCOs that allows for fine control over the
execution.

One example is an and LCO. This LCO behaves like an and gate, only triggering once
a certain number of set operations have been performed. This allows for situations where
a set of events must occur before a computation can proceed. For example, an and LCO
is ideal if a computation for a parent node cannot be performed until the children of that
node have finished their computation.

The primary data in a DASHMM evaluation are the expansions, be they generated at
the source points, or by translation from other expansions; the expansions are the nodes
of the DAG. Given that the nodes also encode the dependencies of the computation, it is
natural to promote the expansions to being LCOs. The expansion LCO acts in some ways
like an and LCO, requiring a certain number of inputs before triggering. However, unlike
the and LCO, expansion LCOs take input data: namely, an expansion. The multiple input
expansions are combined into one expansion by the expansion LCO. A further complica-
tion is that when some expansion LCOs are created the number of inputs required is not
available until the DAG is fully discovered. However, the user-defined LCO provided by
HPX-5 is flexible enough to handle this use-case. The expansion LCO is an example of
the more general concept of the dataflow LCO.
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After all the input dependencies are met, the expansion LCO triggers, and the output
edges can then be processed. All that is required to meet this synchronization criterion
is for the action taken by the lightweight thread implementing the edges of the DAG to
wait on the expansion LCO at the source of the edge. However, this simple approach can
be improved by using another feature of HPX-5.

3.2.4 call when

It is frequently the case that some actions require input data before they can be executed.
One way to use HPX-5 in this case is to send a parcel that takes the first step of waiting on
an LCO representing the data needed. However, that will cause a lightweight thread to
be instantiated only to be immediately suspended, consuming some physical resources.
It would be better to instead only send the parcel once the LCO has been triggered.

HPX-5 provides a mechanism for precisely this sort of dependent parcel. Any LCO
can have parcels attached to it that are only sent once the LCO has been triggered; this
is the ‘when’ in call when. This takes the notion of an LCO as a control structure one
step further by giving them the ability to explicitly cause execution to occur, and not only
implicitly allow execution to occur.

Indeed, the edges of the DAG in DASHMM are exactly this sort of action. The input
expansion data must be ready before the translation can occur, and so any action that is
scheduled would immediately block on the input LCO. Instead, when DASHMM sched-
ules work, it does so in the dependent fashion provided by call when. Only once the
input expansion LCO is triggered are the parcels implementing the outgoing edges from
the node of the DAG sent. This is demonstrated schematically in Fig. 3.
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Figure 3: A schematic of the function of the Expansion LCO in DASHMM. Parcels arrive from various objects
(e.g., addr1) which will perform some operation (op1) on the expansion data stored in the LCO (t0). The
Expansion LCO is initially untriggered, and so the operations are scheduled, but are not executed (t1). Eventually,
the Expansion LCO is triggered by the arrival of its final input (t2). At this point, the scheduled operations can
be executed (t3), typically by sending a parcel to the requester with the data stored in the expansion. Requests
that arrive after the LCO has been triggered can be executed immediately (t4).
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4 Software installation and numerical examples

4.1 Installation

DASHMM depends on one external library: HPX-5. The current version of DASHMM
(v. 0.5) depends on version 2.1.0 of HPX-5, which can be found at https://hpx.crest.
iu.edu/download

The current version of DASHMM is specialized to shared memory operation, so there
is little to be specified in the configuration of HPX-5 for use with this version of DASHMM.
Assuming that you have unpacked the HPX-5 source into the folder /path/to/hpx and
wish to install the library into /path/to/install the following steps should build HPX-5
and install it.

1. cd /path/to/hpx

2. ./configure --prefix=/path/to/install

3. make

4. make install

The previous commands will build HPX-5 and install it into the given location. This
configuration uses many of the default HPX-5 options, and may not be ideal for specific
systems. Please see the official HPX-5 documentation for more details.

