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Abstract. We devise an efficient algorithm for the symbolic calculation of irreducible
angular momentum and spin (LS) eigenspaces within the n-fold antisymmetrized ten-
sor product ∧nVu, where n is the number of electrons and u = s,p,d,··· denotes the
atomic subshell. This is an essential step for dimension reduction in configuration-
interaction (CI) methods applied to atomic many-electron quantum systems. The al-
gorithm relies on the observation that each Lz eigenstate with maximal eigenvalue is
also an L

2 eigenstate (equivalently for Sz and S
2), as well as the traversal of LS eigen-

states using the lowering operators L− and S−. Iterative application to the remaining
states in ∧nVu leads to an implicit simultaneous diagonalization. A detailed complex-
ity analysis for fixed n and increasing subshell number u yields run time O(u3n−2). A
symbolic computer algebra implementation is available online.

PACS: 31.15.-p, 03.65.Fd, 02.70.Wz
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1 Introduction

Since the inception of quantum mechanics, it is well-known that the (non-relativistic,
Born-Oppenheimer) Hamiltonian governing many-electron atoms leaves the simultane-
ous eigenspaces of the angular momentum, spin and parity (LS) operators

L
2, Lz, S

2, Sz, R̂ (1.1)

invariant. From a practical perspective, the restriction to symmetry subspaces can signif-
icantly reduce computational costs (see, e.g., Refs. [1–4]). In particular, such a restriction
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is an essential ingredient for configuration interaction (CI) approximation methods in
Refs. [5–7]. However, simultaneous diagonalization of the operators (1.1) on the full CI
space is encumbered by the inherent “curse of dimensionality”, which renders “naive”
O(dim3) approaches infeasible. The present paper outlines an efficient algorithm for
computing the symbolic eigenspaces by making use of representation theory and the al-
gebraic properties of the LS operators.

In (1.1), the total angular momentum operator is defined as L=∑
n
j=1 L(j) with n the

number of electrons and

L(j)= 1
i

xj×∇j (1.2)

the angular momentum operator acting on electron j. (We choose units such that h̄=1.) Lz

is the third component of L. In spherical polar coordinates, Lz(j)= 1
i

∂/∂ϕj. Analogously
for spin, S=∑

n
j=1 S(j) with Sα(j) for α= x,y,z the usual Pauli matrices

σx =
1

2

(

0 1
1 0

)

, σy=
1

2

(

0 −i

i 0

)

, σz =
1

2

(

1 0
0 −1

)

(1.3)

acting on electron j. The components of the angular and spin operators obey the well-
known commutator relations [Lα,Lβ] = iLγ and [Sα,Sβ] = iSγ with α,β,γ cyclic permu-
tations of x,y,z. The ladder operators are given by L±= Lx±iLy and S±= Sx±iSy. They
have the property that for any angular momentum eigenfunction ψmℓ with eigenvalue mℓ,
L±ψmℓ is zero or an eigenfunction with eigenvalue mℓ±1, and correspondingly for spin.
The parity operator acts on wavefunctions as R̂ψ(x1,s1,··· ,xn,sn) =ψ(−x1,s1,··· ,−xn,sn),
where xj∈R

3 and sj∈{− 1
2 , 1

2} are the position and spin coordinate of electron j.

The simultaneous diagonalization of the LS operators is greatly simplified by rep-
resentation theory using Clebsch-Gordan coefficients. Specifically, the required compu-
tational cost is reduced to the calculation of irreducible LS representation spaces (i.e.,
diagonalizing the operators (1.1)) on the n-fold antisymmetrized tensor product ∧nVu

(compare with Ref. [7, proposition 2]). Here, Vu denotes an angular momentum subshell,
u=s,p,d,f,··· in chemist’s notation. An explicit realization of Vu is

Vu =span{Yu,m↑,Yu,m↓}m=u,u−1,···,−u (1.4)

with the spherical harmonics Yu,m:

