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Abstract. We present an efficient and robust method for stress wave propagation prob-
lems (second order hyperbolic systems) having discontinuities directly in their second
order form. Due to the numerical dispersion around discontinuities and lack of the in-
herent dissipation in hyperbolic systems, proper simulation of such problems are chal-
lenging. The proposed idea is to denoise spurious oscillations by a post-processing
stage from solutions obtained from higher-order grid-based methods (e.g., high-order
collocation or finite-difference schemes). The denoising is done so that the solutions
remain higher-order (here, second order) around discontinuities and are still free from
spurious oscillations. For this purpose, improved Tikhonov regularization approach
is advised. This means to let data themselves select proper denoised solutions (since
there is no pre-assumptions about regularized results). The improved approach can di-
rectly be done on uniform or non-uniform sampled data in a way that the regularized
results maintenance continuous derivatives up to some desired order. It is shown how
to improve the smoothing method so that it remains conservative and has local esti-
mating feature. To confirm effectiveness of the proposed approach, finally, some one
and two dimensional examples will be provided. It will be shown how both the nu-
merical (artificial) dispersion and dissipation can be controlled around discontinuous
solutions and stochastic-like results.
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1 Introduction

Many high-order numerical schemes (e.g., finite difference, spectral, pseudo-spectral,
and finite element methods) have been developed for resolving of elliptic and parabolic
partial differential equations (PDEs). This is because, these systems have the inherent
dissipation feature [16]. The hyperbolic systems (both the first and second order ones) do
not show this inherent feature; even small errors can cause instability in these systems as
spurious oscillations [16]. Oscillations in solutions containing discontinuities are known
as the numerical dispersion. To remedy this problem, for first-order hyperbolic problems
some effective approaches are developed. They include high resolution schemes and dis-
continuous Galerkin methods (by combining benefits of high-resolution methods with
finite elements) [37,58]. In high resolution schemes, in smooth areas higher-order approx-
imations (second, third, or higher ones) are used, and around discontinuities, first order
approximation is utilized by a non-linear procedure. This strategy leads to a spurious-
oscillation free results.

An effective way for solving second order hyperbolic PDEs is to rewrite them as a
system of first order hyperbolic equations and then to simulate them with one of the
above-mentioned schemes. This will lead to oscillation free results with small numerical
dissipation [32]. The second order hyperbolic PDEs can also be solved in their original
second order form. For this purpose, several approaches have been developed:

1. Using artificial dissipation without modifying the governing equations. For this
case, dissipation is inherently added in evaluation procedures. In the time domain,
the algorithmic dissipative time integration methods have been developed for re-
moving spurious oscillations [20–22, 26]. For the spatial domain, inherent filtering
concept is also developed in derivative estimations [69, 70],

2. Adding some artificial viscosity in the governing equations to stabilize the solution.
This can be done by using local artificial viscosity around high-gradient zones in
the spatial domain [12, 13]. Hughes [25] showed that this approach damps mainly
the middle modes without affecting the lower and higher modes substantially. As
artificial diffusion decreases accuracy of solutions considerably, methods using the
artificial diffusion only in high frequency ranges were developed; such as, the spec-
tral viscosity schemes [8,9,56]. This approach has been employed for both first and
second order hyperbolic systems,

3. Filtering spurious oscillations from numerical solutions in the spatial domain by
a post-processing stage [16, 35]. These schemes were successfully used in simu-
lation of hyperbolic systems on uniform grid points [18, 59, 62], and non-uniform
grids [66,67]. It should be mentioned that many smoothing schemes working satis-
factorily on uniform grids are not suitable for non-uniform ones: leading to unsta-
ble or unreliable results [39].

The concept of high-resolution treatment has recently been advised for handling second-
order hyperbolic systems [3].
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The aim of this work is to solve directly the second order hyperbolic systems. Such
approach has the following advantages:

1. Less degrees of freedom are needed (in case of elastodynamic problems, in second-
order form three dependent variables exist, while between nine and fifteen vari-
ables are needed when they are re-formulated as first-order systems);

2. The solution of the first-order system also satisfies the second-order form: this can
be done by imposing/checking some constraints. This is because, the first order
form admits more acceptable solutions;

3. Possibility of using larger time-steps in second-order form compared to the first-
order one [1].

In this work, the spatially filtering approach is used. This will done by a post-processing
stage to remove properly spurious oscillations from solutions containing discontinuities.
However, curing of the numerical dispersion effects is a crucial task. This is because:

1. Estimation of a function and corresponding derivatives from its sampled points
can be considerable as a type of (semi) ill-posed problem. This would be more
clear by considering the fact that different estimated values (data and correspond-
ing derivatives) can be obtained for different interpolation methods. From math-
ematical point of view, this fact may be explainable as follows. Sampling proce-
dure can be considered as convolution of a continuous function f (x) with the Dirac
delta δ(x) as: fi= f (xi)=

∫
f (x)δ(xi−x)dx. This integral is known as the first-order

Fredholm integral, and corresponding inverse problem could be a (semi) ill-posed
problem [19, 41], i.e.: finding f (x) from corresponding sampled data { f (xi)};

2. For numerical simulations, it is necessary that derivatives of estimated functions
are also to be continuous, or equivalently the derivatives can be properly estimated
up to some order. This derivative estimation (from noisy data) is another ill-posed
problem. This is because effects of small noise amplify considerably derivative val-
ues,

3. Spatial adaptation will insert a new source of ill-posedness; most of filtering meth-
ods can not properly work on irregular points/meshes.

Different estimation approaches of functions and their derivatives have been devel-
oped; such as: finite-difference methods [31], integral-based schemes [17, 33, 47, 61], reg-
ularization approaches [40, 60, 63], or interpolation methods [28]; for a general overview,
the reader is referred to [45, 46]. In this work, the regularization approach will be used,
where a variational functional is employed. The key challenge is proper handling of the
numerical dispersion (known as edge preserving in image processing problems). There-
fore, the total variation (TV) based regularization method was developed [53], for pre-
serving discontinuities. Such results, however, are not smooth enough for numerical
simulations. Hence, a proper selection of a functional with sufficient smoothness being
free from spurious oscillations (due to the numerical dispersion) is important.
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In this study, several regularization approaches with different constraints will be
studied. Furthermore, effects of imposing extra information containing extra local in-
formation will be investigated (it is known as the model-base regularization). By using
such local extra information, it is tried to impose local features. This extra information is
different from the conventional constraints.

These regularization techniques have several advantages over most other denoising
schemes; for the Tikhonov method, they are:

1. It has a unique and stable closed-form solution with fast algorithms; this makes it
completely popular.

2. It leads to the smoothest possible results for a distinct value of estimation error
among all of the regularization schemes.

3. Proper boundary value estimation can be obtained. Estimation errors around bound-
aries are known as the Runge phenomenon. The Tikhonov regularization method
is one of the single-interval schemes that can effectively handle it (without using a
anti-Runge scheme) [6, 7].

4. Noise can directly be removed from irregularly spaced data where standard filter-
ing techniques used in time series analysis become awkward to implement,

5. By proper selection of prior information, derivatives up to some degree can be esti-
mated,

6. It can deal with many types of ill-posed problems such as data irregularity or
derivative estimation problems.

Since the Tikhonov method acts as a post processor, it can be integrated with differ-
ent explicit/implicit higher-order grid based methods, such as: compact finite difference
schemes [35, 69, 70]. For the Tikhonov-based regularization, other favorable features can
also be considered to improve estimated results; such as: conservative regularization
(even for non-Gaussian noise), adaptive and/or local(global) smoothing. These exten-
sions for common Tikhonov methods will be presented in this work.

One difficulty in regularization methods is proper choosing of regularization param-
eters. Indeed, most of the existing estimating methods lead to over or under smoothing
results [27, 36]. Current experiments reveal that even small amount of regularization can
considerably improve numerical results. In general, the trial-and-error method can be
recommended to find an optimum range of regularization parameters. Error bounds and
convergence rates are studied for commonly used constraints or regularization defini-
tions; e.g., see: [2, 44]. Here, for recently proposed constraint in [30] for the Tikhonov
method, error bounds and convergence rates are also studied.

This paper is organized as follows. Section 2 describes the main concept of regulariza-
tion. Regularization-based numerical solutions of 1D stress wave propagation problems
containing discontinuities are studied in Section 3. In Section 4, the explicit/implicit
higher order finite difference methods are explained with corresponding filtering al-
gorithms. In this section, the Tikhonov-based smoothing will be integrated with such
higher-order methods. The performance of this collaboration will be studied by both
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smooth and discontinuous solutions. In Section 5, by using the singular value decom-
position (SVD) and the generalized one (GSVD), effects of different constraints for the
Tikhonov method are studied. The implementation of the Tikhonov method with differ-
ent constraints are presented in Section 6. In Section 7, error estimations and convergence
rates are investigated. These concepts are then studied by a benchmark having a disconti-
nuity; there, both of the numerical dispersion and Runge phenomenon are investigated.
Section 8 devotes to the conservative filtering feature in the Tikhonov method. In Sec-
tion 9, it will be shown how to have a local smoothing with Tikhonov methods by consid-
ering extra constraints. Relationship between Tikhonov-based smoothing methods and
classical filtering concepts in signal processing schemes will be explained in Section 10.
Section 11 discusses general algorithms for the numerical simulation of second-order hy-
perbolic systems. Some examples in finite and infinite-periodic domains with fixed and
absorbing boundary conditions are tested in Section 12; here, effects of the numerical
dispersion and artificial dissipation are studied. The paper ends with a brief conclusion.

2 Regularization approaches

2.1 Tikhonov regularization method with different constraints

The aim of regularization is to replace an ill-posed problem with a nearly well posed
one. Let assume uniformly sampled (noisy) data {{yi}; i∈{1,2,··· ,n}}; to have a stable
estimation of smoothed (denoised) data {{ f j}; j∈{1,··· ,n}} from {yi}, a functional Q re-

sulted from a linear combination of the residual norm ρ(y−f)=‖y−f‖2=
√

∑
n
i=1(yi− fi)2

and prior information Ω(f) is considered, as [19, 41]:

Q(f)=ρ(y−f)2+λ×Ω(f)2, (2.1)

where λ (0 ≤ λ < ∞) is a penalization factor. The solution { f j} minimize this func-
tional. Parameter λ controls trade-off between error in estimations and smoothness. The
cases λ→0 and λ→∞ lead to the linear fit and interpolation problems, respectively. Tak-
ing advantage of the remapping relation λ = (1−p)/p, the range of λ can be changed
to [0,1]; p=1 results in an interpolation problem, and lower values yield more smoother
estimations. It should be mentioned that the commonly used Tikhonov formulation can
slightly be modified, for example as: Q(f) = ρ(y−f)2+(

∫
f (x)dx)2+λ×(‖f‖2+‖f′‖2)

(where f′ :=df/dx) [11].

The stationary point of Q(f) is the minimizing solution: fmin =argminf(Q(f)). Some
constraints Ω2(f) with corresponding features are briefly reviewed in Table 1. There,
constraints with and without models (prior extra information) are presented.

The model-based Tikhonov regularization was introduced by Barakat et al. [4]. It
introduces extra information fmodel (containing generally localized information) to im-
prove regularization. The modified constraint (measured usually by a (semi) norm)
is: Ω2

model = ‖D(m)( f − fmodel)‖
2
2 (where D(m) denotes an operator for mth derivative). If
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Table 1: Different constraint definitions in the L2 space for the Tikhonov method.