The DASHMM build system relies on the pkg-config (version 0.26 or newer) utility
to specify the needed HPX-5 compilation and linking options, so it is important to add
the correct path for HPX-5 to your PKG CONFIG PATH. While one is at it, it is useful to
modify the following environment variables to point to the newly installed HPX-5. For
example, with bash:

export PATH=/path/to/install/bin:$PATH

export LD_LIBRARY_PATH=/path/to/install/lib:$LD_LIBRARY_PATH

export PKG_CONFIG_PATH=/path/to/install/lib/pkgconfig:$PKG_CONFIG_PATH

Once the prerequisites are met, one needs to perform the following steps to build the
DASHMM library.

1. Unpack the source code into some convenient directory. For the sake of discussion,
we assume that the code has been unpacked in /path/to/dashmm.
Change to the DASHMM directory into which you have unpacked the code. There
are a number of subfolders. Initially, the most relevant of these are doc/ and demo/.

2. In /path/to/dashmm can be found Makefile. There are few (if any) changes that
need to be made to this file for successful compilation. The most likely change to
make would be to modify the compiler used. Any compiler supported by HPX-5
will be able to compile DASHMM provided it also supports the C++11 standard.
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For example, to change the compiler from the default (g++) to the Intel C++ com-
piler, one needs to replace CXX = g++ with CXX = icpc.

3. Run make from /path/to/dashmm. This should build the library statically, and it
will be ready to link with your code.

To build a program using the DASHMM library, only a few things need to be done.
DASHMM builds in place, so when compiling code that uses the library, one must specify
where to look for the header files, and where to look for the built library. Further, because
DASHMM relies on HPX-5, one must also specify how to find HPX-5. For HPX-5 this is
easiest with the pkg-config utility.

Assuming that DASHMM was built in /path/to/dashmm then to compile code (with,
for example, g++) one must specify the following arguments for compilation:

-I/path/to/dashmm $(shell pkg-config --cflags hpx)

Similarly, one must specify the following arguments for linking:

-L/path/to/dashmm -ldashmm $(shell pkg-config --libs hpx)

Examples of this can be found in the demo programs included with DASHMM.

4.2 Built-in methods and expansions

Version 0.5 of DASHMM includes two built-in methods: FMM and BH, which are out-
lined briefly above. The included FMM does not use a tunable multipole acceptance
criterion (MAC). Instead, it uses the geometric cut that the source node be well-separated
from the target node. Thus, the built-in FMM method does not require any parameters
to use. The BH method uses the classic MAC specified by a critical angle, θc. This critical
angle is a free parameter of the method specifiable by the user.

DASHMM includes two build-in expansions, both representing the Laplace potential.
The built-in expansion that is designed to be used with FMM expands the potential using
spherical harmonics, and can be used for a specifiable number of digits of accuracy. This
expansion is performed around the center of the node containing the particle. The expan-
sion that is intended to be used with the BH method instead performs a Taylor expansion
of the potential and keeps only up to the quadrupole term. The expansion is performed
around the center of charge of the represented particles. Further, it is only intended for
use with charges of the same sign. The particular choice of expansion for BH is selected
to match what is commonly done in astrophysical simulations, a field in which BH has
been extensively applied.

4.3 Basic usage

Included with DASHMM is a test code that demonstrates a simple use of the library. This
code is given in /path/to/dashmm/demo/basic/. It can be built by running make in the
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Table 1: DASHMM speedup. Almost linear strong (weak) scalability result is shown in each row (column) of
the matrix.

d N
BH FMM

p=6 p=12 p=6 p=12

cube

1 5.92 11.57 5.85 11.37

2 5.90 11.45 5.88 11.54

4 5.89 11.65 5.91 11.69

Sphere

1 5.91 11.55 5.85 11.21

2 5.86 11.39 5.77 11.23

4 5.86 11.57 5.80 11.34

Plummer

1 5.93 11.46 5.85 11.29

2 5.88 11.48 5.83 11.36

4 5.88 11.65 5.82 11.33

demo/basic/ folder once the library has been built. The simple Makefile in demo/basic/

is an example of how to link your code with the DASHMM library.
The test code creates a random distribution of source and target points and computes

the potential at the targets due to the sources using the Laplace kernel, using any of the
currently available built-in methods in DASHMM. A user can request a summary of the
options to the program by running the code with --help as a command line argument,
or by reading /path/to/dashmm/demo/basic/README.