Ys,0=
1√
4π

,

Yp,1=− 1
2

√

3
2π sin(θ)eiϕ, Yp,0=

1
2

√

3
π cos(θ), Yp,−1=

1
2

√

3
2π sin(θ)e−iϕ

···

We identify the subshell label u with the corresponding quantum number, i.e., s,p,d,f,···↔
0,1,2,3,··· . In particular, dim(Vu) = 2(2u+1). Note that Yu,m ↑, Yu,m ↓ are simultaneous
single-particle Lz-Sz eigenstates. They serve as underlying ordered orbitals, which we
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denote abstractly as

(

s,s
)

for Vs,
(

p1,p1,p0,p0,p-1,p-1

)

for Vp,
(

d2,d2,d1,d1,··· ,d-2,d-2

)

for Vd,
(

f3,f3,f2,f2,··· ,f-3,f-3

)

for Vf,

···

The highest Lz quantum number appears first, and · equals spin down ↓, following the
convention in Ref. [5]. The elements of ∧nVu are then linear combinations of Slater deter-
minants built from these orbitals, for example 1√

2
|d2d1d-1〉− i√

2
|d1d0d0〉∈∧3Vd.

The simultaneous diagonalization may now be formalized as follows. For a given
n∈{1,2,··· ,dim(Vu)}, we need to decompose the n-particle space ∧nVu into irreducible
LS representation spaces Vu,n,i,

∧nVu=
⊕

i

Vu,n,i (1.5)

such that

L
2 ϕ= ℓi(ℓi+1)ϕ, L±ϕ∈Vu,n,i,

S
2 ϕ= si(si+1)ϕ, S±ϕ∈Vu,n,i for all ϕ∈Vu,n,i,

dim(Vu,n,i)=(2ℓi+1)(2si+1).

(1.6)

The proposed algorithm (see Section 2) performs the LS diagonalization implicitly,
relies on the sparse matrix structure of the lowering operators L−, S−, and makes use
of the algebraic structure of ∧nVu as illustrated in Fig. 1. We present explicit tables con-
taining decompositions of selected ∧nVu in Section 3. Given u, the number of electrons

maximizing dim(∧nVu)=(dim(Vu)
n ) equals n=2u+1 since dim(Vu)=2(2u+1). Due to this

exponential growth in u, solving Eq. (1.5) for all possible n restricts u to the s, p and d
subshells at present, and u= f for all n= 1,··· ,14 might still be attainable. On the other
hand, keeping n fixed means that dim(∧nVu)=O(un) asymptotically in u. For a given n
the algorithm has run time

Rn(u)=O
(

u3n−2
)

, (1.7)

as derived in Section 4.1. In particular, for n= 2, this equals O(dim(∧nVu)2) (instead of
O(dim(∧nVu)3) for the usual diagonalization of a dense matrix).

As an alternative scenario, consider the case that we are only interested in represen-
tation spaces Vu,n,i with ℓi and si equal (or close to) zero. As our analysis will show,
this opens up the possibility of explicitly diagonalizing (1.1) restricted to the “central”
simultaneous Lz-Sz eigenspace with eigenvalues (0,0) for n even and (0, 1

2) for n odd,
respectively. Due to symmetry, this eigenspace also has the highest dimension (denoted
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Figure 1: Algebraic decomposition of ∧3Vd into irreducible LS representation spaces Vd,3,i (see Eq. (1.5)). Each
of these spaces corresponds to a rectangle, matching the mℓ and ms quantum numbers running from ℓi,··· ,−ℓi

and si,··· ,−si, respectively. The (ℓi,si) quantum numbers are displayed in common chemist’s notation as 2s+1ℓ.
Superimposing all rectangles yields the multiplicities of the Lz-Sz eigenvalues in the table at the top.

du,n) among all simultaneous Lz-Sz eigenspaces within ∧nVu. In Section 4.2, we derive
the asymptotic result

du,n
∼=
√

3
dim(∧nVu)

πnu
=O

(

un−1
)

as u→∞, for fixed n. (1.8)

