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Abstract. In this paper, we present a discretization of the time-dependent Schrodinger
equation based on a Magnus-Lanczos time integrator and high-order Gauss-Lobatto
finite elements in space. A truncated Galerkin orthogonality is used to obtain duality-
based a posteriori error estimates that address the temporal and the spatial error sepa-
rately. Based on this theory, a space-time adaptive solver for the Schrédinger equation
is devised. An efficient matrix-free implementation of the differential operator, suited
for spectral elements, is used to enable computations for realistic configurations. We
demonstrate the performance of the algorithm for the example of matter-field interac-
tion.
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1 Introduction

With the emergence of femtosecond laser pulses and the seminal experiments by Ze-
wail [58], it became possible to experimentally study molecular processes and chemical
reactions. The time-dependent Schrédinger equation (TDSE) gives a theoretical descrip-
tion of the dynamics within molecules,

ih%lp(x,t):H(t)gb(x,t), XERY, 0<t<t;<oo,
(x,0) = to.
The differential operator H(t)=T( A & )+ V(x,t) comprises the kinetic (T) and the

potential (V) energy of the system. Since close analytical expressions for the wave func-
tion are only known for very simple configurations, numerical simulations are essential

(1.1)
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for the understanding of the outcome of experimental studies. The major challenge in
simulations is the curse of dimensionality: The spatial variables in the model describe
the degrees of freedom in the molecule, i.e., the coordinates of each particle, and the di-
mension of the underlying partial differential equation grows therefore linearly with the
number of particles.

Various semiclassical methods have been developed that combat the course of dimen-
sionality by employing some type of classical modeling (see e.g. [10, 20, 30, 45, 46, 57]).
These techniques are very powerful but they have difficulties in covering the full quan-
tum dynamical nature of the underlying system like energy transfer via laser fields or
tunneling effects. The goal of this work is to solve the TDSE for as large systems as pos-
sible without any (semi-)classical approximation. Our focus is on the simulation of the
interaction of molecules with time-dependent fields.

For small molecules, it is very common to use pseudospectral methods [12, 19, 22,
40,56] to solve the full TDSE. Because the solutions are smooth, high accuracy can be ob-
tained with a relatively small number of grid points. However, the method is generalized
to higher dimensions by tensor products and a flexible adaption of the mesh to the solu-
tion is not possible. An approach for improving the efficiency of the Fourier method is
the so-called mapped Fourier method where the coordinates are transformed according
to the properties of the Hamiltonian [21,35]. Also, a sparse grid algorithm for the Fourier
method was devised by Hallatschek [28] and later employed for the Schrodinger equa-
tion [24, 25]. Still these improvements do not enable solution- or residual-based mesh
adaption. Moreover, the one-dimensional stencil couples all the grid points and there is
no locality in the method which makes parallelization rather difficult.

On the other hand, much research has been done on error estimation and mesh adap-
tation for finite element discretizations. A posteriori error theory, based on a global en-
ergy norm, was initiated by Babuska and Rheinboldt [3,4]. The work by Babuska and
Miller [2] introduced duality arguments. Later Becker and Rannacher [8,9] designed the
dual-weighted residual (DWR) method for error control. This method allows to design
adaptive meshes for more general functionals of the error and in this way the error in
some physically meaningful function of the solution can be controlled. For the TDSE,
it is common that one is interested in the value of some physical observable that can
be expressed as a functional of the solution rather than the full distribution function.
Duality-based adaptivity is a means to concentrate the computational effort to regions
that are most relevant for simulating this observable instead of on minimizing the global
L error. Such an observable could be the crosscorrelation, i.e., the overlap of the solution
with a predefined state. While DWR is well-established for elliptic differential equations,
the temporal dimension poses additional difficulties. Therefore, most work on a poste-
riori error estimation for parabolic problems do not directly rely on the solution of the
dual problem (see e.g. [18,48]). Schmich and Vexler [52] have extended the DWR theory
to parabolic problems in a setting with a discontinuous Galerkin formulation in time.
They separate temporal and spatial error estimation and treat the temporal dimension in
a time-stepping approach. Still the fact that the primal and the dual problem are solved
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in different directions requires storing a large amount of data. Bermejo and Carpio [11]
therefore propose an adaptive algorithm that uses the duality argument only locally per
time step. However, they cannot show any global error bounds. Duality-based a poste-
riori error estimates have also been discussed for time stepping in ordinary differential
equations (ODE) [14] and applied to the semidiscretized Schrodinger equation in [37] to
achieve an adaptive time-stepping method. In this paper, we use the temporal adaptivity
proposed in [37] and enhance it by introducing spatial adaptivity that is optimized for
the computation of some given functional of the error.

Norm-based error estimation has been studied for the Schrédinger equation in var-
ious settings. Karakashian and Makridakis [33] have considered a space-time finite el-
ement discretization of the cubic Schrodinger equation and Kyza [42] the spatially con-
tinuous Crank-Nicolson approximation to the linear equation. Dorfler [16] considers a
spatial finite element discretization combined with an implicit propagation scheme and
also designs an adaptive algorithm around the estimate.

The focus of this paper is to design an efficient and robust method for the discretiza-
tion of the Schrodinger equation. Aside from error estimation that we obtain unlike the
aforementioned papers based on a duality argument, we also focus on an efficient and
parallel implementation. As in [52], we split temporal and spatial error estimation but
rely on a Magnus-Lanczos propagator to discretize in time. This propagator has excel-
lent stability properties [43] while being explicit and is therefore very efficient for the
Schrodinger equation, especially when the Hamiltonian is time dependent. This has been
found in the comparative study of the propagator in [36]. When working with explicit
time propagators, mass matrices that appear in a standard finite element formulation are
bothersome. To minimize the additional effort related to the mass matrix, we will work
with Gauss-Lobatto elements, which allow for high-quality representations with diago-
nal mass matrices [15]. Another advantage of these elements, also referred to as spectral
elements, is that they cluster the nodes towards the element boundary and are therefore
better conditioned than standard finite elements for increasing element order (see [34]).