Constraint Feature

Ω2
0(x)=

∫ +∞

−∞
( f ′(x))2dx, Using a smoothness constraint: having first order

continuity [24],

Ω2
1(x)=

∫ +∞

−∞
( f ′′(x))2dx, Using a smoothness constraint: having second order

continuity and a physical meaning. It measures flex-
ural energy in a beam [19, 41],

Ω2
2(x)=

∫ +∞

−∞
( f ′′(x)+α f ′(x))2dx, Using a smoothness constraint: regularized solutions

have second order continuity. This definition was re-
cently proposed [30]. It leads to smoothing splines in
tension,

Ω2
3(x)=

∫ +∞

−∞
( f ′′(x)2+α2 f ′(x)2)dx , Using a smoothness constraint: regularized solutions

have second order continuity. This leads to smooth-
ing splines in tension. This definition has a physical
meaning: it measures energies of flexural and axial
deformations in a beam [42, 43, 48, 49],

Ω2
model(x) = ‖D(m)( f − fmodel)‖

2
2; m ∈

{0,1,2},
The model-based regularization by using extra prior
information fmodel; it can include several locally im-
posed features [4],

Ω2
4(x)=

∫ +∞

−∞
(| f ′(x)+1|−1)2dx, Area (or volume) preserving constraint [51].

the model fmodel is properly chosen, this modification will lead to a good estimation. For
example, if fmodel has some discontinuities, this local information of signal can be used
in regularization procedures. Even though, the Tikhonov method leads to unique and
stable solutions, prior general information like bounded smoothness is not often enough
to obtain a suitable solution due to a global character. It will be shown that model-based
regularized solutions are also sensitive to the model, itself. This sensitivity is due to exis-
tence of high-frequency components in systems. This will be confirmed by the GSVD in
Section 5.

The Tikhonov regularization method leads to a closed form solution. However, the
main disadvantage of the Tikhonov method is that it cannot properly handle discontinu-
ities in a considered system.

All of the above mentioned constraints are defined in the L2 space; there exists some
other effective constraints which measure prior information in L1 space (e.g., with (semi)
norm

∫
(| f (m)(x)|dx, m≥0; where f (m) :=dm f /dxm). They are developed to handle spe-

cial problems, like the edge preserving restoration (preserving discontinuity). In this
case, the functional Q can generally be defined as: Q(f) = ρ(y−f)2+λ×Ω(f). Some of
such constraint definitions are: 1) the Total Variations (TV) [53]; 2) the incompressibility;
3) local rigidity [52]. For these regularization methods, closed-form solutions can not be
provided; they are mainly solved by iterative algorithms.

As mentioned, the main shortcoming of the Tikhonov method is proper handling of
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discontinuities. The TV-based regularization is originally developed to preserve image
edges or data discontinuities. Corresponding constraint can be defined as: ΩTV( f ) =∫ +∞

−∞
| f (m)(x)|dx, m∈{0,1}. Regarding numerical simulations, however, the authors ex-

perience shows that this approach does not have enough smoothness; this makes it un-
suitable for PDE solutions (this will be studied).

Some remarks: considering above mentioned methods, it should be noted that:

1. In the above-mentioned regularization methods, it is assumed that the noise has the
white Gaussian feature. This means, the discrete values yi := y(xi) can be written
as: yi= fi+ǫi; where i∈{1,2,··· ,n}; x1≤x2≤···≤xn; {ǫi} are random, uncorrelated er-
rors with zero mean and variance σ2; f (x) is the denoised (smooth) function which
should be estimated.

2. For other types of noise, different modified definitions should be used. For the
Poisson noise see, e.g. [34], and for general cases, see [10, 50].

3. Regarding several regularization constraints, it has been noted that their effects can
be viewed as a high-pass filter [5, 15]. This will be shown in Sec. 10.

2.2 Curing discontinuity effects: the numerical dispersion around
discontinuities

To handle properly discontinuities in regularization problems, several approaches are
proposed; some of which are:

1. The common Tikhonov method (using common smoothness constraints, e.g.: Ω2
1)

with adaptive weight coefficients [57]. In this approach, The aim is to estimate a
function with different smoothness in different spatial locations. However, discon-
tinuity types and corresponding locations should be known, as prior information.
This makes this approach, in general, unfeasible.

2. Using a smoothness constraint having a tension term (i.e., Ω2
2 and Ω2

3) in the Tikhonov
approach,

3. The TV-based regularization,

4. The model-based Tikhonov regularization.

The first, second and fourth approaches have closed-form solutions with fast algo-
rithms; this makes such methods appealing for numerical simulation of boundary value
problems. The third approach can effectively handle discontinuities. However, it suffers
from lack of smoothness and utilizing of iterative solvers.
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2.3 2D regularization methods

Extension of 1D regularization definitions to higher-dimension problems are straightfor-
ward: the same concepts and measurements can be used, as well. For example, for the
Tikhonov method with a smoothness constraint (if the smoothness is measured by the
gradient constraint, like Ω2

0 in the 1D case), the corresponding functional can be written
as: Q=

∫
Ω
(z(x,y)− f )2 dΩ+λ

∫
Ω
|∇ f |22 dΩ (where |∇ f |22 :={Dx( f )2+Dy( f )2}, where the

operator Di is the first derivative definition in the ith direction and i∈{x,y}).

In this work, to have a cost-effective algorithm, higher-order problems are solved
based on 1D algorithms. For this purpose, firstly, in each direction, 1D algorithms are
independently implemented, and then average of results are considered as a regularized
solution. This means, for spatial point (xi,yj), the approximated solution is: f (xi,yj)=
0.5( f1(xi)+ f2(yj)), where f1 and f2 are the regularized solutions obtained independently
in the x and y directions, respectively.

3 Numerical simulation of 1D wave problems via regularization

methods

In this section, 1D wave propagation problems including (semi) discontinuities will be
studied to reveal effectiveness of different regularization approaches. The problem is
longitudinal wave propagation in a bar with a constant cross section area. The governing
equation is: ∂2u(x,t)/∂t2= c2∂2u(x,t)/∂x2 : 0≤x≤1; the initial (ICs) and boundary (BCs)
conditions are {u(x,t= 0)= u0 & u̇(x,t= 0)= v0} and {u(0,t)= u(1,t)= 0}, respectively
(where u̇ :=du/dt). Here u denotes the axial deformation and c is the wave propagation
speed. The velocity c is assumed to be c=

√
E/ρ=1; where E and ρ are the module of

elasticity and density of the bar, respectively.

For numerical simulations, in spatial domain, the higher-order finite difference method
is used: the fourth-order explicit central difference approximation for the second deriva-
tive. The temporal integration is done with the Runge-Kutta 4th order method, see Ap-
pendix A. For spatio-temporal discretizations, it is assumed: dx = 1/29 and dt = 10−8.
After each five time steps, numerical solutions are regularized (denoised) with different
regularization approaches (as a post-processor).

Several different imposed initial displacements will be considered; both smooth but
high gradient deformations and those having discontinuities. The considered ICs for u0

are:

1. u(1)(x,t= 0) = u
(1)
0 =

√
max(1−( x−xc

0.5×Supp)
2,0), where xc and supp are center point

and support length of the function, respectively. Here, it is assumed: xc = 0.5 and
supp=0.2,

2. A dilated unit box with definition: u(2)(x,t=0)=u
(2)
0 =UnitBox(4(x−0.5)), where

UnitBox(x)=H(x+0.5)−H(x−0.5); the function H(x) is the Heaviside function,
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3. A compact sawtooth wave function: u(3)(x,t = 0) = u
(3)
0 = UnitBox( (x−xc)

supp )(x−xc

+0.5)×supp, where xc=0.5 and supp=0.2.

In all cases, it is assumed v0=0.

In the following, numerical results of the wave propagation problem will be studied;
they are resulted from different regularization/constraint definitions.

Numerical results from the Tikhonov method with different constraints and with-

out a model

For regularization stage, penalizing (smoothing) parameter is assumed to be: p=0.875
and α=1. Numerical results, denoised by the Tikhonov method with constraints Ω2

1, Ω2
2

and Ω2
3, are shown in Fig. 1. The constraint Ω2

1 is a commonly used smoothness-based
regularization, and the Ω2

2 and Ω2
3 are those improved by considering a tension term (see

Table 1). Adding this term helps to reduce undesirable fluctuations from fitted curves.
The constraint Ω2

3 are widely used, and the Ω2
2 is recently recommended (see Table 1).

Based on the results, it is clear that, even though both of constraints Ω2
2 and Ω2

3 use
the concept of tensioned curves, in all cases the constraint Ω2

2 can effectively control the
numerical dispersion.

The model-based Tikhonov regularization

In the following, effects of the model-based Tikhonov regularization approach will
be studied by some numerical simulations. The considered constraints for obtaining fmin

are: Ω2
1, Ω2

2 & Ω2
3. To estimate fmodel, a regularization problem is firstly solved at each

denoising stage; for this reason, the Tikhonov method with constraints Ω2
1, Ω2

2 & Ω2
3

are used. The fmodel is also estimated with the TV regularization approach. Regarding
the wave propagation problem, the results are presented in Fig. 2 with IC u(1)(x,t= 0)
at t= 0.2 (simulation of smooth but high-gradient solutions). There, in figures (a) to (f),
for fmodel and fmin, the following constraints are considered: {figure (a): for fmodel: Ω2

1

& for fmin: Ω2
1}; {figure (b): for fmodel: Ω2

2 & for fmin: Ω2
2}; {figure (c): for fmodel: Ω2

3 &
for fmin: Ω2

3}; {figure (d): for fmodel: Ω2
TV & for fmin: Ω2

1}; {figure (e): for fmodel: Ω2
TV

& for fmin: Ω2
2}; {figure (f): for fmodel: Ω2

TV & for fmin: Ω2
3}.

It is clear that in all cases spurious oscillations exist, and the model-based regulariza-
tion can not effectively control the numerical dispersion. This is due to amplification of
high-frequency components in the system (this will be shown). This shortcoming is more
highlighted in discontinuous cases. To study this, the wave propagation problem with
initial condition u(2)(x,t = 0) is considered. The corresponding results are represented
in Fig. 3 with the same assumptions of Fig. 2. It is obvious that effects of spurious os-
cillations are considerable in this case. This is due to existence of more high frequency
components in this system in comparison to the previous smooth high-gradient solu-
tions.

To study estimation errors in different regularization approaches, the L-curves of so-
lutions are also presented. The L-curve is a graphical log-log representation of a con-
straint Ω2 (or Ω2

TV) against the estimation error ρ2
2. Regarding the 1D wave propagation
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Figure 1: Numerical solutions with different Tikhonov methods with parameters p=0.875 and α=1 at t=0.2.

The numerical dispersion appears in solutions obtained by the constraints Ω2
1 and Ω2

3.

problem, for the smooth-high gradient IC (u(1)(x,t=0)), corresponding L-curves are pre-
sented in Fig. 4. In the simulations, different regularization parameters are assumed, as:
p∈{0.65,0.7,0.73,0.75,0.8,0.85,0.9,0.92,0.94,0.96,0.98,0.99}. The results are for time t=0.2.