Thus, diagonalization restricted to this central eigenspace still requiresO(d3
u,n)=O(u3n−3)

operations.
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2 Algorithm

The reasoning and basic ingredients of our algorithm are as follows:

1. Observe that the canonical Slater determinant basis vectors of ∧nVu are precisely
the eigenvectors of both Lz and Sz acting on ∧nVu. For example, Lz |d2d1d-1〉=(2+
1−1)|d2d1d-1〉 and Sz |d2d1d-1〉=( 1

2− 1
2+

1
2 )|d2d1d-1〉. In particular, all simultaneous

Lz-Sz eigenvalues can easily be enumerated, including multiplicities.

2. Let ℓmax be the largest Lz eigenvalue on ∧nVu and WLz,max the corresponding
eigenspace, as well as ψ ∈WLz,max\{0}. Then ψ must also be an L

2 eigenvector
with eigenvalue ℓmax(ℓmax+1). This follows from the identity

L
2= Lz(Lz+1)+L−L+ (2.1)

and the fact that L+ is zero on WLz,max since ℓmax is – by definition – the largest Lz

eigenvalue. The same reasoning applies to Sz and S
2 restricted to WLz,max. Thus

we may assume that ψ is also a Sz-S2 eigenvector with eigenvalue s and s(s+1),
respectively.

3. Starting from ψ, we may span an irreducible LS representation space Vψ by re-
peatedly applying the lowering operators L− and S−. That is, Vψ := span{ψ,L−ψ,
S−ψ,L−S−ψ,···}.

4. We obtain all remaining irreducible representation spaces by iteratively applying
steps 2 and 3 to the orthogonal complement of Vψ in ∧nVu.

Algorithm 1 Quantum numbers of all irreducible subspaces in ∧nVu

1: Enumerate the simultaneous eigenvalues of Lz and Sz acting on ∧nVu, including mul-
tiplicities, and store them in a table denoted Tz. For example, figure 1 shows the
multiplicity table for ∧3Vd.

2: i←1
3: while Tz contains non-zero multiplicities do

4: Let ℓ := ℓmax be the greatest Lz eigenvalue in Tz with non-zero multiplicity, and let
s be a corresponding Sz eigenvalue which is maximal among all tuples (ℓmax,s) in
Tz.

5: Calculate the mℓ and ms quantum numbers corresponding to (ℓ,s), i.e., the tuples
(mℓ,ms) for all mℓ= ℓ,··· ,−ℓ and ms = s,··· ,−s. Decrement the multiplicity of each
(mℓ,ms) in Tz by one.

6: (ℓi,si)← (ℓ,s) (store the current quantum numbers), and increment i.
7: end while

Note that although the underlying Hilbert space is complex, all steps involve real-
valued matrix representations of the operators Lz,Sz,L±,S± only. Thus, the whole algo-
rithm can be implemented on the real numbers.
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The Lz-Sz quantum numbers (including multiplicities) are sufficient to calculate the
(ℓi,si) quantum numbers in Eq. (1.6), see Algorithm 1. Since each irreducible LS space
contains exactly one vector in the “central” simultaneous Lz-Sz eigenspace with eigenval-
ues (0,0) (n even) or (0, 1

2) (n odd) and multiplicity du,n, there are exactly du,n irreducible
LS spaces.

Algorithm 2 actually performs the simultaneous diagonalization. It requires the (ℓi,si)
tuples computed by Algorithm 1.

Algorithm 2 Simultaneous diagonalization of the operators (1.1) on ∧nVu, yielding the
decomposition (1.5)

Require: Irreducible representation space quantum numbers (ℓi,si) as computed by Al-
gorithm 1.

1: Partition the canonical Slater determinant basis of ∧nVu into simultaneous Lz-Sz

eigenspaces denoted Wmℓ,ms . That is, Wmℓ,ms is the eigenspace corresponding to eigen-
values mℓ and ms, respectively.