The performance of DASHMM is demonstrated here using this test code, particularly
focusing on the resulting scalability. The tests were performed on a workstation with
dual Xeon E5-2609 v3 processors, running at 1.9 GHz clock rate, and 64 GB of memory.
The operating system is Ubuntu 14.04 with the 3.13.0-45-generic Linux kernel. The code
was compiled using the GNU compiler. Results of the performance tests are shown in
Fig. 4 and Table 1. The configurations of the tests can be summarized as follows:

• Source and target ensemble are different, but have the same size and distribution.
The problem sizes used are 1, 2, and 4 million.

• Three data distributions are tested: (a) Uniform distribution inside a cube; (b) Uni-
form distribution on a spherical surface; (c) Plummer distribution.

• Masses carried by the source points have a magnitude uniformly distributed on
the interval [1,2]. For the BH method the masses are all positive, and for FMM the
masses have a random sign.

• Three digits of accuracy were required of the FMM cases, which required 55 terms
in the expansion.

• The critical angle used in the multipole acceptance criterion for the BH cases was
0.6, and the expansion of the potential included up to the quadrupole moment.
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Figure 4: DASHMM performance. tN,p,d is measured in seconds and N is given in millions. Each panel shows
the execution time for the cube, sphere, and plummer distribution at thread count p, and a curve depicting
the arithmetic complexity of the underlying method, normalized to the results of the Plummer distribution.
Parameter m in the legend entry O(N logm N) is 1 for the BH method on the left column and 0 for the FMM
method on the right column.
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• For each problem size N and thread count p, we define the execution time for a
particular data distribution d as

tN,p,d=min
s

{ 10

∑
i=1

ti
N,p,d,s/10

}

,

where {s} is the set of thresholds examined. Speedup SN,p,d is defined as

SN,p,d= tN,1,d/tN,p,d.

4.4 User-defined expansion

One key feature of DASHMM is that it is extensible: Users can define their own
Expansions and Methods to treat their problem while still achieving the efficiency and
scalability of dynamic adaptive methods. A second demonstration program released
with DASHMM (demo/user expansion/) provides a skeleton code outlining the means
by which a user might define their own Expansion subclass, and use it with DASHMM.
The needed documentation appears as comments in the source code.

5 Conclusion

DASHMM is a library that implements a general framework for parallel multipole
method computations. The library is built on a dynamic adaptive runtime system, HPX-
5, and leverages the flexibility of that system to improve the efficiency and scalability
of the resulting multipole method computations. The library provides built-in methods
(FMM, BH) and expansions (Laplace kernel), as well as the ability to extend the library
with user-defined expansions and methods. The resulting framework is easy-to-use and
portable.

Future versions of DASHMM will continue to extend the functionality of the system
as well as the usability in applications. Foremost on the list of future features is a fully
distributed implementation that has some capability to automatically balance the work
across the available resources. This will rely in some measure on the global address space
provided by HPX-5 to allow each object in the system to have a single virtual address that
can serve both as its identifier as well as a target for parcels.

In terms of usability, DASHMM will be extended with more built-in kernels and
methods. Further, the output of the method will be generalized to allow for the accel-
eration to be returned from an Expansion as well as the potential. This will make time-
stepping codes easier to construct using DASHMM. Further, the interface to DASHMM
will be expanded to allow for more advanced control of the underlying computation, al-
lowing for repeat uses of the same DAG, or to allow for multiple kernels for the same
sources, or even some direct control of the underlying runtime system.
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