In figure (a), the L-curve of numerical solutions obtained by the Tikhonov-based fil-
tering are compared with each other; the considered constraints are: Ω2

1, Ω2
2, and Ω2

3. It is
clear that the common Tikhonov method (using Ω2

1) leads to the smoothest possible re-
sult. By using the two other constraints, at the expense of error in estimations, smoother
results can be obtained. Also Ω2

2 constraint leads to slightly smoother results than those
of Ω2

3. In figure (b) TV-based results are compared with those obtained by the common
Tikhonov scheme; it is obvious, the TV-based results lead to worse results (this is due to
lack of enough-smoothness). Finally, in figure (c), the common Tikhonov method with
and without the model are compared with each other; for the model-based filtering, the
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Figure 2: Numerical solutions of the wave propagation problem, denoised with the model-based Tikhonov scheme
with constraints Ω2

1, Ω2
2 & Ω2

3 at t=0.2; for each figure, for pair {fmodel,fmin}, corresponding constraint pairs

are: a) {Ω2
1,Ω2

1}; b) {Ω2
2,Ω2

2}, c) {Ω2
3,Ω2

3}, d) {Ω2
TV ,Ω2

1}, e) {Ω2
TV ,Ω2

2}, f) {Ω2
TV ,Ω2

3}.

constraint pair {fmodel,fmin}= {Ω2
1,Ω2

1} is used. In the model-based Tikhonov regular-
ization, smooth solutions are only obtained for small p values; this is due to presence of
small oscillations in over-smoothed regularized solutions (as seen before).

4 Higher order finite difference methods and different filtering

approaches

Considering linear wave propagation problems, two general higher-order differencing
approaches will be reviewed in this section. The approaches are: 1) those using inherent
filtering; 2) ones utilizing filters by a post-processing stage. In the former case, spatial fil-
tering can inherently be considered in corresponding formulations. Performance of these
two approaches would then be studied for both smooth-high gradient and discontinuous
solutions. Below, above-mentioned approaches and corresponding filters are reviewed.

4.1 Approach 1: Inherent filtering

Here, filtering effects are inserted in definition of spatial derivatives. This inserting can be
done to have either a maximum order of accuracy or some optimized quantities [69, 70].
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Figure 3: Numerical solutions of the wave propagation problem having discontinuous fronts, denoised with
the model-based Tikhonov scheme with constraints Ω2

1, Ω2
2 & Ω2

3 at t = 0.2; for each figure, for the

pair {fmodel,fmin}, corresponding constraints are: a) {Ω2
1,Ω2

1}; b) {Ω2
2,Ω2

2}, c) {Ω2
3,Ω2

3}, d) {Ω2
TV ,Ω2

1},

e) {Ω2
TV ,Ω2

2}, f) {Ω2
TV ,Ω2

3}.

4.1.1 Maximum order schemes

In this approach, order of accuracy is maximized by considering error terms. For a uni-
form grid xj := j ∆x, at point xj, the first spatial derivative can be approximated as:

(δxu)j=
1

∆x

{
(d3−a3)uj−3+(d2−a2)uj−2+(d1−a1)uj−1+d0uj

+(d1+a1)uj+1+(d2+a2)uj+2+(d3+a3)uj+3

}
, (4.1)

where: uj := u(xj); (δxu)j := d(u(xj))/dx; ai and di are coefficients of anti-symmetric

((δa
xu)j) and symmetric ((δs

xu)j) parts, respectively. The symmetric part, (δs
xu)j acts as

a spatial filter. The maximum order of accuracy for (δxu)j without and with filtering

effects ((δs
xu)j) are six and five, respectively. For the six-order accuracy, the coefficients

are: a1 = 3/4, a2 =−3/20, a3 = 1/60, d1 = d2 = d3 = 0; and for the five-order one, the set
{di} becomes: d1 =−3d0/4, d2 = 3d0/10, and d3 =−d0/20. In our study, it is assumed:
d0=0.1 [69].

Regarding a system of pure advection, ut+(Au)x=0 (where, ut :=du/dt and (Au)x:=
d(Au)/dx), the spatial first derivative of the flux (Au) can be approximated as:

(Au)x ≈δa
xAu+δs

x|A|u, (4.2)
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Figure 4: The L-curves for numerical solutions of the 1D wave propagation problem at t= 0.2, denoised with
different regularization approaches.

where: |A|=X|Λ|X−1. Matrices X and Λ denote right eigenvectors and eigenvalues of A,
respectively.

Temporal integration of the advection equation can be done by the six stage explicit
method mentioned in [69], as:

u
(i)
n+αi

=un+∆tαi f
(i−1)
n+αi−1

, for i={1,2,··· ,6}, (4.3)

where: i denotes integration stage; α0 = 0, and α6 = 1; f
(0)
n = fn; u

(6)
n+α6

= un+1; un:=u(tn);

f (k):=du(k)/dt. To have a six-order temporal accuracy, in case of linear homogeneous
ordinary differential equations (ODEs), the set {αi} should be: α1=1/6, α2=1/5, α3=1/4,
α4=1/3 and α5=1/2.

4.1.2 The optimized method

Definition of (δxu)j (from Eq. (4.1)) with filtering effects and six-stage temporal integra-
tion (Eq. (4.3)) can be optimized for some desire error behavior or requirements. To re-
solve more waves of larger wave numbers (or short waves), corresponding optimized
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solution can be obtained in spatio-temporal domains by coefficients: a1 = 0.7599613,
a2 =−0.1581220, a3 = 0.01876090, d1 =−0.07638461, d2 = 0.03228961, d3 =−0.005904994,
α1=0.168850, α2=0.197348, α3=0.250038, α4=0.333306, α5=0.5 [69, 70].

4.2 Approach 2: Post-processing based filtering

In this approach, at first, derivatives or solutions are obtained and then by a post-processing
stage, non-physical oscillations are removed from numerical solutions. In the following,
generalized compact finite difference schemes with different features and a general filter-
ing method are reviewed.

4.2.1 Compact finite difference schemes

In this approach, a linear combination of data values {ui} are locally used for estima-
tion of derivatives values in each grid point. This combination for the first and second
derivatives can be written as [35]:

βmu
(m)
i−2+αmu

(m)
i−1+u

(m)
i +αmu

(m)
i+1+βmu

(m)
i+2 = cmZ

(m)
i,3 +bmZ

(m)
i,2 +amZ

(m)
i,1 ,

for m∈{1,2}, (4.4)

where: Z
(1)
i,j :=

ui+j−ui−j

2(j∆x)
; Z

(2)
i,j :=

ui+j−2ui+ui−j

(j∆x)2 ; and u
(m)
i :=dmui/dxm. Eq. (4.4) is also known as

the generalized Padé scheme. Relationships between coefficients {am,bm,cm} and {αm,βm}
can be obtained by matching the Taylor series coefficients. The truncation error can be
obtained by the first un-matched coefficient. The coefficients {am,bm,cm} and {αm,βm}
for case m = 2 (i.e., the second derivative) with periodic boundary conditions are pre-
sented in Table 2 for different spatial accuracy [35]. For estimation of the first and second
derivatives on a domain with general boundary conditions, please see [35].

Noise can be filtered by a post-processing stage in the spatial domain; following the
idea of local differencing, filtered data can be estimated as [35]:

β̂ûi−2+ α̂ûi−1+ûi+ α̂ûi+1+ β̂ûi+2= d̂Ẑi,3+ ĉẐi,2+ b̂Ẑi,1+ âẐi,0, (4.5)

where: Ẑi,j:=(ui+j+ui−j)/2; and {ûi} denotes the filtered data at grid points {xi}. The

coefficients {â,b̂, ĉ,d̂} and {α̂, β̂} are presented in Table 3 for the periodic boundary con-
dition and for different accuracy.

4.3 Performance of two approaches for smooth and discontinuous solutions

Below, performance of two approaches (1) and (2) will be studied for both smooth and
discontinuous solutions by a 1D scalar stress wave propagation problem. There, effects of
different filtering methods, inherent and post-processing ones, will be considered. In case
of the post-processing approach, effects of Tikhonov-based smoothing (regularization)
will also be studied.
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The example is a wave propagation problem in an elastic bar with unit length, unit
wave-propagation velocity (c=1) and periodic boundaries. The problem is only subjected
to an imposed initial displacement u0(x) (v0(x)=0). Two different smooth and discontin-

uous initial displacements are considered respectively, as: u0(x):=Exp(−500(x−0.5)2),
and u0(x):=Unitbox(4(x−0.5)) for 0≤ x≤1.

In numerical simulations, it is assumed:

1. both the l2 and l1 norms are used to measure errors; error definitions for l2 and l1

norms are ‖e‖2:= 1
Ng
{∑

Ng

i=1(ui−uex
i )2}

1/2
and ‖e‖1 := 1

Ng
∑

Ng

i=1 |ui−uex
i |, respectively;

where ui:=u(xi); uex denotes the exact solution; and Ng shows number of grid
points,

2. for the time integration, the Runge-Kutta 4th order is used for the explicit 4th order
(4-C) and the Padé differencing schemes (4-P) (see Table 2); the 6th order, six stage
temporal integration (Eq. (4.3)) is used for remaining spatial differencing operators
[70],

3. in all simulations, a fixed Courant number, CCFL:=c ∆t/∆x (known as the CFL con-
dition) is used, as: CCFL =1/3,

4. smoothing is done at each time step (for both inherent and post-processing ap-
proaches).

Convergence rates are studied in Fig. 5 for both smooth and discontinuous solutions
at t= 0.2; slope of lines are measured as 1 : (−v) (i.e.: 1 and (−v) units in the horizontal
and vertical directions, respectively). In this figure, the top and bottom rows belong to
the smooth and discontinuous solutions, respectively. Fig. 5(a) corresponds to the gen-
eralized Padé schemes without filtering stage. The filtered results (by a post-processor)
are represented in Fig. 5(b) for two different filters: the 6th order explicit (“f-6-E”) and
4th order implicit pentadiagonal (“f-4-p-1”) methods (see Table 3). In Fig. 5(c), the results
belong to the inherent filtering approach; here, the 6th order method (Max order-6th) does
not use any filters. Fig. 5(d) is for the generalized Padé schemes using the Tikhonov-
based smoothing with constraints Ω2

1 and Ω2
2 (with parameters: p = 0.99 and α = 0.99).

For the discontinuous solution, all of the results are re-presented in Figs. 5(e)- 5(g). The
post-processing (Eq. (4.5)), inherent (Eq. (4.1)) and Tikhonov-based filtering are used
for denoising compact difference schemes and their results are presented respectively in
Figs. 5(e), 5(f) and 5(g). The results offer that: 1) in smooth solutions (Fig. 5(a)), pre-
dicted convergence rates can be obtained (except for the 10th order one where it seems
that a more accurate time integration method should be used); 2) filtering changes con-
vergence rates and this is considerable for discontinuous solutions; in this case, the rates
are generally less than one; 3) regarding discontinuous solutions, for the inherent filtering
approach, performance of optimized methods is better than those of the maximum order
schemes; this is because, optimized methods can detect more waves of large wave num-
bers (this will be clarified); 4) in smooth solutions, performance of the Tikhonov method
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Figure 5: Convergence rates in the l2 norm for different FD methods for smooth (top row) and discontinuous
(bottom row) solutions; a) different compact FDs without filtering; b, e) different compact FDs with filtering;
c,f) the inherent filtering approach; d,g) Tikhonov based smoothing by a post-processor stage.

with the constraint Ω2
1 is better than those with the constraint Ω2

2; however in discontin-
uous solutions, the Ω2

2 constraint can control the numerical dispersion more effectively
and can prevent the numerical dispersion (will be studied).