2: for i=1,2,··· do

3: Select a (normalized) ψi∈Wℓi ,si
and span the corresponding irreducible representa-

tion space Vu,n,i in (1.5) by repeatedly applying the lowering operators L− and S−.
That is,

Vu,n,i :=span
{

ψmℓ,ms

i

}

mℓ=ℓi,···,−ℓi,ms=si,···,−si
with

ψℓi,si
i :=ψi and

ψmℓ−1,ms

i := cℓi,mℓ
L−ψmℓ,ms

i ,

ψmℓ,ms−1
i := csi,msS−ψmℓ,ms

i

and the normalization factors cℓ,m :=(ℓ(ℓ+1)−m(m−1))−1/2.
4: Remove the vectors spanning Vu,n,i from any corresponding Lz-Sz eigenspace Wℓ j,s j

with ℓj≤ℓi and sj≤si. More precisely, update Wℓ j,s j
such that it contains the orthog-

onal complement of ψ
ℓ j,s j

i in Wℓ j,s j
.

5: end for

The basis vectors spanning the orthogonal complement in Wℓ j,s j
(line 4) are not unique.

This poses a practical problem for symbolic computer algebra implementations. Namely,
orthonormalizing these basis vectors can lead to a blow-up of nested squares, which is
particularly unfavorable since subsequently the lowering operators (line 3) are applied
to these vectors. To circumvent this difficulty, one can instead work with the unique pro-
jection matrix Pj acting on the basis vectors initially in Wℓ j,s j

. Then, in line 4, Pj is updated
such that it spans precisely the orthogonal complement:

Pj←Pj−
∣

∣ψ
ℓ j,s j

i

〉〈

ψ
ℓ j,s j

i

∣

∣. (2.2)

At the beginning, each Pj starts as identity matrix (on Wℓ j,s j
), and ends as zero matrix.
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3 Example decompositions

Explicit decompositions of ∧nVf for n = 1,2,3 are shown in Table 1. We have omitted
∧nVu, u=s,p,d since these are already published in [7]. The complete tables are available
online, including a Mathematica implementation of the algorithm [8] which makes use of
the FermiFab toolbox [9,10]. For conciseness, only states with maximal Lz and Sz quantum

Table 1: Irreducible LS eigenspace decompositions of ∧nVf for n= 1,2,3, see Eq. (1.5). For conciseness, the
table shows states with maximal Lz and Sz quantum numbers only.

config sym Lz Sz Ψ

∧1Vf
2Fo 3 1

2 |f3〉

∧2Vf
1I 6 0

∣

∣

∣
f3f3

〉

3H 5 1 |f3f2〉

1G 4 0 1√
11

(

−
√

3·
∣

∣

∣
f3f1

〉

+
√

3·
∣

∣

∣
f3f1

〉

+
√

5·
∣

∣

∣
f2f2

〉)

3F 3 1 1√
3

(

−|f3f0〉+
√

2·|f2f1〉
)

1D 2 0 1√
42

(√
5·
∣

∣

∣
f3f-1

〉

−
√

5·
∣

∣

∣
f3f-1

〉

−
√

10·
∣

∣

∣
f2f0

〉

+
√

10·
∣

∣

∣
f2f0

〉

+2
√

3·
∣

∣

∣
f1f1

〉)

3P 1 1 1√
14

(√
3·|f3f-2〉−

√
5·|f2f-1〉+

√
6·|f1f0〉

)

1S 0 0 1√
7

(

−
∣

∣

∣
f3f-3

〉

+
∣

∣

∣
f3f-3

〉

+
∣

∣

∣
f2f-2

〉

−
∣

∣

∣
f2f-2

〉

−
∣

∣

∣
f1f-1

〉

+
∣

∣

∣
f1f-1

〉

+
∣

∣

∣
f0f0

〉)

∧3Vf
2Ko 8 1

2

∣

∣

∣
f3f3f2

〉

2Jo 7 1
2

1
2
√

2

(√
3·
∣

∣

∣
f3f3f1

〉

+
√

5·
∣

∣

∣
f3f2f2

〉)