In a standard implementation based on sparse matrices, however, finite element sten-
cils are rather wide compared to other localized methods like finite differences. Also, the
memory consumption of the matrices is prohibitive. We therefore use a matrix-free im-
plementation of the matrix-vector product that reuses unit-cell shape function informa-
tion and makes efficient use of the tensor-product formulation of the stencil (cf. [38,41]).
In a matrix-free implementation, the operations per node for Gauss-Lobatto elements
have a similar arithmetic complexity as finite differences according to the summation-by-
parts principle [26] for high orders. Hence, high-order Gauss-Lobatto elements represent
a good compromise of accuracy and flexibility.

The outline of the paper is the following. The next section discusses the used dis-
cretization techniques. In Section 3, we derive the a posteriori estimate for our numerical
method. Based on the estimate, we devise an adaptive algorithm in Section 4. This is fol-
lowed by a discussion of some implementation aspects in Section 5. Results are presented
in Section 6 and Section 7 concludes this work.
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2 Approximation of the Schréodinger equation

A weak solution ¢ € L, (H (R?);(0,t4]) with temporal derivative

2 peLa(H (R, 04)

satisfies ¢(x,0) = ¢p and
/]R J*a¢ i(C(P)*()CSb-F—igO*VA?,b dx=0
d ot h nx h =

forall pc H'(R?) and t € (0,t;]. Here, we have used the form T=—Va(x)V of the kinetic

energy operator. The coefficient a(x) contains the mass fraction 2h—ni for each dimension
and possibly a (real-valued) variable coefficient originating from coordinate transforma-
tion. We consider atomic units, i.e. i and m; are set to one.

In its most general formulation, the Schrédinger equation is formulated on the whole
R?. The coordinates are usually transformed by exploiting symmetries and there are of-
ten angular dimensions with periodic boundary conditions and distances that can take
values between zero and infinity. This is not a practical domain for computations whence
artificial boundaries need to be included. For bound states, the eigenfunctions of the
Hamiltonian decay very fast towards infinity [23] and we can thus assume that the wave
packet stays within certain limits and restrict the simulation to a certain interval assum-
ing homogenous Dirichlet or periodic boundary conditions. This is common practise
in quantum dynamics simulations. If dissociative states are involved, the wave packet
may propagate towards infinity when a bound within the molecule breaks. In this case
it is common to truncate the domain and to include some damping layer [1]. Within the
layer, there is either a complex potential or a complex coefficient a. In the following, we
assume that we have chosen a proper computational domain (2 and boundary conditions
where the error due to domain truncation can be neglected. Hence, we consider { € V
to be the solution to the problem posed on some finite domain (), where V C H}(Q)) is
the space of functions satisfying periodic or homogeneous boundary conditions. The de-
rived estimates do not include the error done when reformulating the problem on the
computational domain which is considered to be part of the model.

In our theoretical derivation of the a posteriori error estimate in Section 3, damping
layers are allowed. However, the case of bound states is simpler since the Hamiltonian
is real and symmetric and the Schrodinger equation is self-adjoint. Hence, the norm of
the wave function is conserved and the equation is time-reversible. In the design of our
adaptive algorithm, we will exploit these properties to simplify the computations. In the
case of a dissociative state modeled by an absorbing layer, these properties are lost. How-
ever, we still know that the norm is decreasing for both the primal and the dual problem
(cf. [37, Sec. 2.2]). A combination of a temporal error control with perfectly matched lay-
ers can be found in [39]. To include absorbing boundaries in our adaptive finite element
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solver, damping layers for our adaptive Gauss-Lobatto finite elements would also be nec-
essary. Artificial boundary conditions for the solution of the TDSE in three dimension for
a finite-element discretization has for instance been considered in [29].

In the formulation of a posteriori error estimates, the adjoint or dual partial differen-
tial equation (PDE),

02 (e ) =H'x(x), x€RY, 0<t<ty <o,
X(x/tf) :4)(3(),

plays an important role. Here, ¢ € V with ||¢||, =1 is some given state at final time ¢.
The (normalized) final state can be chosen arbitrarily and defines the physical quantity
of interest for which the error estimate should be formulated and the adaptivity should
be optimized.

2.1)

2.1 Finite element discretization

The finite element approximation 7?7 of ¢ in a finite dimensional subspace V7* C V
solves

9 o i o
*Z TP L o HuwT P — in VTP
/()(go TR A Hy >dx 0, forallpin V', te(0,tf]. (2.2)

The subspace V7' C V is determined by the tessellation 7T, the element order p, and the
type of elements (see Section 2.2).

Let N be the dimension of the subspace V77 and let {¢y,---,pn} be the finite element
basis. The approximate solution can be written as a weighted sum of basis functions,
pTr = Zfilvz—’p ¢;. Eq. (2.2) can then be solved for 77 by considering the following
matrix equation,

MEVT"‘J =sv7?,
dt

with stiffness matrix element §;; = —% Jo (VeiaVei+¢;Ve;) dx and mass matrix ele-
ments M; ;= [, ¢ p;dx.

Note that the L, norm of two functions lp,:r’p = Z{il v,Z’p P € VTP k=12, corresponds
to the M norm of the coefficient vectors, i.e.,

TN TP qv— (TP Mol P Tp T =T,
/Q( 1 )1/’2 dy=(v;") Mvy™, V" p, Te VP,

2.2 Mass-lumped finite elements

We use an explicit solver for the time-propagation in order to avoid solving linear equa-
tion systems based on the discrete Hamiltonian in each time step (cf. Section 3.2). How-
ever, in the standard finite element formulation the presence of the mass matrix M that
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has off-diagonal entries makes it still necessary to solve a linear system. Therefore, we
construct our finite elements as Lagrange polynomials on the nodes of Gauss-Lobatto
quadrature and approximate the integrals in mass and stiffness matrix by Gauss-Lobatto
quadrature in these nodes. This way, the mass matrix becomes diagonal and can easily
be inverted (cf. [15]). In our experiments, we use Q4, Os, and Qg elements and show
that the use of high-order pays off in our application. This was expected since it is well-
known that high-order methods are efficient for the TDSE. These kind of finite elements
have also been applied to quantum scattering problems by Manolopoulos and Wyatt [44]
as well as Rescigno and McCurdy [49].