Convergence rates in the l1 norm is also presented for the discontinuous solutions in
Fig. 6. It is clear that convergence rates are less than one for the all cases.

To clarify filtering effectiveness (for controlling the numerical dispersion and dissipa-
tion phenomena), solutions u(x,t=0.2) are presented in Fig. 7 for different FD methods
and filtering approaches. It is clear that the Tikhonov method with constraint Ω2

2 can
properly be integrated with other differencing schemes to control the numerical disper-
sion.

5 Studying the Thikhonov regularization with different

constraints by the SVD and GSVD decompositions

In this section, at first, definitions of SVD and GSVD methods [19] are briefly reviewed.
Thereafter, with these methods, effects of constraints Ω2

1, Ω2
2, and Ω2

3 with and without a
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Figure 6: Convergence rates in the l1 norm for different FD methods for discontinuous solutions.

model-solution (fmodel) will be studied.

The SVD decomposition The SVD decomposition of a rectangular matrix A ∈ R
m×n

is: A=UΣVT=∑
n
i=1uiσiv

T
i . Matrices U={u1,··· ,un}∈R

m×n and V={v1,··· ,vn}∈R
n×n are

unitary matrices containing respectively the left singular(ui∈R
m) and right singular (vi∈

R
n) vectors. The matrix Σ=diag(σ1,··· ,σn) is diagonal and contains singular values σi,

where σi ≥σi+1 & σi ≥0.

The GSVD decomposition Let us assume: A∈R
m×n and L∈R

p×n, where: m≥ n≥ p
and N (A)∩N (L) = {0} (symbol N shows the null space). Then the GSVD of (A,L)
is [19]:

A=U

(
Σ 0

0 In−p

)
X−1, L=V(M,0)X−1, (5.1)

where: U ∈ R
m×n; V ∈ R

p×p; X ∈ R
n×n. Matrices U and V have the unitary feature;

and X is a non-singular matrix. Matrices Σ and M are non-negative diagonal matrices
as: Σ=diag{σ1,σ2,··· ,σp} and M=diag{µ1,µ2,··· ,µp}. The singular values have follow-
ing properties: 1) 1≥σp≥σp−1≥···≥σ1>0; 2) 1≥µ1≥µ2≥···≥µp>0; 3) σ2

i +µ2
i =1. The

generalized singular values γi of (A,L) is then equal to: γi=σi/µi.

5.1 The Tikhonov method without a model (extra information)

Regarding the linear system Ax=b, functional of the Tikhonov regularization with con-
straint operator L is : Q = ‖Ax−b‖2

2+λ‖Lx‖2
2. It is easy to show that, the minimizing

solution of Q is: xmin=(AT.A+λLT.L)−1(AT.b). By substituting the SVD/GSVD decom-
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Figure 7: Discontinuous solutions u(x,t=0.2) for different FD schemes and different filtering approaches.

posed forms of the operators, the xmin can be rewritten as [19]:

xmin =
n

∑
i=1

uT
i .b

σi
vi, for λ=0 (without any regularization),

xmin =
n

∑
i=1

Fi
uT

i .b

σi
vi : Fi=

σ2
i

σ2
i +λ

, for L= I,

xmin =
p

∑
i=1

Fi
uT

i .b

σi
xi+

n

∑
i=p+1

(vT
i .b)xi : Fi=

γ2
i

γ2
i +λ

for L 6= I. (5.2)



104 H. Yousefi et al. / Commun. Comput. Phys., 20 (2016), pp. 86-135

0 10 20 30 40 50 60 70

0.5

0.6

0.7

0.8

0.9

1.0

i

F
i

W1

W2

W3

Figure 8: Filter coefficients for different constraints in the Tikhonov method, where p=0.8 & α=1.

In the above equations, Fi acts as a filter; it damps effects of singular values with small
values. For solutions obtained without regularization (i.e.: λ=0), the solution xmin would
be sensitive for σi values of small (or nearly zero) values. They amplify corresponding vi

vector effects: the vectors with high fluctuations. Hence a proper inverse solution xmin is
not obtainable.

In the following, performance of Fi values for the Tikhonov regularization method

with different constraints will be studied. The constraints are: 1) Ω2
1(x)=

∫ +∞

−∞
( f ′′(x))2dx;

2) Ω2
2(x)=

∫ +∞

−∞
( f ′′(x)+α f ′(x))2dx; 3) Ω2

3(x)=
∫ +∞

−∞
( f ′′(x)2+α2 f ′(x)2)dx.

For numerical study, the Heaviside function, H(x) is considered for spatial domain:
−1.5≤ x ≤ 1.5. The function is uniformly sampled at 76 points. In Fig. 8, Fi values are
presented for these three constraints with parameter p=0.8 and α=1. The figure offers
that filters due to the constraint Ω2

1 and Ω2
3 have the same trend, but the latter leads to

smaller filter coefficients. The constraint Ω2
2 has a different trend and has larger filter

values for small i values.

Regularized solutions according to Eq. (5.2) are presented in Fig. 9; it is clear that the
Tikhonov method with Ω2 constraint can effectively control the numerical dispersion.

The final stage for this problem is checking the discrete Picard condition; this con-
dition states that to be sure that a regularization scheme works properly, correspond-
ing |ui.b| values should on average decay toward zero faster than corresponding gener-
alized singular values γi. This comparison is done in Fig. 10 for the three constraints. It
is clear that results from constraints Ω1 and Ω2 satisfy completely the condition and the
constraint Ω3, on average meets the discrete Picard condition.

5.2 The Tikhonov method with a model (extra information)

If it is assumed that we have a model for a solution, like (bmodel)p×1, and L 6= I, then the
corresponding functional is: Q = ‖Ax−b‖2

2+λ‖L(x−bmodel)‖
2
2. It is straightforward to

show that the solution is: xmin=(AT.A+λLT.L)−1{AT .b+λLT.L.bmodel}. If we set L.bmodel=
bL

model (this setting helps more clarifying behavior of regularized solutions) and using the
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Figure 9: Regularized solutions with different constraints, where p=0.8 & α=1.
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Figure 10: Control of the discrete Picard condition for regularized solutions with different constraints, where p=
0.8 & α=1.

GSVD, it is easy to show that the solution xmin can be written as:

xmin =

{
p

∑
i=1

Fi
uT

i .b

σi
xi+

n

∑
i=p+1

(vT
i .b)xi

}
+

{
p

∑
i=1

αi
vT

i .bL
model

µi
xi

}
, (5.3)

where: Fi=
γ2

i

γ2
i +λ

and αi=
λ

γ2
i +λ

.

Depending on λ values, two extreme conditions can be happened: 1) if λ≫0, then αi→
1; 2) if λ→0 then {Fi →1 & αi →0}. For the case (1), µi coefficients of small values cause
oscillations in regularized solutions and in the case (2), filter coefficients Fi do not filter
out oscillations. Hence, it is clear that why oscillation effects always remain in the regu-
lated solutions. This effect will be amplified in discontinuous solutions (as numerically
shown in numerical simulation of the 1D stress wave propagation problem, Section 3).

6 Implementation algorithms

In this section, implementation algorithms of Tikhonov-based regularization schemes
will be presented.
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Regarding sampled data {yi}for i ∈ {1,2,··· ,n}, the functional Q of the Tikhonov
method is:

Q=
n

∑
i=1

(yi− fi)
2+λ×Ω( f )2

2. (6.1)

In a more general form, in case of continuous functions y :=y(x), the functional Q can be
rewritten as:

Q=
∫ +∞

−∞
(y− f )2dx+λ×Ω( f )2

2. (6.2)

The solution f is the stationary point (extreme) of functional Q. For different Ω( f )
definitions, corresponding implementation algorithms will be provided.

Using the finite difference approximation for discrete values { f (xi) : i = 1,2,··· ,n},
the order-m derivative can be approximated as: f(m)≈D(m).f. Derivative Matrices D(1)

and D(2) can be approximated for uniform grids as:

D(1)=
1

∆x




−1 1
−1 1

. . .
. . .

−1 1




n×n

,

D(2)=
1

∆x2




1 −2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2 1




n×n

, (6.3)

where ∆x= xi+1−xi is the uniform sampling step in spatial domain. The D(1) and D(2)

matrices, both have first-order spatial accuracy.
For numerically discretization of an integral (e.g., the integral in Eq. (6.2)), it can be

approximated as:
xn∫

x1

| f (x)|2 dx≈ fT.B.f, (6.4)

where B denotes the integration rule matrix; for the midpoint integration rule, we have:

xn∫

x1

| f (x)|2 dx≈
1

2
(−x1+x2) f 2

1 +
n−1

∑
i=2

{
1

2
(−xi−1+xi+1) f 2

i

}
+

1

2
(−xn−1+xn) f 2

n , (6.5)

or

xn∫

x1

| f (x)|2 dx≈
1

2
f1(−x1+x2) f1+

n−1

∑
i=2

{
1

2
fi(−xi−1+xi+1) fi

}
+

1

2
fn(−xn−1+xn) fn. (6.6)
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So, the matric B can be obtained as:

xn∫

x1

| f (x)|2 dx≈ fT .

{
1

2
diag(−x1+x2,−x1+x3,··· ,−xn−2+xn,−xn−1+xn)

}
.f

= fT .B.f, (6.7)

where: diag{a1,··· ,an} shows a n×n diagonal matrix with diagonal elements ai; the vec-
tor f denotes f={ f1,··· , fn}T .

Considering above-mentioned derivative and integral approximations, the minimiz-
ing solution, fmin, for the Tikhonov regularization with different constraints will be pre-
sented in the following.

Tikhonov regularization with constraint: Ω2
2=
∫ +∞

−∞
( f ′′(x)+α f ′(x))2dx. Firstly, the func-

tional Q(f) is rewritten as:

Q(f)=
∫
(y− f )2dx+λ×

{∫ (
f ′′2+α2 f ′2+2α f ′ f ′′

)
dx

}
, (6.8)

The discretized form of the functional Q is:

Q(f)=(y−f)T .B.(y−f)+λ

×

{(
D(2)f

)T
.B.
(

D(2)f
)
+α2

(
D(1)f

)T
.B.
(

D(1)f
)
+2α

(
D(1)f

)T
.B.
(

D(2)f
)}

,

(6.9)

To find minimizing solution, the functional Q is minimized with respect to f as:

∂Q(f)

∂f
=−2B.(y−f)+λ

×

{
2
(

D(2)
)T

.B.
(

D(2).f
)
+2α2

(
D(1)

)T
.B.
(

D(1).f
)
+2α

(
D(2)

)T
.B.
(

D(1).f
)

+2α
(

D(1)
)T

.B.
(

D(2).f
)}

=0. (6.10)

Hence, the minimizing solution fmin is:

fmin =

{
B+λ

(
D(2)

)T
.B.D(2)+λα2

(
D(1)

)T
.B.D(1)

+ λα
(

D(2)
)T

.B.D(1)+λα
(

D(1)
)T

.B.D(2)

}−1

.(B.y). (6.11)
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Tikhonov regularization with constraint: Ω2
3=
∫ +∞

−∞
( f ′′(x)2+α2 f ′(x)2)dx. In this case,

by following the previous procedure for finding fmin for Ω2
2, it is easy to show that the

solution is the same as Eq. (6.11), but this time without first and second derivative inter-
action terms; i.e.:

fmin =

{
B+λ

(
D(2)

)T
.B.D(2)+λα2

(
D(1)

)T
.B.D(1)

}−1

.(B.y). (6.12)

Some remarks

1. Minimizing solution fmin(x) for the commonly used Tikhonov regularization method

with constraint Ω2
1=
∫ +∞

−∞
f ′′(x)2dx can simply be obtainable by setting α=0 in Eq.