4Io 6 3
2 |f3f2f1〉

2Io 6 1
2

1√
21

(

3·
∣

∣

∣
f3f3f0

〉

−
√

2·
∣

∣

∣
f3f2f1

〉

−
√

2·
∣

∣

∣
f3f2f1

〉

+2
√

2·
∣

∣

∣
f3f2f1

〉)

2Ho 5 1
2

1√
6

(√
2·
∣

∣

∣
f3f3f-1

〉

−
∣

∣

∣
f3f2f0

〉

+
∣

∣

∣
f3f2f0

〉

+
√

2·
∣

∣

∣
f2f2f1

〉)

2Ho 5 1
2

1√
273

(

−
√

5·
∣

∣

∣
f3f3f-1

〉

−3
√

10·
∣

∣

∣
f3f2f0

〉

+2
√

10·
∣

∣

∣
f3f2f0

〉

+6
√

3·
∣

∣

∣
f3f1f1

〉

+
√

10·
∣

∣

∣
f3f2f0

〉

+2
√

5·
∣

∣

∣
f2f2f1

〉)

4Go 4 3
2

1√
11

(

−
√

5·|f3f2f-1〉+
√

6·|f3f1f0〉
)

2Go 4 1
2

1
7
√

5

(

5
√

3·
∣

∣

∣
f3f3f-2

〉

+
√

5·
∣

∣

∣
f3f2f-1

〉

−3
√

5·
∣

∣

∣
f3f2f-1

〉

−
√

6·
∣

∣

∣
f3f1f0

〉

+
√

6·
∣

∣

∣
f3f1f0

〉

+2
√

5·
∣

∣

∣
f3f2f-1

〉

+2
√

10·
∣

∣

∣
f2f2f0

〉

+4
√

3·
∣

∣

∣
f2f1f1

〉)
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Table 1: (cont’d) Irreducible LS eigenspace decompositions of ∧nVf for n=1,2,3, see Eq. (1.5). For conciseness,
the table shows states with maximal Lz and Sz quantum numbers only.

config sym Lz Sz Ψ

∧3Vf
2Go 4 1

2
1

7
√

429

(

−18
√

6·
∣

∣

∣
f3f3f-2

〉

+16
√

10·
∣

∣

∣
f3f2f-1

〉

+
√

10·
∣

∣

∣
f3f2f-1

〉

−32
√

3·
∣

∣

∣
f3f1f0

〉

−17
√

3·
∣

∣

∣
f3f1f0

〉

−17
√

10·
∣

∣

∣
f3f2f-1

〉

+49
√

3·
∣

∣

∣
f3f1f0

〉

+15
√

5·
∣

∣

∣
f2f2f0

〉

+15
√

6·
∣

∣

∣
f2f1f1

〉)

4Fo 3 3
2

1
2

(

|f3f2f-2〉−|f3f1f-1〉+
√

2·|f2f1f0〉
)

2Fo 3 1
2

1√
6

(
∣

∣

∣
f3f3f-3

〉

+
∣

∣

∣
f3f2f-2

〉

−
∣

∣

∣
f3f2f-2

〉

−
∣

∣

∣
f3f1f-1

〉

+
∣

∣

∣
f3f1f-1

〉

+
∣

∣

∣
f3f0f0

〉)

2Fo 3 1
2

1
2
√

33

(

7·
∣

∣

∣
f3f3f-3

〉

−3·
∣

∣

∣
f3f2f-2

〉

−2·
∣

∣

∣
f3f2f-2

〉

+3·
∣

∣

∣
f3f1f-1

〉

−
∣

∣

∣
f3f1f-1

〉

−2·
∣

∣

∣
f3f0f0

〉

+5·
∣

∣

∣
f3f2f-2

〉

−2·
∣

∣

∣
f3f1f-1

〉

+
√

15·
∣

∣

∣
f2f2f-1

〉

−
√

2·
∣

∣

∣
f2f1f0

〉

−
√

2·
∣

∣

∣
f2f1f0

〉

+2
√

2·
∣

∣

∣
f2f1f0

〉)