For this discretization, however, mass and stiffness matrix are not computed exactly
and the approximation order of the Gauss-Lobatto formula on the support points is 2p.
Nevertheless, the convergence order is not affected by the use of approximate quadra-
ture. This can be shown using the reasoning from Durufle, Grob, and Joly [17] for Carte-
sian meshes, which we use in our method. Let us denote the truncated (diagonal) mass
matrix by M and the truncated stiffness matrix by S and let a,b be two vectors con-
taining the weights of the FE approximant of a smooth function. Then, it holds that
a*Mb =a*Mb+O(h*) and a*Sb =a*Sb+O(h?~2), where h =maxgc7hx and hy is the
diameter of cell K. Note that we assume that there is a bound on the anisotropy of the
cells. These estimates can be shown by a modification of Proposition 3.2 in Durufle et al.
Considering that the error for a pth order FE approximation is of order hﬁ“, the error in
the FE matrices will only perturb the leading order term of our estimate for element order
three and less. Therefore, we will assume approximations with p >3 in the following and
dismiss the error term due to numerical integration for our error estimate which is a first
order estimate.

After semi-discretization in space, we have to propagate the following ODE system
in time,

M%%P =Sv7r, (2.3)

where we denote by ¢7? =y N, ﬁiT’p @; the solution that we get when approximating the
integrals. When computing an a posteriori error estimate, we have to keep in mind that
the Galerkin orthogonality does not hold for the lumped FE matrices (see Section 3.1
below).

2.3 Magnus-Lanczos/Arnoldi propagator

For a time-independent Hamiltonian operator the evolution operator U(tf,t) of system
(2.3) can be expressed as exp((tf—tg) A) with A —=M~1S. Since the matrix-matrix product
does not commute, the evolution operator is not as simple when A= A(t). However, the
Magnus expansion [13] provides a series expansion on sufficiently small time intervals
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[tn,tn41] of the form

U(tys1,tn) =exp(Q(ty,tyt1)), with

1

tn+1 tn+1 tn+1 (24)
Q(tn,tn+1):/t A(t)dt—E/t Ut A(s)ds,A(t)}dH—---,

where [B,C]=BC—CB is the commutator of two matrices B and C. In our simulations, we
use a second-order Magnus propagator which only includes the first term in (2.4). The
second term will be used for error estimation (cf. Section 3.2). The reason for choosing
a low-accuracy approximation is the fact that the terms in the Magnus expansion con-
tain an increasing number of commutators that are expensive to evaluate. All appearing
integrals are numerically evaluated using two-point Gauss quadrature. Note that a mid-
point rule would suffice to obtain a second order propagator. However, in our adaptive
algorithm we want the quadrature error to be negligible compared to the truncation error
in the Magnus series.

For a discretization of the TDSE based on a method-of-lines approach, evaluating
(2.4) means computing a matrix exponential. Since a direct computation would be too
expensive, we compute an approximation of U (t,41,t,)P(t,) using a Krylov subspace
method. For a symmetric Hamiltonian and a symmetric discretization, the (more effi-
cient) Lanczos algorithm [47] can be used, otherwise the Arnoldi method. Note that our
operator matrix M!S is not symmetric. However, we formulate the Lanczos algorithm
for the generalized eigenvalue problem AMv = Sv based on the M-norm. This is also the
natural norm for our problem, i.e., the norm in which we can formulate the conservation
properties. Since M is diagonal, the overhead for the norm computations is not severe.

Due to the truncation of the Magnus expansion and to the fact that the dimension
of the Krylov subspace is much smaller than the dimension of %77, we actually solve a
perturbed version of Eq. (2.3),

M%J P(£)=SuT P (#)+ MR (t), 25)

where Rr(t) denotes the perturbation due to numerical time-propagation (see Section 3.2
for a more detailed discussion). Let us assume that the discrete values are computed by
the Magnus-Arnoldi/Lanczos propagator on the temporal grid 0 =to,---,tn, = tf, and
denote by u7?(t,) the fully discrete solution. Finding an explicit expression for Rr(t) is
complicated in general. However, we will simplify the estimate in Section 3.2 using the
linearity of the TDSE.

3 A posteriori error estimate

In the first part of this section, we will derive an a posteriori estimate for a functional
(¢,-) of the error in the propagation of the Schrodinger equation (1.1) with a spatial finite
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element approximation and a Magnus-Lanczos/Arnoldi time discretization. Thereafter,
we will review a technique proposed in [37] to estimate the temporal error only. This will
be needed for the adaptive algorithm discussed in the subsequent section.

3.1 Estimate for the complete discretization

An approximation with standard finite elements satisfies the weak form of the TDSE, that
is, we have Galerkin orthogonality. The solution 177 therefore satisfies Eq. (2.2). In our
case, we do not compute the exact Galerkin projection since we approximate the integrals
according to Section 2.2. Nevertheless, we can show that the weak form of the TDSE is
satisfied up to a certain order.

Lemma 3.1. Let ¥ = Zﬁlu?’p (t)@i(x), where the weights u’ P satisfy the perturbed TDSE
(2.5). Then, the Galerkin orthogonality holds up to order 2p—2, i.e., for all ¢ € VTP we have

*2 — l * _ l *Y) * 2p—-2
/Qq) at‘I’dx— /Qtho aV¥dx /tho V‘I’dx—k/ﬂqo prdx+O(hP~7),

where pr(x,t) =N | Ry (t)@;(x) with Ry ; being the ith component of Ry, and h is the maxi-
mum diameter of all cells.

Proof. Since ¢ € V7'P, we can represent it as a linear combination of the basis vectors, i.e.,
¢=Y"N, w;¢;. Exploiting this, we find

/ng g‘{’dx—izj:/ﬂwlgoiauj pidx=w M—u’ .