(6.11) or (6.12) (without any tension effect).

2. For weighted residual norm, i.e.: ‖Wi(yi− fi)‖
2
2, with weights Wi, variable smooth-

ing (λ=λ(x)) and variable tension (α=α(x)) parameters, it is easy to show that Eq.
(6.11) can be written as:

fmin =

{
W.B+λ.

(
D(2)

)T
.B.D(2)+

(
λ.α.αT

)
.
(

D(1)
)T

.B.D(1)

+ (λ.α).
(

D(2)
)T

.B.D(1)+(λ.α).
(

D(1)
)T

.B.D(2)

}−1

.(W.B.y), (6.13)

where: W = diag{W1,W2,··· ,Wn}; λ = diag{λ1,λ2,··· ,λn}; α = diag{α1,α2,··· ,αn}.
Corresponding algorithm for constraint Ω2

3 can easily be obtained by canceling first
and second derivative interaction effects in Eq. (6.13). For the common Tikhonov
method (with Ω2

1 constraint) by setting the tension term to zero, corresponding
algorithm is obtainable.

3. For the model-based Tikhonov regularization with general constraint Ω2
2=
∫ +∞

−∞
( f ′′(x)

+α f ′(x))2dx, it is easy to show that the corresponding numerical algorithm is:

fmin ={B+λΓ}−1{B.y+λΓ.fmodel}, (6.14)

where:

Γ=

{(
D(2)

)T
.B.D(2)+α2

(
D(1)

)T
.B.D(1)+α

(
D(2)

)T
.B.D(1)+α

(
D(1)

)T
.B.D(2)

}
.

(6.15)

4. According to the aforementioned numerical implementation algorithms, since all
matrices are sparse and banded, the algorithms are fast and cost-effective.

5. It should be mentioned that regularized results can have grid dependency feature;
this means to have the same regularized results on finer or coarser grids, different
regularization parameters should be used (i.e., p and α). To prevent this grid de-
pendency, here, sampled data are remapped in a way that the new sampling step
becomes unit, i.e.: ∆x=1.
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7 Errors and convergence rates

7.1 Convergence rate for the Tikhonov method with different constraints

The Tikhonov method with constraints Ω2
1 and Ω2

3 are special cases of (m,s)-splines (for
case s= 0, this family becomes Dm-splines [2]) and (m,l,s)-splines (also known as Lm,l,s-
splines), respectively [54]. The (m,s)-splines are a special case of (m,l,s)-splines for l =
0 [54]. To be exact, (2,0)-splines and (1,1,0)-splines are solutions of the 1-D Tikhonov
method with constraints Ω2

1 and Ω2
3, respectively. For these two general spline families,

error bounds and convergence rates are studied even in presence of noise [2, 44, 54].
The aim of this sub-section is to show roughly that the Tikhonov method with con-

straint Ω2
2 is also bounded and has the convergence property.

Functional of Tikhonov methods with constraints Ω2
2 and Ω2

3 are respectively denoted
by Q2 and Q3; on the finite domain x∈ [x1,xNg ], it is easy to show that Q2 relates to Q3 as:

Q2=Q3+2αλ
∫ xNg

x1

f
′′

f
′
dx, (7.1)

where Ng denotes number of grid points, f
′
:= d f /dx and f

′′
:= d2 f /dx2. Minimizing

solution of both Q2 and Q3 are L-splines; these splines can be written as bellow on the
spatial domain xi ≤ x≤ xi+1= xi+∆x, [30, 43]:

fi (x)= ai+bi(x−xi)+cie
α(x−xi)+die

−α(x−xi), (7.2)

where, ∆x is an uniform sampling step, and coefficients {ai,bi,ci,di} are unknown, real
and bounded values. Using Eq. (7.2), functional

∫
f
′′

f
′
dx on xi≤ x≤ xi+∆x leads to:

γi :=
∫ xi+∆x

xi

f
′′

f
′
dx

=
1

2
αe−2α∆x

(
−1+eα∆x

)(
di+cie

α∆x
)(

2bie
α∆x+

(
1+eα∆x

)(
−di+cie

α∆x
)

α
)

. (7.3)

Using the Taylor series, γi can be expanded as:

γi=
[
biciα

2+bidiα
2+c2

i α3−d2
i α3
]
∆x+

[
1

2
biciα

3−
1

2
bidiα

3+c2
i α4+d2

i α4

]
∆x2+O

[
∆x3

]
,

(7.4)
or:

γi=
[
bi (ci+di)+

(
c2

i −d2
i

)
α
]
α2∆x+O[∆x2]. (7.5)

Since coefficients {ai,bi,ci,di} are real and bounded values, so there exists a real and posi-
tive value such Ci where: γi≤Ciα

2∆x. By integration of γi on the domain x∈ [x1,xNg ], the
following inequality can be obtained between Q2 and Q3:

Q3−2α3λ∆x

(
Ng−1

∑
i=1

Ci

)
≤Q2≤Q3+2α3λ∆x

(
Ng−1

∑
i=1

Ci

)
. (7.6)
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Figure 11: The test function y(x).

It is clear that, lim∆x→0Q2=Q3 . Hence, Q2 is bounded and has the convergence property;
its convergence rate also approaches to functional Q3 as sampling step approaching zero.

7.2 A benchmark problem

As studied before, the constraint Ω2
2 in the Tikhonov method can control the numerical

dispersion. In this section, the error in estimation and convergence rate will numerically
be studied by a benchmark problem. The problem has both smooth and discontinuous
features. By this example, both the numerical dispersion and Runge phenomena are in-
vestigated. The function is:

y(x)=
1

2
+sin(2πx)−H(x−0.5), (7.7)

where H(x) denotes the Heaviside function; the function y(x) is illustrated in Fig. 11.

In Fig. 12, the regulated results obtained by constraints Ω2
1 (the common Tikhonov

method) and Ω2
2 are compared with each other. Considered parameters are: 1) for the

case Ω2
1: p=0.9; 2) for the case Ω2

2: p=0.9 & α=1. From this figure, it is clear that using
the constraint Ω2

2 leads to: 1) developing of more localized errors (of large magnitudes)
around discontinuous solutions; 2) rising of larger errors in smooth regions; 3) controlling
of the numerical dispersion more effectively; 4) increasing of the Runge phenomenon
around boundaries. Fig. 13 presents convergence rates of different solutions for the two
constraints. It is obvious that: 1) convergence rates are near to each other and for all of
them, corresponding rates are near to 0.6; 2) with the same p values, the Ω2

2 constraint
leads to less numerical errors in L1 and L2 senses (even though the errors resulted from
the Ω2

2 are more than those of Ω2
1 in smooth regions). The difference of two estimated

errors, resulted from two different constraints Ω2
1 and Ω2

2, increases considerably as p
values approach to one.
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Figure 12: Error in estimations, the numerical dispersion and Runge phenomena resulted from the Tikhonov
method with different constraints; (a) & (b) regularization with constraint Ω2

1; (c) & (d) regularization with

constraint Ω2
2;

As mentioned before, the constraint Ω2
2 leads to both: 1) larger the Runge phenomenon

(around boundaries); 2) larger estimated errors in smooth regions. To cure these draw-
backs, one effective way is to use variable tension (α) values. The values can be close to
zero in smooth regions; it can locally be increased around high gradient or discontinu-
ous zones. Regarding the test function y(x) (Eq. (7.7)), a Gaussian function for α(x) is
assumed: it is centered around the discontinuity (with spatial location x=0.5). The esti-
mated solution, corresponding estimation errors and convergence rates are presented in
Fig. 14 for p=0.9. Figs. 14(a), (b) and (c) present the estimated solution, estimation error,
and convergence rate, respectively. The results offer that the non-uniform estimation both
improves accuracy of estimations in smooth areas and decreases the Runge phenomenon
around boundaries. In this case, the numerical dispersion is successfully controlled, as
well.

8 Conservation in Tikhonov-based smoothing

For sampled data {yi} with Gaussian noise, the Tikhonov-based regularization finds
smoothed data { fi} in such a way that: yi = fi+ε i; where: the set {ε i} denotes the
noise with zero mean, i.e.: ∑i ε i = 0 [57]. In this case, filtered data remain conservative,
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Figure 13: Convergence rates for Tikhonov regularization in L1 and L2 norms with the constraints Ω2
1 and Ω2

2
for different p and α values.

since: ∑i yi =∑i fi. In numerical simulations, however, such assumption for noise type is
not true and thereby smoothed data do not remain conservative.

Conservative smoothing, however, can be obtained by imposing an extra constraint
in the Tikhonov method, as:

Q=
n

∑
i=1

(yi− fi)
2+λ Ω2( f ) ,

subjected to :
1

n
(I.y)=

1

n
(I.f) ,

(
i.e. :∑

i

yi =∑
i

fi

)
(8.1)

where: I1×n denotes a single row matrix with unit elements, as: I1×n=[1,··· ,1]1×n; vec-
tors f and y are: f=[ f1,··· , fn]T and y=[y1,··· ,yn]T. Using the Lagrange multiplier method,
the modified functional, QL becomes:

QL =
n

∑
i=1

(yi− fi)
2+λ Ω2( f )+λL

{
1

n
(I.(f−y))T

}
, (8.2)

where λL is the Lagrange coefficient. For case Ω2( f )=Ω2
1( f )=

∫
( f

′′
(x))

2
dx, extremes of
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Figure 14: Variable α parameter in Tikhonov-based regularization with the constraint Ω2
2; a) regularized results

( f ) and α(x); b) estimation errors; c) convergence rates.

the functional QL with respect to f and λL are:

∂QL

∂f
=0 ⇒ 2

[
B+λ

{(
D(2)

)T
.B.D(2)

}]

︸ ︷︷ ︸
Γ

.f+
λL

n
IT =2B.y,

∂QL

∂λL
=0 ⇒

1

n
(I.y)=

1

n
(I.f) . (8.3)

These equations lead to the following linear system:

[
Γ

IT

n
I
n 0

][
f

λL

]
=

[
2B.y

(I.y)/n

]
. (8.4)

Obtaining of such linear systems for other Ω2( f ) definitions are straightforward.

Example 8.1. Linear data {{(xi,yi)}={(i,i)}; i=1,··· ,7} is perturbed as:

{(xi,yi)}={{1,1},{2,2.01},{3,2.97},{4,3.99},{5,5.03},{6,6},{7,7}}.
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Using the conservative Tikhonov regularization with parameter p= 0.9, smoothed data
will be:

{ fi}={1.005100307,2.000351,2.9790275,3.99291,5.0189070,6.005833,6.9978714}.