As a next step, we want to use that u’? solves the truncated ODE (2.5). We further use
that (w)*Mu’? = (w)*Mu”?+O(h?") and (w)*Su”? = (w)*Su” P+ O(h*~2),

/Q P %‘I’dx = w*M%uT’p +O(h*) =w*Su” P +w* MRt +O(h?)
=w*Su” P+ w* MRt+O(h?72).
Finally, we reshape the formulation into functions again yielding
d i N
/Q P E‘I’dx =— /Q %Vgo*aV‘I’dx— /Q %go*V‘I’dx—F/Q @ ordx+O(h*2).
The proof is completed. O

With Lemma 3.1 we have the necessary relation at hand to prove the a posteriori error
estimate for the discretized TDSE. By the fundamental theorem of calculus it holds that

wer= [ (G + e ) at, R
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where yx is the solution of the adjoint Schrodinger equation (2.1). Let us split the dual
solution into its projection x| onto the finite element space and the part x| within the
orthogonal complement. For the orthogonal part x it holds

Theorem 3.1. Define the error e(x) = ¢(x,t;) =¥ (x,ts) at final time t;. Then, it holds for

peLa(Q),
K;/tf/Xi< H‘I’)dxdt

+ Z/ (ax ., [VY- V]]>BK\Bthdx+/ /X )or(t )dth]

KeT’0
+O(h2p 2)‘ (32)

By (-,-) we have denoted the Ly(QY) inner product and by [-] the jump over the face oK.

Proof. Firstly, we rewrite the first term in (3.1) by substituting the adjoint Schrodinger

equation for %—)t(. As a second step, we apply integration by parts to find the weak formu-
lation,

wer= [ (-5 + e ) a
—/tf/ ( (Vx*aVe+x*Ve)+x* aie> dxdt.

We use the definition of e=1—¥. Since the exact solution satisfies the weak Schrédinger
equation, it vanishes in the estimate. In order to be able to apply the approximate Galerkin
orthogonality for the numerical solution, we split the dual solution into x| and x . Using
Lemma 3.1, the contribution of x| vanishes up to order h?P=2 except for the perturbation
due to the temporal discretization, pr. Hence, we have

t
/f/ < vmav‘{fjumvw)jum;qf) dxdt
—/ /)(Wpdedt—F(’)(th’z).
0 Q

Since ¥ and %‘F are both in V7', the term fotf Jaxi at‘i’dxdt vanishes. We eventually
apply the full Hamiltonian to ¥. When using integration by parts once more, we have to
take care at the cell boundaries where the gradient of the FE solution is discontinuous.
Therefore, we have to consider each cell separately, yielding

t
/f/ (Vi aV¥+x: VY) dxdt_Z// ( >dxdt
KeT/K

ri
+ Z/ (ax L, [Vu-v])sx 00 dt.
KeT’0
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By finally taking into account that pr € V77, we can replace Ja X‘*‘PT dx by [,x*erdx.
O

3.2 Estimate for the temporal error

While the local error of numerical integrators can generally be approximated, a closed
expression for the global error at a certain time is more difficult to obtain. In order to

compute the temporal part of the error, i.e. the term fotf Jox* (t)pr(t)dt, we therefore use
the idea of [37] to apply a posteriori error estimation theory separately on the individual
time steps: The estimated error from the previous time step is treated as a perturbation of
the starting value and the perturbation due to numerical propagation is given by the local
remainder in each step. For the Magnus-Lanczos propagator, the first dismissed term of
the Magnus expansion is used to estimate the Magnus error and for the Lanczos error
we use the remainder term as proposed in [32,51]. Since the temporal error estimation
is formulated for individual time steps, we can also combine the temporal error estima-
tion with dynamic mesh refinement where the system of ordinary differential equations
resulting from semidiscretization changes after a number of time steps.

If we are only interested in estimating the time error, explicit computations of the dual
problem can be avoided by using

[ mroanax| < [T Ikl

At this point, we can use that the norm is conserved (for symmetric Hamiltonians) or
decreasing (for non-reflection boundary conditions) to remove the dual solution from
the estimate. This means the local perturbations simply add up to the global error. This
idea has been tested in [37] and will be employed in the adaptive algorithm proposed in
Section 4.

4 Adaptive solution of the TDSE

Theorem 3.1 suggests a means to control the global error with the help of the residuals
on cells and time intervals. Since we split time and space discretization, we are interested
in measuring the errors due to time propagation and spatial meshing separately. The
estimate (3.2) suggests that the term

ty
Eri= —/ / X' (Dpr(t)dxdt
0 @)

describes an error due to temporal approximation in our method-of-lines derivation. If
we replace the fully discrete solution ¥ by the (temporally) semidiscretized solution 7
in the remaining terms,

tf 1 tf 1
Hg:= / /Xj (%H‘I’) dxdt+ ) / %(a)(L,[[V‘I’-V]DaK\antdx,
KeT”/0 /K KeT’0



70 K. Kormann / Commun. Comput. Phys., 20 (2016), pp. 60-85

we have an estimate of the spatial error. Following [52], we assume that ¥ — 7 7 is small
and use Eg to estimate the spatial error.

In the following, we analyze this assumption to understand potential shortcomings
and the interplay of spatial and temporal tolerance. Let us split Zg into two parts

§i1=— L T/ X17 HIPTP KdH‘Z/ ﬂXL,[[VIPTp ]]>

KeT”’0

[1]

dt]
9K\0Q

A

L [ e BT 9
KeT”/0

+ Z / a)(l, 1/]7’?’—‘1’)-1/}] >

dt|.
&o K\

The first part gives a purely spatial error whereas the second one is a mixed spatial-
temporal error term. For the mesh adaption, we will compute cellwise contributions to
the total error. Hence, we want the first part of Eg as split in (4.1) to dominate the error
on each cell. This means taking the whole term Eg as an estimate for the spatial error is
most critical on cells where the solution is rather small.

Let us assume that we have computed the solution using the temporal error esti-
mation presented in Section 3.2 to a given error tolerance J;. Then, we know that any
functional of ¢7* —¥ is bounded by 4;. In particular, we have a bound on the pointwise
error. If we apply the Hamiltonian to a function from V77, the function values on cell K
are amplified on the order é at most. This can be seen from the Gershgorin circle theo-

(4.1)

rem for the largest eigenvalue of H discretized on the finite element space. So we get the

estimation
Ot 1

YT P(. 1) —¥(. <
[ (#7rCn-ven)| <eyvolR) L o
Furthermore, we have that x, € O(hﬁ“) due to the interpolation property of the finite
element (cf. e.g. [54, Ch. 1]). This gives the following estimate

L w (GG ) axar< [T ol

p+1
< c;l<—2v01(1<)5t. (4.2)
K

AT (1)

7 dt

K

The constant depends on the shape of i and x on K as well as the finite element order
(but not on hi). For the jump term, a corresponding estimate can be derived.

If we want to refine the mesh according to some error tolerance J;, we would want
the perturbation (4.2) of the spatial error estimate on cell K to be below J;-vol(K). Due

to the factor h,f_l the term is usually small enough when é; = ;. In practice, the relation
between the functional (that is x) and the solution plays a crucial role. In case x and ¥
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are related, x| — and hence also (4.2) — will be small on cells where the spatial error is
small. Recall that the term is only dominating when it is larger than the truly spatial part
of Zs. When deciding on the relation of é; and J;, we should therefore have in mind how
much the primal and dual solutions overlap.

The integrals in the estimate have to be discretized on the temporal mesh since we
know the solution in these points only. Also, the estimate (3.2) contains the exact solution
of the dual problem which is, of course, unknown. Becker and Rannacher [9, Sec. 5.1]
discuss different possibilities of estimating x, = x—x”” for a posteriori estimates. We
choose to solve the dual with a global high-order approximation on the same grid and
increased order of the finite elements (usually order p+-1). In order to compute the part
of the dual that is perpendicular to V77, we interpolate the solution in the space V7#+1
to V7P by injection. Note that this is not exact but for spatial dimensions larger than one
(where the number of nodes on the boundary increases with the element order) this gives
a good estimate.

4.1 Solving forward and backward

A major task when evaluating (3.2) is to find a memory and computing-time efficient
method to handle the fact that the dual problem is solved starting from t=t; whereas the
primal starts at t =0. A general strategy would be to use reversal schedules [55], i.e., to
save the primal solution at a number of checkpoints and to recompute it between those.
The strategy can also be applied recursively. This is both computational and memory
intense. An alternative is to use Holder’s inequality to split the inner products of the
residual and the dual solution in estimate (3.2). However, that procedure would strongly
overestimate the error. On the other hand, this rough estimate can be achieved memory
and CPU-time efficiently compared to reversal scheduling because we can precompute
the dual solution and only save the accumulated norms for each cell. Both these strategies
work in the general case. For the special case of a symmetric Hamiltonian, there is a
simple and efficient alternative. One can exploit that the TDSE is time-reversible: The
primal problem is solved forward in time without saving any intermediate information.
Then both problems are solved backward synchronously which regenerates the needed
information from the primal problem.

When solving numerically, we have to be careful not to accumulate errors when solv-
ing forward and backward. Concerning the spatial discretization, u”? is an exact solu-
tion to the problem restricted to V7? which is why the initial value (projected onto V77)
would be exactly recovered after the backward sweep (without discretization in time).
The Magnus expansion is time-reversible, too. This leaves us with the error of the Lanc-
zos algorithm and truncation errors (which are mostly negligible). Therefore, we use a
sharper tolerance for the Lanczos algorithm by a safety factor for the error estimation.

4.2 Adaptive mesh refinement

In this section, we present our mesh refinement strategy based on the a posteriori esti-
mate (3.2). Usually, we are not interested in a mesh that is adjusted after every single time
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step but only after a certain number of time steps since mesh refinement and coarsening
are associated with considerable computational costs. For bound states it might even be
reasonable to only use one mesh with high resolution in interesting regions but no dy-
namic adaption. Since the estimate involves a forward and a backward problem, we use
a (coarse) fixed mesh to evaluate the estimate.

After having computed an estimate of the error on each of the cells on the present
grid, we have to decide where to refine or coarsen. Becker and Rannacher [9, Sec. 5.2]
discuss different strategies. We choose an error-balancing strategy where the error on
each cell should be below the tolerance divided by the total number of cells. In order to
readjust the error estimate after a first sweep of grid refinement, we can assume that the
error is proportional to hP*1 (cf. [9, Rem. 3.1 and Prop. 3.1]).

Our solution strategy can be summarized as follows:

e Solve primal problem forward (with temporal error control).

e Solve backwards: Solve primal and dual problem together for each time step and
estimate the error Zg (separately for each interval with constant grid in the second
run).

e Adapt the grid:

— Refine where the size of the error in the cell exceeds the threshold divided by
the total number of cells.

— Coarsen where the size of the error in the cell is below the threshold divided
by the total number of cells and 27! times some safety factor.

- Update error accounting for the new element volumes using that the error is
proportional to #P*! and refine (and coarsen) once more in case the total error
is still larger than the threshold.

e Solve the primal problem on the refined grid with error control in time.

Remark 4.1. In [31], it was pointed out that the error constant in the truncated Magnus
expansion depends on the spatial mesh size. This problem does, however, only appear
if both the temporal and the spatial step size are reduced simultaneously. In our algo-
rithm, however, we only use temporal error control on a fixed spatial grid. Hence, the
dependence of the temporal error constant on the spatial mesh is insignificant in our case.

5 Implementation

In order to be able to solve problems of practical interest, an efficient and parallel imple-
mentation of the algorithm discussed in the previous section is essential. As mentioned
earlier, high-order methods are favorable to use for the solution of the TDSE. In a stan-
dard implementation of the finite element method based on sparse matrices, each degree
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of freedom (DoF) is coupled to all the other DoFs within the cell(s) it belongs to. There-
fore, the complexity per DoF for evaluating the Hamiltonian is O((p+1)%), where p+1
is the order of the derivative approximation and d is the dimension of the problem. For
higher order methods, this is considerably more expensive than finite difference stencils
with complexity O(d(p+1)). Moreover, the number of entries per row of the sparse ma-
trix is quite large and the memory consumption of the sparse matrix is the limiting factor.
In [41], an alternative matrix-free implementation that is based on a unit-cell stencil was
proposed. This implementation is much less memory consuming and its complexity is
of the same leading order as finite difference stencils. Still the rate constant can be larger
than in the finite difference case. On the other hand, the spectral elements are much more
flexible concerning variable coefficients and adaptivity. We base our implementation of
the adaptive TDSE solver on the implementation described in [38,41] using the finite ele-
ment library deal.II [5,6]. This implementation also provides routines for parallelizing
the matrix-vector product both for shared and distributed memory. Furthermore, explicit
vectorization is employed in order to best make use of arithmetic processing power. We
will shortly review the construction principle in the first paragraph of this section.