In this case, we have:∑i yi−∑i fi =2.07×10−12 (∑i yi =28 & ∑i fi =28).

For the common Tikhonov regularization (without the constraint of the conservative
smoothing), the smoothed result is:

{ fi}={1.0054894578,2.979230914,3.993112981,5.01911043,6.006076,6.9982605};

where: ∑i fi =28.0019. It is clear the smoothing is not conservative.
The constraint of conservative smoothing can also be imposed by the penalty method

in the functional Q, as:

QP =
n

∑
i=1

(yi− fi)
2+λ Ω2( f )+CP

{[
1

n
(I.(f−y))T

]
.

[
1

n
(I.(f−y))

]}
, (8.5)

where CP is a predefined penalty coefficient.

9 Global and local smoothing

The common Tikhonov method leads to global smoothing. Two approaches can be fol-
lowed to have local smoothing (regularization): i) local regularization (with consistency
with surrounding data); ii) global regularization with variable weights and/or smooth-
ing parameters. Below the first approach will be discussed.

9.1 Local regularization

The main idea is to smooth only some local zones of data. At boundary points of the
local zones, continuity of both smoothed data and corresponding derivatives (up to some
order) should be preserved with surrounding information. To have such local Tikhonov
regularization, the concept of smoothing with constraints can be used for local zones of
data. These extra constraints guarantee continuity at boundary points. The functional Q
subjected to some new extra constraints can be expressed as:

Q=∑
i

(yi− fi)
2+λΩ2( f ) ,

subjected to:
{

Aj.f
(j)=y0

(j) : j∈{0,1,··· ,m} & f ∈Cm
}

, (9.1)

where: f(0):=f; y0
(0)=y0; f(j):=djf/dx j & y0

(j):=djy0/dx j, for j≥ 1; fi:= f (xi); {f={ fi} :
i ∈ {1,··· ,n}} denotes the smooth function needed to be estimated at distinct n spatial
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points; y0
(j)={(y

(j)
0 )k} is a vector of data values needed to be interpolated at some pre-

defined points (like boundary points). For a predefined point xk then it is needed to
have: { f (j)(xk)=y0

(j)(xk) : j∈{0,1,··· ,m}}; Matrix Aj denotes a connection matrix of size
n×r, where n and r are vector lengths of f and y0, respectively. At the spatial location xk,
for lth element of y0

(j) (i.e.: (y0
(j)(xk))l,1), element (Aj)l,k

is equal to one and remaining

elements of the lth row are zero.
Using the Lagrange multiplier to impose extra constraints, the new functional QL is:

QL =∑
i

(yi− fi)
2+λ Ω2( f )+

m

∑
j=0

λ
L
j

(
Aj.f

(j)−y0
(j)
)T

, (9.2)

where λL
j denotes a Lagrange multiplier vector.

By finding extreme values of QLwith respect to f and vectors {λL
j }, one can find both f

and {λL
j }. Let assume f (x)∈C2, and Ω2( f )=Ω2

1( f )=
∫
( f

′′
(x))

2
dx; then it is easy to obtain

a discretized form of QL, as:

QL =(y−f)T.B.(y−f)+λ
(

D(2).f
)T

.B.
(

D(2).f
)
+λ

L
0

(
A0.f−y0

)T

+λ
L
1

(
A1.
(

D(1).f
)
−y0

′
)T

+λ
L
2

(
A2.
(

D(2).f
)
−y0

′′
)T

, (9.3)

where f(1) and f(2) are respectively approximated as, D(1).f and D(2).f.
Extreme values of QL can be obtained, as:

∂QL

∂f
=0 ⇒ 2

[
B+λ

{(
D(2)

)T
.B.D(2)

}]

︸ ︷︷ ︸
Γ

.f+λ
L
0 .A0

T
+λ

L
1 .
(

A1.D(1)
)T

+λ
L
2 .
(

A2.D(2)
)T

=2B.y,

∂QL

∂λL
0

=0 ⇒A0. f=y0,

∂QL

∂λL
1

=0 ⇒
(

A1.D(1)
)

. f=y0
′
,

∂QL

∂λL
2

=0 ⇒
(

A2.D(2)
)

. f=y0
′′
. (9.4)

These equations can be represented in a matrix form, as:




Γ A
T
0

(
A1.D(1)

)T (
A2.D(2)

)T

A0 0 0 0(
A1.D(1)

)
0 0 0(

A2.D(2)
)

0 0 0




.




f

λL
0

λL
1

λL
2


=




2B.y
y0

y0
′

y0
′′


. (9.5)
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Figure 15: Local smoothing with C2 continuity with surrounding data; value of smoothing parameter is p=0.7.

The above left-hand side matrix can be ill-posed, in general. For such cases, the extra
constraints can be imposed by the penalty method. In this case, the functional Q can be
modified as:

QP =∑
i

(yi− fi)
2+λ Ω2( f )+

m

∑
j=0

CP
j

(
Aj.f

(j)−y0
(j)
)T(

Aj.f
(j)−y0

(j)
)

, (9.6)

where CP
j denotes predefined penalty coefficients.

For an example, an exponential function is assumed, as: y(x) =Exp(−40(x−0.5)2).
The aim is the local smoothing on spatial range 0.30 ≤ x ≤ 0.98 in such a way that the
smoothed data have C2 continuity with surrounding data. Edge constraints (on y, y

′
and

y
′′
) are only imposed for two boundary end points x = 0.30 and x = 0.98 (more bound-

ary points can be assumed for each edge). Smoothed results are presented in Fig. 15,
where the smoothing parameter is p= 0.7. In this figure, discrete values of f

′
and f

′′
are

computed with the same operators used in the regularization procedure, i.e.: f
′
=D(1).f

and f
′′
= D(2).f. It is clear that the local smoothed data and corresponding derivatives

have consistency with neighbor data.

10 Tikhonov regularization and correspondence with filtering

It is mentioned that the regularization effect is similar to a low-pass filtering [57]. Con-
straints of the Tikhonov method measure high-frequency components of data; these com-
ponents are then enforced to approach zero. This filtering feature will be studied in more
detail in this section.

Regarding functional Q=
∫

F(x,y,y
′
,y

′′
)dx, where y:=y(x), y

′
:=dy/dx and y

′′
:=d2y/dx2,

it is easy to show that corresponding Euler-Lagrange differential equation is: Fy−
d

dx (Fy′ )+
d2

dx2 (Fy
′′ )=0, where: Fy:=dF/dy, Fy

′ :=dF/dy
′

and Fy
′′ :=dF/dy

′′
.
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For the Tikhonov regularization with constraint Ω2
2(x)=

∫
( f

′′
+α f

′
)

2
dx, the function

F is: F(x, f , f
′
, f

′′
)= (y− f )2+λ( f

′′
+α f

′
)

2
. It is straightforward to show that equivalent

Euler-Lagrange equation for constant λ and α is:

−(y− f )−λα2 f
′′
+λ f (iv)=0. (10.1)

Rewriting this equation in the Fourier space, we have:

F ( f )−F (y)−λα2(iω)2F ( f )+λ(iω)4F ( f )=0, (10.2)

or,

F ( f )=
1

1+λα2ω2+λω4
F (y) , (10.3)

where: F( f ) denotes the Fourier transform of the function f (x) belonging to the Hilbert

space L2 (i.e.:
∫

f (x)2
dx<∞); i2 =−1; and ω∈ [0,π]. So using the constraint Ω2

2(x) leads
to the filter function H2(ω) as:

H2(ω)=1/
(

1+λα2ω2+λω4
)

. (10.4)

For constraints Ω2
1(x) and Ω2

3(x), it is easy to show that corresponding filter functions
are:

H1(ω)=1/
(

1+λω4
)

,

H3(ω)=1/
(

1+λαω2+λω4
)

. (10.5)

It is clear that: 1) Hj(0)=1 and Hj(π)=0 for j∈{1,2,3}; 2) thereby, functions {Hj(ω)}
act as low-pass filters. In fact, they are a type of Butterworth low pass filters [57].

11 Solution algorithm for stress wave equations

The main idea is to use the regularization stage as a post-processing step in the commonly
used finite-difference (or collocation) method with higher-order accuracy. For this reason,
consider the solution of a second order hyperbolic system to be f(t). At time step tn, the
solution procedure can be summarized as the following steps:

1. Approximate spatial derivatives with finite difference discretizations; this can be
done by the generalized Padé approximations, compact differencing equations (see
Section 4) [35, 69] or the fast and iterative algorithm proposed by Fornberg [14]. In
this work, explicit fourth order spatial accuracy is used for derivative estimations
(to have a higher-order solver),
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2. Discretize PDEs in the spatial domain and solve resulted semi-discrete systems,
i.e., discrete in space and continuous in time. A standard time-stepping method
like the Runge-Kutta method of 4th order (see Appendix A) or the explicit six-stage
method [69] can be used to solve the resulted ODEs at time t= tn to obtain solution
at the next time step t= tn+1,

3. Denoise spurious oscillations (this step can be done directly on non-uniform grid
points, as well); for this purpose the Tikhonov method with constraint Ω2

2 is recom-
mended. Either variable or constant p or α values can be considered. In this work,
constant values are used. The recommended values for p and α are: 0.9≤ p≤0.99,
and α≈1. For the Tikhonov method other extra conditions can also be considerable;
such as: conservative (Section 8) or local (Section 9) smoothing.

4. Go back to step 1,

In practice, to have a cost-effective computation, the solution is not denoised at each
time step. This can be done after some time steps (depending on the wave velocity), for
example following ten time steps.

12 Numerical examples

In this section, one 1D and several 2D examples are presented to show effectiveness of the
proposed approach. The 2D examples are: 1) a membrane subjected to an imposed initial
discontinuous deformation (to simulate propagating discontinuous fronts); 2) an infinite-
periodic domain containing sharp and localized variation of physical property (a narrow
fluid-filled crack with finite dimension); 3) wave propagation in a medium with several
fluid-filled cavities with stochastic locations (to have stochastic-like simulations) [29, 64].

In simulations, for Tikhonov methods it is assumed: 1) they are not enhanced to be
conservative; 2) the global smoothing approach is used.

Example 12.1. In this example, the wave propagation in a 1D linear bar with the box-
shaped initial imposed deformation is re-simulated (see Section 3) with other commonly-
used approaches. They are basically developed to remedy discontinuity effects in elasto-
dynamic problems. The methods are:

1. The finite element method with linear spatial shape functions using numerically
dissipative time integration scheme (α-NDTI) [20]. The assumed parameters are: γ=
0.6; β=0.25(0.5+γ)2; α=−0.0683 ; dt=0.003; number of elements is Ne =256.

2. Common Taylor-Galerkin method (TG-C) (second order) and higher order one (TG-
HO) (third order) [65]; for the TG-C case, assumed parameters are: γ=0.5 and α=
0.5; dt = 0.002; Ne = 256. For the TG-HO method, two set of parameters are con-
sidered as: i) for TG-HO-1: γ = 0.5; α = 0.5; Ne = 256; dt = 0.002; ii) for TG-HO-
2: γ=0.5; α=1.5; Ne =256; dt=0.002.
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Figure 16: Numerical results for wave propagation in a bar due to the box-shaped imposed initial condition
at t=0.2.