For an implementation of our solver, we also need to be able to handle constraints on
nodes that appear on faces where cells of different refinement level meet (see [7,50]). In
combination with Gauss-Lobatto elements, care has to be taken not to destroy the diago-
nality of the mass matrix. We will shortly explain the construction principle of constraints
and then how to retain a diagonal mass matrix in combination with constraints.

5.1 Matrix-free finite element operator

The idea for a memory-lean implementation of high-order finite elements is based on the
observation that one can split the finite element operator application into a sum of local
operations on the cells,

Neells
v=Au= ( Y c'pf AkPkC> u. (5.1)
k=1

The matrix Py is a very sparse matrix (exactly one nonzero entry per row) that describes
the local to global mapping of degrees of freedom on cell k and Ay is the matrix repre-
senting the finite element operation on cell k. Finally, C is the constraint matrix taking
care of hanging nodes that need to be constrained to maintain C° continuity if the mesh
is adaptively refined. The basic idea is not to form the matrix A explicitly, but to compute
Au by the three successive steps on each cell, k=1, -, 1t

e Extract element-local components of solution vector, 1 = PCu.
e Evaluate vy = Ajuy by an efficient quadrature approach without forming Ay.

e Add local contributions into global result vector, v < v+CT Pl ;.
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Figure 1: Example of a hanging node. DoF 5 has to be constrained along the dashed face.

Since the local evaluation has the same structure on all cells, we only have to store
a unit-cell shape function information once and the information on the cell size for each
of the elements. Moreover, one can exploit the tensor product structure of the Gauss-
Lobatto elements and apply the local operations dimensionwise to reduce the complexity.
For details on the efficient quadrature, we refer to [41].

5.2 Implementation of constraints

Fig. 1 shows a simple 2D example with hanging nodes for a linear element. The DoF with
index five only exists on cells D and E on the left hand side of the edge but not on cell
E. Since we want our solution to be continuous along the dashed face, we have to put a
constraint on DoF 5 that forces the FE interpolation along the whole face to be linear.

Let us denote by ¢x; the nodal linear basis function in node i € {0,---,10} and cell
X €{A,B,C,D,E}. Then, the function u locally on cell B is given by

u (x) =u1p1 (x) +u3<p33(x) —|—u4<p34(x) —I—u5<p35(x). (5.2)

Since DoF 5 is not present on cell E, we fix its value to us = %(u4+ug) in order to ensure
a linear function along the whole face in B and D. Taking this constraint into account, we
can express (5.2) as

u(x)=u1¢p1(x)+uszPps(x)+ <<pB4(x) +%¢B5(x)> +u8%<p35(x). (5.3)

Writing out the formulae, one can see that, restricted to the face connecting DoF 4 and
5, ppa(x)+ 3PBs(x) is the same as ¢4(x), and J¢ps(x) equals ¢ps. Hence, the finite el-
ement approximation is continuous across the dashed edge. For higher order elements
and higher dimensions the constraints become more complicated and involve a larger
number of DoFs but the construction principle is the same (see [7]).

5.3 On the diagonality of the mass matrix in the presence of constraints

When constructing the mass matrix, we use the structure (5.1). So in case there are con-
straints, we also have to apply them to the entries of the mass matrix. Hence, the mass



K. Kormann / Commun. Comput. Phys., 20 (2016), pp. 60-85 75

matrix becomes nondiagonal on indices for which the matrix C is different from the iden-
tity despite the use of inexact quadrature in conjunction with Gauss-Lobatto elements.

To illustrate this, let us again consider the problem from Fig. 1 and denote the length
of the large cell E by h. We use Gauss-Lobatto integration for linear elements (trapezoidal
rule) on the displayed nodes and follow the assembly formula (5.1) for the global mass
matrix. Consider the contribution of cell B on the rows and columns of global degrees of
freedom 4, 5, and 8. This results in the submatrix

1 3 0\,2/1 00\ /100
CT(P§MgPs)Cl,55=[0 0 0] (0 1 0| (4 0 }
5, . -] 16
011 000/\0 01
2 (60 | ”
IRCARERES '
4 4

Hence, the global mass matrix based on assembly formula (5.1) is not diagonal, despite
diagonal contributions from the cells.

However, the nondiagonality of the mass matrix is on the order of the error due to nu-
merical quadrature: Alternatively, we could cluster cells B and C and consider the basis
functions that we obtain after applying the constraints on the face with different refine-
ment levels on the two sides (cf. (5.3)). This means we have Lagrange polynomials on the
global degrees of freedom 1, 3, 4, 7, and 8. If we apply the Gauss-Lobatto quadrature rule
on these degrees of freedom, we get a diagonal mass matrix.

In practice, we still want to evaluate the finite element operator for one cell at a time
and avoid handling two cells together. Therefore, we use a modified assembly for the
diagonal of the mass matrix,

diag(M) =Y _C"P[diag(My).
k

In the example for the contribution from cell B into degrees of freedom 4, 5, and 8 con-
sidered above, this gives

1
0

1
K2 K2

T T 3
¢ <lelag(MB>)|4f5,8 16 (1) 16

Nl= O NI=
NI O NIw
~

1

i.e., the entries in the diagonal of the matrix correspond to the row-sum of entries in the
matrix in (5.4). Since constant functions are integrated exactly, this lumping technique
must give the same result as Gauss-Lobatto quadrature on the combined faces of cells B
and C with transformed basis functions. For higher order elements, the argumentation is
analogous.
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6 Numerical experiments

Firstly, we numerically analyze the spatial estimate on the sample problem of a harmonic
oscillator. Since we know the analytical solution in this case, we can verify and analyze
our numerical results. We also study dynamic mesh refinement for a 2D channel. Finally,
we show results for the example of the OCIO molecule which is a part of the ozone
cycle [53].

6.1 Study of the spatial estimate

The potential of the harmonic oscillator is given by V(x) = 3||x|| and the masses m; are
set to one. We choose the initial value

polx)= (n)ld/4e_0'5|x_x°|% (6.1)

with xp=(—1,---,—1). The inner product of the solution with a predefined state is an
important measurand in the chemical literature, the so-called cross-correlation. As an
example, we consider the error in the cross-correlation with the (artificial) state

d/4
p(x) = <9> e llB+03E 3 (62)

7T

Since we are interested in analyzing the quality of the spatial discretization, we compute
with a very strict tolerance in time so that we can neglect the temporal error in the com-
putations. Looking at the reliability of the estimated error in the cross-correlation, we use

the (reciprocal) effectivity index 77 := ‘ﬁ

being the ratio between estimated error and

real error. Thus, 7=1 means that the error estimate is perfect. The larger the factor # gets,
the more the error is overestimated, and the smaller # the more underestimated.