3. Discontinuous time Galerkin method (DTG) [38] (piece-wise linear approximations
in the time and linear approximations in the space). The considered parameters
are: dt=0.01 and Ne =256.

In each scheme, the considered parameters are the suggested values in the corre-
sponding references, to have a good estimation of the exact solution. In appendix A,
above-mentioned methods are briefly reviewed. For numerical simulations, properties
of the bar are: E=1 (module of elasticity), A=0.01 (cross section area), and ρ=1 (density
of the bar). The results are presented in Fig. 16. Although these methods lead to stable
solutions, they can not effectively control the numerical dispersion.

As mentioned in the Introduction section, the idea of high-resolution schemes is re-
cently extended to second order hyperbolic systems [3]. Bellow the aim is to compare
such results with those of our proposed method. For this reason, this example is re-
solved on spatial domain x ∈ [−1,1] with new initial conditions: u0(x) = Unitbox (2x)
and v0(x)=0. For the Tikhonov method it is assumed: 1) smoothing is done at each time
step; 2) The functional Ω2

2 is used as the constraint; 3) smoothing parameters are: p=0.99
& α=1.

Numerical results are presented in Fig. 17 at t= 0.2; symbols P−4, UW2, UW4, and
HR2 denote the 4th order Padé, second order upwind, fourth order upwind and second-
order high resolution approximations, respectively. For details of UW2, UW4, and HR2
methods, please see [3]. The results offer that: 1) smoothed P−4 method (using the
Tikhonov smoothing method) prevents forming of spurious oscillations in both u and
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Figure 17: Direct simulation of the second order scalar wave propagation problem at t = 0.2; symbols P−
4, UW2, UW4 and HR2 denote the 4th order Padé, second order upwind, fourth order upwind and second-
order high resolution approximations, respectively. The results of UW2, UW4 and HR2 are from [3].

v solutions; 2) numerical dissipation of smoothed P−4 is less than those of HR2 and
coincides with those of UW2 (Fig. 17(b)); 3) numerical dispersion in smoothed P−4 is the
least one (Fig. 17(a,c)). The results of UW2, UW4, and HR2 are from [3].

Example 12.2. Consider vibration of a rectangular membrane with four fixed sides sub-
jected to an initial imposed displacement; the governing equations are:

PDE : c2
(
∂2u/∂x2+∂2u/∂z2

)
=∂2u/∂t2; Ω∈ [0,1]×[0,1],

ICs : u(x,y,t=0)=U(x,y) & ∂u/∂t(x,y,t=0)=0,

BCs : u(0,y,t)=u(1,y,t)=u(x,0,t)=u(x,1,t)=0. (12.1)

The initial condition has discontinuities; it is: U(x,y)= H(( x−0.5
0.2 )2+( y−0.5

0.2 )2) (where
H denotes the Heaviside function). The finite difference scheme is used for spatial dis-
cretization; the second derivative is approximated with the fourth-order explicit central
scheme; number of grid points is: (28+1)×(28+1). The time-integration is done by the
Runge-Kutta scheme of 4th order (see Appendix A). For the post-processing stage, the
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Figure 18: Numerical results with different assumptions of regularization constraints at t = 0.24; a)the IC

condition (U(x,y)); b) the solution based on using the constraint Ω2
2; c) the solution based on using the

constraint Ω2
1; d) the solution without any regularization.

Tikhonov method with three different constraints are considered: 1) Ω2
1 with the param-

eter p=0.99; 2) the constraint Ω2
2 with parameters p=0.99 & α=1; 3) p=1, i.e.: without

considering any regularization. Other parameters are assumed to be: c=1 (wave veloc-
ity); dt= 0.0015 (the time integration step). The denoising (regularization) procedure is
repeated after each five time steps. The IC (U(x,y)) and numerical results are presented
in Fig. 18 at t = 0.24. According to the results, it is clear that: 1) without regulariza-
tion, the solution becomes unstable; 2) small amount of the regularization leads to stable
solutions; 3) results obtained by Ω2

2 constraint can control more effectively spurious os-
cillations around propagating discontinuous fronts.

The numerical result obtained by the post-processing stage with constraint Ω2
2 and
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Figure 19: Comparison of the numerical method having the post-processing stage with constraint Ω2
2, and the

modal analysis based solution (with 60×60 first modes) at spatial position (x,y)=(0.5,0.5).

the solution obtained from the modal analysis will also be compared. For the square
membrane with dimensions (x,y) ∈ [a×b], and with four fixed boundaries, the mode
shapes are:

Mn,m(x,y)=sin
(mπx

a

)
×sin

(nπy

b

)
, (12.2)

The results are compared in Fig. 19 at spatial location (x,y)= (0.5,0.5) for time dura-
tion t ∈ [0,1.2]. For the modal analysis, it is assumed: (n,m) = (60,60) (i.e., 60×60 first
modes are considered). Due to discontinuities, the numerical dispersion exists in the
modal analysis. Therefor, a stable and oscillation free numerical result can be obtained
by considering the post-processing stage (the constraint is: Ω2

2).

Example 12.3. In this example, the stress wave propagation problem is studied in a
medium including high and abrupt variations in its physical parameters. In such sys-
tems, numerical methods which can not handle (semi) discontinuous solutions (caused
by the material variation) have stability and accuracy problems around contact zones
(e.g., the fluid-solid contact zone). Due to this material variation, speeds of elastic waves
are largely different around the contact zone. The incident waves, P or S, can be reflected
from interface in the form of P and S waves. The incident P wave is reflected as P (de-
notes by PPr) and S (shown by PSr) waves; for the incident SV wave the reflected P and S
waves are shown by SPr and SSr, respectively. If the second material is water, since only
P waves can be transmitted to the fluid layer, the transmitted P wave due to incident
P and S waves are denoted by PPt and SPt, respectively. Another phenomenon due to
existence of a sharp corner is the diffraction. The P wave is diffracted from crack edges
into the solid medium as diffracted P (PPd) and diffracted S (PSd) waves.

It is assumed that the medium has infinite-periodic boundaries, and it contains a nar-
row fluid-filled crack of finite length. Due to this crack, each P or S (SV) incident waves
are reflected and transmitted. Also due to edge of the crack, the diffraction phenomenon
will be happened.

The schematic shape of the medium along with the description of the crack configu-
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Figure 20: Schematic shape of an infinite-periodic medium including a fluid-filled narrow crack.

ration is illustrated in Fig. 20. There, position of periodic and absorbing boundary condi-
tions are also illustrated.

Here, to consider infinite boundaries the absorbing boundary concept is used. This
boundary is explicitly considered in the governing P-SV equations, as:

{(λ+2µ)ux,xx+µux,zz}+{(λ+µ)uz,xz}=ρ{ux,tt+Q(x,z)ux,t},

{(λ+2µ)uz,zz+µuz,xx}+{(λ+µ)ux,xz}=ρ{uz,tt+Q(x,z)uz,t}. (12.3)

The absorbing boundaries are commonly used for simulation of infinite boundaries.
In this system, absorbing boundary condition is considered explicitly; or equivalently
the wave equations are modified by damping term Q(x,z). This acts as an attenuation
factor. This factor is nearly zero in the computation domain and increases gradually
when approaches to the artificial boundaries. This causes incoming waves towards these
kind of boundaries to diminish gradually [55]. In general, there is not any absorbing
boundary that could absorb all of the incoming energies, so, some small long-period
reflections always remain. In this problem, the attenuation function is:

Q(x,z)= az

(
Exp(bz.z2)+Exp(bz.(1−z)2)

)
,

where az =120 and bz=−100.
In the numerical simulation, it is assumed that: 1) the post-processing stage is done

by the Tikhonov method with constraint Ω2
2; 2) the incident wave is a plane P wave,
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Figure 21: Snapshots of solutions ux and uz.

produced by an initial imposed deformation with equation: uz(x,z,t=0)=Exp(−700(z−
0.25)2); 3) the regularization is performed after each five time steps with parameters
p=0.97 and α=1; 4) time step is: dt=0.001; 5) number of grid points in each direction is:
28+1; 5) time-integration is done by the Runge-Kutta 4th order method.

The snapshots of ux and uz are illustrated in Fig. 21. There, the reflected, transmitted
and diffracted waves are shown. The zoomed-in solution uz at incident time, t=0.067 is
illustrated in Fig. 22; it is clear that formation of spurious oscillations are prevented due
to discontinuous solutions formed around contact zone.

Example 12.4. Our concern in this example is controlling of artificial dispersion develop-
ing in stochastic like solutions. So, a wave propagation problem in a stochastic medium
will be studied. In such systems, propagating fronts can not develop due to the diffrac-
tion phenomenon. The challenging problem is developing of dominate non-physical dis-
persive waves.

One practical approach for stochastic media simulation is to consider several stochas-
tic fluid-filled small cavities in homogeneous media [29, 64]. The considered medium is
illustrated in Fig. 23, where the black disks show the cavities. It is assumed that: 1) the
medium has infinite-periodic boundary conditions; 2) a plane P wave propagates in the z
direction.

In the numerical simulations, we have: 1) spatial discretization is done with the ex-
plicit central finite difference method of fourth order accuracy; 2) the time integration
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Figure 22: Snapshot of solutions uz at t=0.067.

Figure 23: A homogeneous medium with stochastic fluid-filled small cavities.

method is the Runge-Kutta scheme of fourth order with time step dt = 0.001; 3) post-
processing stage is performed using the Tikhonov method with constraint Ω2

2 and pa-
rameters p=0.99 and α=1; and 4) the regularization repeats after each five time steps; 4)
number of grid points is: (29+1,28+1).

Snapshots of results for ux and uz are presented at Fig. 24 for different times. Accord-
ing to the ux solutions, it is clear that the diffracted waves propagate and propagating
fronts can not be formed in the domain due to stochastic nature of solutions.

Fig. 25 illustrates an investigation on the regularization effects. It compares two solu-
tions of ux with and without the regularization-stage (with the constraint Ω2

2) at t=0.0805.
It is shown that even marginal regularization can prevent occurrence of the artificial dis-
persion (commonly occurred in stochastic-like numerical solutions).
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Figure 24: Formation of stochastic-like solutions ux and uz from the fluid-filled cavities due to diffraction of
the incident plane P wave.

13 Conclusion

We have presented an approach including a post-processing stage to control the nu-
merical dispersion around discontinuities for numerical simulation of the mechanical
wave propagation problems (known as the second order hyperbolic PDEs). Several com-
pact high-order finite-difference methods are successfully integrated with the Tikhonov
method as a post-processor. This is done to control spurious oscillations formed around
discontinuities due to the numerical dispersion. For this controlling, the crucial point is
a proper choosing of a constraint for Tikhonov-based regularization. Different types of
regularization with different constraints are studied. And finally a proper constrained
with some possible extensions is advised.

Regarding Tikhonov method, two general approaches are studied: regularization
with and without a model. A model contains extra almost local information (such as
discontinuity locations) to improve regulated results. However, it is shown (by numer-
ical studies and GSVD decomposition method), the model-based results are sensitive to
the model; if the model is exact, the regulated solution can properly handle discontinuity
effects, otherwise results are sensitive and the numerical dispersion affects them. It is
shown that the constraint resulted from proper combination of smoothness and the ten-
sion concept can properly control the numerical dispersion around discontinuities. This
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Figure 25: Snapshots of the P-SV wave propagation in a medium having fluid-filled cavities with stochastic
locations; a) the solution with the regularization step with the constraint Ω2

2; b) the solution without the
regularization step.

definition is different from the classical one, described as: Ω2
3=
∫

f ′′(x)2+α2 f ′(x)2dx. The
recently proposed definition is: Ω2

2=
∫
( f ′′(x)+α f ′(x))2dx [30]. For this constraint, corre-

sponding error bounds and convergence rates are qualitatively studied in this work. It is
shown for the Tikhonov method with Ω2

2 constraint, regularization can effectively control
the numerical dispersion around discontinuities. To improve smoothing performance re-
sulted from the Tikhonov methods, it is shown how to add some other favorable features,
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such as conservative and local smoothing. To clarify smoothing effects of the Tikhonov
method, its relationship with the filtering concept is also studied.

The proposed method can easily be extended to higher dimensions and systems of
PDEs; since it is totally based on 1D algorithms. Finally to confirm efficiency of the
proposed method, some 1D and 2D examples are presented. In one 1D example, the
performance is compared with those of other commonly used methods developed for
stress wave propagation problems. This example confirms that the performance is good
and acceptable. According to another 1D benchmark, by using spatially varying regu-
larization parameters (the adaptive regularization concept), accuracy of solutions can be
improved while the Runge phenomenon can be controlled. This can be achieved, for ex-
ample, by employing non-constant weights, smoothing (p) or tension (α) coefficients in
the Tikhonov method. These extensions are beyond the scope of the present paper; they
will be reported elsewhere.

Some 2D examples containing propagating discontinuous fronts are studied; for sim-
ulations, wave propagation in media with localized sharp transition of material proper-
ties are considered; e.g., a medium with fluid-filled crack of finite length and a medium
with fluid-filled cavities with stochastic spatial locations. The results confirm that ex-
istence of even marginal regularization effects can considerably improve stability and
accuracy of solutions.

Finally, it should be mentioned that one drawback of the regularization approach is
proper estimation of corresponding parameters (here p and α); it seems that the trial and
error method is useful to adjust proper values.

Appendix A

A.1 The Runge-Kutta 4th order for stress wave problems: Second order
systems

Let us assume that values of displacement (u(t)), velocity (v(t):=du/dt) and accelera-
tion (a(t):=d2u/dt2) of a particle in motion (with spatial position xj) are known at time
tn:=n∆t; the response at the next time step, tn+1 = (n+1)∆t can be estimated by the
Runge-Kutta 4th order time integration as [23]:

{
u(t+∆t)=u(t)+

∆t

6

[
v(t)+2ṽ2

(
t+

∆t

2

)
+2ṽ3

(
t+

∆t

2

)
+ ṽ4(t+∆t)

]}
,

{
v(t+∆t)=v(t)+

∆t

6

[
a(t)+2ã2

(
t+

∆t

2

)
+2ã3

(
t+

∆t

2

)
+ ã4(t+∆t)

]}
,

where ṽi and ãi denote guess (intermediate) velocity and acceleration at ith stage, respec-
tively; intermediate displacements, ũi can also be defined. These guess values can be
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obtained as:
{

ũ2

(
t+

∆t

2

)
=u(t)+

∆t

2
v(t)

}
;

{
ṽ2

(
t+

∆t

2

)
=v(t)+

∆t

2
a(t)

}
;

{
ũ3

(
t+

∆t

2

)
=u(t)+

∆t

2
ṽ2

(
t+

∆t

2

) }
;

{
ṽ3

(
t+

∆t

2

)
=v(t)+

∆t

2
ã2

(
t+

∆t

2

) }
;

{
ũ4(t+∆t)=u(t)+∆tṽ3

(
t+

∆t

2

) }
;

{
ṽ4(t+∆t)=v(t)+∆tã3

(
t+

∆t

2

) }
.

Regarding the scalar wave equation c2∂2u/∂x2 = ∂2u/∂t2, the equation is rewritten in
a semi-discrete form: discrete in spatial domain and continuous in time. The resulted
system of ODEs can then be solved by the method of lines scheme; for this, the time
integration can be done by the Runge-Kutta 4th order method. Let us assume the spatial
discretization is done by a finite difference method at spatial location xj; the Runge-Kutta

4th order method can be implemented by considering: uj(t):=u(xj,t), vj(t):=duj/dt and

aj(t):=∂2uj/∂t2= c2∂2uj/∂x2.

A.2 The generalized α-dissipative time integration method

To use this scheme, a semi-discrete form of wave equations is considered: discrete in the
spatial domain and continuous in time; the spatial discretization is done with the finite
element method. The semi-discrete form can then be represent as: Mü+Ku=F.

Having solution values at time step n, corresponding values at the time step n+1 can
be obtained by the generalized α-time integration algorithm as [20]:

Fn+1=Man+1−αKun+(α+1)Kun+1,

un+1=un+∆tvn+∆t2 [(0.5−β)an+βan+1],

vn+1=vn+∆t[(1−γ)an+γan+1], (A.1)

where α, β and γ are free parameters controlling the stability and numerical dissipation
of the algorithm. At the initial step, we have u0 = u, v0 = v, and a0 = M−1(F0−Kd0).
For case γ > 0.5 numerical dissipation exists and for β ≥ 0.25(γ+0.5)2 the mentioned
algorithm is unconditionally stable [20].

A.3 The time discontinuous Galerkin method

For second order dynamical systems, the time discontinuous Galerkin method formula-
tion can be obtained by considering the following assumptions: 1) employing the concept
of the finite element method in the time domain; 2) possible existence of a discontinuity
(jump) at each time step; 3) rewriting the second-order equations as first-order ones.

To account possible discontinuities, the following notations are introduced:
Z±

n :=limǫ±→0 Z(tn±ǫ) and t±n :=limǫ±→0(tn±ǫ); where Z∈{u,v,wi}, in which: wi:=wi(t)
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denotes a weight function and v:=u̇. By considering the new variable v, the second
order (semi-discrete) equation Mü+Cu̇+Ku=F can be written as: Mv̇+Cv+Ku=F &
K(u̇−v)=0. The weighted residual form of these first order equations on time interval t∈
[t−n ,t−n+1] is [68]:

Rn =
∫ t−n+1

t−n
wT

1 (Mv̇+Cv+Ku−F)dt+
∫ t−n+1

t−n
wT

2 (K(u̇−v))dt=0,

for n∈{1,··· ,N}, (A.2)

where: t1 =0, tN+1 =T and tn ≤ tn+1. It should be mentioned that solutions u & v, and
weight functions wi can have discontinuities in time interval t∈ [t−n ,t+n ].

By considering linear shape functions and linear weight functions (in time domain),
the following matrix form equation can be obtained from Eq. (A.2) for t∈ [t−n ,t−n+1] [38]:




K
2

K
2 −∆tnK

3 −∆tnK
6

−K
2

K
2 −∆tnK

6 −∆tnK
3

∆t nK
3

∆tnK
6

∆tnC
3 + M

2
∆tnC

6 + M
2

∆tnK
6

∆tnK
3

∆tnC
6 − M

2
∆tnC

3 + M
2


.




u+
n

u−
n+1

v+
n

v−
n+1


=




Ku−
n

0

F1+Mv−
n

F2


, (A.3)

where F1=
∫ tn+1

tn

tn+1−t
∆tn

Fdt and F2=
∫ tn+1

tn

t−tn
∆tn

Fdt.

A.4 Taylor-Galerkin discretizations

The second order equation of motion is again rewritten as a first order system, like:
∂U/∂t+∂E/∂x=H; in this equation we have: U=[u,ρv]T , E=[0,−σ]T and H=[v,−ρF]T;
where: σ and F are the stress and load vectors, respectively; and v:=u̇. The momen-
tum V = ρv is expanded by the Taylor series in time t = tn, as: Vn+1 = Vn+∆tV̇n+
(∆t2/2)V̈n+O(∆t3) (where Vn :=V(tn)). Inserting this expansion in the first-order sys-
tem, and then using the Galerkin discretization in space, the conventional (second-order)
Taylor-Galerkin method can be obtained as [65]:

Mvn+1=Mvn+∆t{Hn−Kun}+
∆t2

2

{
Ḣn−Kvn

}
, (A.4)

where M and K are the mass and stiffness matrices. Displacement un+1 can be obtained
as:

un+1=un+∆t
{
(1−γ)vn+γvn+1

}
, (A.5)

where for γ=0.5, the method is stable with maximum time step.

If a higher order Taylor expansion is used for momentum V, a higher order Taylor
Galerkin scheme can be obtained. For the third order expansion, vn+1 can be obtained
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as [65]:

vn+1=vn+

(
M+α

∆t2

6
K

)−1[
∆tHn+

∆t2

2
Ḣn+α

∆t2

6

(
Ḣn−1−Ḣn

)

−K

(
∆t2

2
vn+∆tun

)]
, (A.6)

where it is needed α ≥ 1/2; for accurate solutions α near to 1/2 should be used. For
unconditional stability, it is necessary α = 3/2 and γ = 1/2. Displacement un+1 can be
obtained from Eq. (A.5).

Appendix B

In this appendix, in Table 2, coefficients of generalized Padé approximations for the sec-
ond derivative are presented. Coefficients of finite difference filters are provided in Ta-
ble 3. For all cases, periodic boundary conditions are assumed.

Table 2: Coefficients of generalized Padé approximations for the second derivative with different accuracy and
periodic boundary conditions [35].

Name Method/order β2 α2 a2 b2 c2

4-C Central/4th 0 0 4
3 (1−α2)

1
3 (−1+10α2) 0

4-P Padé /4th 0 1/10 4
3 (1−α2)

1
3 (−1+10α2) 0

6-T Tridiagonal scheme/6th 0 2/11 4
3 (1−α2)

1
3 (−1+10α2) 0

8-C Collatz/8th 38α2−9
214

344
1179

696−1191α2
428

2454α2−294
535 0

10 10th 43
1798

334
899

1065
1798

1038
899

79
1798

4-S Spectral-like/4th 0.05569169 0.50209266 0.21564935 1.7233220 0.17659730

Table 3: Filter coefficient values used for filtering the generalized Padé approximations by a post-processing
stage for the periodic boundary condition [35].

Name Method /order β̂ α̂ â b̂ ĉ d̂

F-6-E Explicit/6th 3/10 0 1/2 3/4 3/10 1/20

F-4-T-1 Tridiagonal /4th 0 0.4
(5+6α̂−6β̂+16d̂)

8
(1+2α̂+2β̂−2d̂)

2
(1−2α̂−14β̂+16d̂)

−8 0

F-4-T-2 Tridiagonal /4th 0 0.475
(5+6α̂−6β̂+16d̂)

8
(1+2α̂+2β̂−2d̂)

2
(1−2α̂−14β̂+16d̂)

−8 0

F-4-P-1 Pentadiagonal/ 4th 0.2265509 0.4627507 0.8470630 1.166845 0.3422386 0.02245659

F-4-P-2 Pentadiagonal/ 4th 0.1702929 0.6522474 0.9891856 1.321180 0.3333548 0.001359850
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