Error verification. We start with the one-state harmonic oscillator with known analyt-
ical solution. The simulation time is set to t; =1.77r and the cross-correlation is 0.292 in
2D.

The convergence rates collected in Table 1 show that we get a good overall conver-
gence of the method. For Q, elements, the theoretical rate of convergence is p+1. How-
ever, the results show some wiggling around the theoretical rates. Especially, the error
in the cross-correlation is not exactly predictable. This makes the error estimation and
the adaptation of the mesh more difficult. Nevertheless, the error is overestimated by at
most a factor 1.6 and underestimated by at most a factor 3.2.

Higher order pays off. To show that high order pays off for the solution of the time-
dependent Schrodinger equation, we compare the error for different elements after time
propagation over 1.77t time units for the harmonic oscillators with analytical solution.
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Table 1: Two-dimensional harmonic oscillator (example with analytical solution). Actual errors (both L, and
in cross-correlation), convergence rates as well as estimated errors are shown.

order | #cells | /¢ error | rate | error cross. | rate | est. error n
64 |179-1072| — | 1.94-1072 | — | 6.77-1073 | 0.35
Qq 256 | 1.78-1073 | 6.7 | 2.17-107* | 6.5 | 5.89-107°> | 0.27
1024 | 6.34-107° | 81 | 1.99-10=7 | 10 | 3.23-1077 | 1.63
64 | 2451072 — | 1.00:1073 | — | 1.09-1073 | 1.1
Qs 256 | 6.05-107°| 87 | 819-10°° | 69 | 2.52-10°° | 0.31
1024 | 298-1077 | 7.7 | 1.80-107° | 12 | 225-1077 | 1.2
64 | 351103 | — | 1.96-107% | — | 1.55-107* | 0.70
o) 256 | 3.64-107°| 9.9 | 891-107% | 11 | 6.43-10°8 | 0.72
1024 | 1.39-1078 | 8.0 | 3.62-10°1 | 11 | 2.12-10711 | 0.59

The value of the cross-correlation is 0.292 in 2D and 0.157 in 3D. We have done four
pairs of computations for Q3 and Q¢ elements with the same numbers of nodes on 84 /44,
244 /124, and 32 /16 cells. The errors are shown in Figs. 2(a) and 2(b) as a function of the
number of floating point operations per matrix-vector product in 2D and 3D, respectively.
The error for the sixth order element is up to two orders of magnitude lower than the
third order one for the same number of degrees of freedom. On the other hand, the
computational complexity is only increased by about 15% in 2D and 5% in 3D. Moreover,
we have done computations on the coarser meshes with Qs elements. The error for Qs
elements is smaller than for Q3 elements on a mesh that is one level finer in all cases
despite the lower computing costs. Moreover, higher arithmetic intensity can be achieved
with increasing order which gives additional speedup in practice.

-1

10 10
—¥— Q3 —¥— Q3
10” o— Qs 107 ——Q
——Q ——Q
=3 -3
§ 10 § 10
u)N . q’N N
- 10 - 10
10° 10°
10_6 5 6 7 10—6 7 8 9
10 10 10 10 10 10
floating point operations floating point operations
(a) 2D (b) 3D

Figure 2: Comparison of error per node for third, fifth and sixth order elements on a harmonic oscillator in two
and three dimensions. The L, error is plotted over the number of floating point operations per matrix-vector
product.
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Explicit time-dependence. We consider the example of two coupled harmonic oscilla-
tors with
V)= 1x|3 e 2105 065 (£ —0.5)
’ e 2(1=057 co5(+—0.5) Hxl3+1 ’

where a time-dependence is introduced to the potential. Since we do not know the ana-
lytical solution in this case, we compare against a solution computed with Q;y elements.
The simulation time is set to 0.77r and the value of the cross-correlation is —0.223 in 2D
and —0.200 in 3D. Table 2 shows the results for 2D and Table 3 for 3D. Again the observed
convergence rates are close to the theoretically predicted rates and the error estimate is
over- and underestimating at most by a factor six.

Table 2: Two coupled harmonic oscillators. 2D.

order | #cells | L, error | rate | errorcross. | rate | est. error n
64 |934-1072| — | 5121073 | — | 3.83-1073 | 0.75
Q4 256 | 1.63-107% | 5.8 | 5.04-107° | 6.7 | 1.76-107° | 0.35
1024 | 4.49-107°| 5.1 | 2.40-10°% | 11 | 1.44-1077 | 6.0
64 | 156-1072| — | 671-107% | — | 3.25.107% | 0.48
Os 256 | 1.99-107*| 6.3 | 1.65-107° | 8.7 | 9.51-10~7 | 0.58
1024 | 3.16-107° | 6.0 | 1.02:10=2 | 11 | 7.08-1071° | 0.69
64 |319-1073| — | 854-107° | — | 3.45-107° | 0.40
Qs 256 | 245-107°| 7.0 | 1.80-1078 | 12 | 1.58-1078 | 0.88
1024 | 2.05-1077 | 69 | 1.55-10°" | 10 | 1.07-10~1! | 0.69

Table 3: Two coupled harmonic oscillators. 3D.

order | #cells | L, error | rate | errorcross. | rate | est. error | #
512 | 1.14-107' | — | 1.77.107%2 | — | 9.86-1073 | 0.56
Qy 1728 | 9.43-1073 | 6.2 | 2.41-107% | 11 | 256-107% | 1.1
4096 | 2.00-1073 | 54 | 1.21-107% | 2.4 | 3.45-107> | 0.28
512 | 191-1072 | — | 1.75-1073 | — | 3.22-107% | 0.18
Qs 1728 | 1.45-1073 | 6.4 | 3.06-107> | 10 | 2.20-107° | 0.72
4096 | 2.43-107% | 62 | 427-107° | 6.8 | 1.73-107° | 0.41
512 | 3911073 | — | 218.107% | — | 9.25-107° | 0.42
Qs 1728 | 220-107*| 7.1 | 1.39-107¢ | 12 | 1.07-10°¢ | 0.77
4096 | 3.01-107° | 6.9 | 9.60-1078% | 9.3 | 2.31-1078 | 0.24

Efficiency of the adaptivity. In order to investigate how efficient the adaptivity based
on our error estimate works, we redo the experiment with the coupled harmonic oscilla-
tor. We solve the problem with Qg elements on a grid with 67 cells and use Q7 elements
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to estimate the error in the cross-correlation. Then, we refine the grid with a tolerance
of 107°. In two dimensions this gives an adaptive mesh with 54 cells and an error of
4.96-107° in the cross-correlation. For this adapted grid we hence get an error that is
about a factor 17 smaller compared to the equidistant grid with 64 cells (cf. Table 2).
A three dimensional simulation gives an adaptive mesh with 321 cells and an error of
1.98-107° in the cross-correlation, a factor 110 better than on a uniform mesh with 512
cells.

Discussion. Since the error estimate (4.1) gives an upper bound of the error, a (slight)
overestimation of the error should not be surprising. In our experiments, we often ob-
serve an underestimation instead. The reason for this is that we do not use the exact value
of the dual problem as it appears in the theoretical estimate but use an approximation on
the same grid with an FE approximation based on one order higher elements. Hence, we
get the projection of the error onto the subspace VP+/"\ VP which is only a part of the
error. An improvement can be achieved by choosing an even higher order space for the
approximation of the dual. However, this will increase the computational costs which is
usually not worthwhile.

6.2 Dynamic mesh refinement

We study the motion of a 2D wave packet in a channel defined by a harmonic-oscillator
potential in one of the dimensions, V (x1,x2) = %x% The solution at time ¢ is given by

(x1—1-2t)2 3

o 1/201 i —1/2 _ _22
P(x,t)=m =(1+it)" ' “exp < 2ot 5

+2i(xq —1—2t)—|—i§t> .

The simulation time is 4 and the mesh is dynamically adapted four times. We choose
Q¢ elements and a tolerance of 10~3. The error functional is defined by a state similar
to (6.2) but shifted to (7,0). Fig. 3 shows the four grids together with the real part of the
solution just after changing the grid. It can be seen that the adapted grid nicely follows
the solution that is traveling from the left to the right. One of the grids is not symmetric
about xp =0 which is an effect of the (non-symmetric) dual solution. The error in the

cross-correlation on the refined mesh is 6.0-10~% so the error estimation is both efficient
and effective.

6.3 Adaptivity for OCIO

In order to challenge our algorithm, we solve a practical problem with the method de-
scribed in Section 4.2. We consider a coupled system of the form

3(0)-( %)(5)
ot Py Va*,b Hy, Py ’
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Figure 3: Dynamic mesh.

describing matter-field interaction in the OCIO molecule. For the parameters that de-
scribe the Hamiltonian operator, we refer to [53]. For the initial value, 1,0 is a state as
defined in (6.1) with xp=(2.3,2.3,2.1)T and ¢}, y=0. The coupling term modeling the laser
pulse is

Vop(t) =103 exp <—O.5(t_a%)2> -cos(w(t—ty)),

where 0 =4.56 fs, tg="7.5 fs, and w=0.1179 fs~!. The simulation time is 10 fs.

For this example, we use Q7 elements for the primal solution and Qg elements for
the dual. For the initial error estimation, we use a mesh that consists of 24 x 24 x 12, that
is 6912, cells. Then, we estimate the error in the auto-correlation functional, i.e., in the
overlap of the solution at final time with the initial value, and adjust the mesh.

We work with a tolerance of 1073, After adjusting the mesh to the solution according
to the estimated error, we get a mesh with 31,433 cells and 11,231,828 nodes or about 45
million DoFs (accounting for real and imaginary part on two energy levels). In order to
check the quality of the estimate, we consider the error in the functional compared to a
simulation on the same mesh with Qg elements which is computed to be 4.7-107°. Con-
sidering the fact that the error on that mesh was estimated to be 3.5-10~° by extrapolation
from the coarse mesh, one can conclude that the estimation has worked quite well. Fig. 4
shows the mesh together with the absolute value of the error. On the first sight, this re-
sult might be surprising since the major part of the error is located in a region with quite
coarse mesh resolution. However, we have to bear in mind that we did not aim at re-
ducing the error itself but a functional of it. This functional is defined by the initial value
which is localized in the part of the mesh that is refined. Hence, the illustration shows
that the mesh refinement is indeed adapted to a specific functional. The simulation is not
only adaptive in the spatial coordinates but also in time. It performs 24,958 time steps
with 184,334 matrix-vector products and the wall time for the computation on eight cores
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Figure 4: OCIO simulation: Refined mesh with absolute value of the error.
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Figure 5: OCIO simulation: Adaptive choice of time step and size of Krylov subspace.

on a Intel Xeon E5520 (Nehalem-EP) system is about 38 hours. Fig. 5 shows how the time
step size and the dimension of the Krylov space are chosen. This temporal adaptivity is
governed by the oscillations in the time-dependent part of the Hamiltonian.
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7 Conclusions

We have derived an a posteriori error estimate for discretization of the time-dependent
Schrodinger equation with spectral elements in space and an exponential integrator in
time. Numerical simulations have shown that the error estimate is efficient. Based on
this estimate, we have explained how to design adaptive meshes that reduce the number
of degrees of freedom needed to solve the TDSE to a given accuracy. We have demon-
strated how this technique can be applied to the interaction of the three dimensional
OCIO molecule with a laser pulse. This large simulation was enabled by using an ef-
ficient and parallel implementation of the matrix-vector products and by exploiting the
time-reversibility of the equation.

The prototype implementation is based on the finite element library deal.Il which
can only handle problems in one to three dimensions. In order to be able to solve large-
scale application problems, it would be necessary to build the implementation on another
framework like the HAParaNDA code [27] that is tailored to high-dimensional problems.
Since global time steps are applied, relatively small time steps are enforced by the finest
level of the grid. Employing some local time stepping strategy is therefore expected to
improve the performance of our framework.
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