4Do 2 3
2

1√
21

(√
10·|f3f2f-3〉−

√
6·|f3f1f-2〉+

√
5·|f3f0f-1〉

)

2Do 2 1
2

1
2
√

42

(

2
√

5·
∣

∣

∣
f3f2f-3

〉

−
√

5·
∣

∣

∣
f3f2f-3

〉

−2
√

3·
∣

∣

∣
f3f1f-2

〉

−
√

3·
∣

∣

∣
f3f1f-2

〉

+
√

10·
∣

∣

∣
f3f0f-1

〉

+
√

10·
∣

∣

∣
f3f0f-1

〉

−
√

5·
∣

∣

∣
f3f2f-3

〉

+3
√

3·
∣

∣

∣
f3f1f-2

〉

−2
√

10·
∣

∣

∣
f3f0f-1

〉

+2
√

5·
∣

∣

∣
f2f2f-2

〉

−
√

5·
∣

∣

∣
f2f1f-1

〉

+
√

5·
∣

∣

∣
f2f1f-1

〉

+
√

6·
∣

∣

∣
f1f1f0

〉)

2Do 2 1
2

1
6
√

154

(

−14
√

5·
∣

∣

∣
f3f2f-3

〉

+7
√

5·
∣

∣

∣
f3f2f-3

〉

+14
√

3·
∣

∣

∣
f3f1f-2

〉

−13
√

3·
∣

∣

∣
f3f1f-2

〉

−
√

10·
∣

∣

∣
f3f0f-1

〉

+5
√

10·
∣

∣

∣
f3f0f-1

〉

+7
√

5·
∣

∣

∣
f3f2f-3

〉

−
√

3·
∣

∣

∣
f3f1f-2

〉

−4
√

10·
∣

∣

∣
f3f0f-1

〉

+6
√

5·
∣

∣

∣
f2f2f-2

〉

−12
√

5·
∣

∣

∣
f2f1f-1

〉

+3
√

5·
∣
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numbers are displayed; applying the lowering operators L− and S− yields the remaining
wavefunctions. Note that in general, symmetry levels can appear more than once within
a many-particle subshell, e.g., 2Go in ∧3Vf. Thus, the tables are only unique up to (or-
thogonal) base changes of the states within the same symmetry level. The run time on a
commodity laptop computer to calculate the symbolic eigenspaces is approximately 16
seconds for u= f and n=3, and 550 seconds for u= f and n=4.

4 Complexity analysis

This section contains a derivation of Eqs. (1.7) and (1.8) in the limit of fixed electron
number n and u→∞.

We first investigate the multiplicity distribution of the simultaneous Lz-Sz eigenval-
ues, as illustrated in Fig. 2. In the following, T(mℓ,ms) denotes the multiplicity of the
simultaneous Lz-Sz eigenspace with eigenvalues (mℓ,ms) on ∧nVu. We write [·] for the
nearest integer function. Furthermore, fIH,n and fbin,n,p denote the probability density
functions of the standard Irwin-Hall distribution [11, 12] (sum of n i.i.d. U(0,1) random
variables) and the binomial distribution with parameters (n,p), respectively.

-20
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20

ml
-2

0

2
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0

200

400

600

800

Figure 2: Histogram plot of the Lz-Sz eigenvalue multiplicities of ∧4V8. This is equivalent to the table in Fig. 1
but for u= 8 and n= 4. The probability density function approaches a normal distribution as a result of the
central limit theorem for large n; compare with Proposition 4.1.

Proposition 4.1. Given a fixed integer n≥1, define

tu,n(xℓ,ms) :=
uT([uxℓ],ms)

dim(∧nVu)
, xℓ∈ [−n,n], ms∈{n/2,··· ,−n/2}. (4.1)
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Then for each ms,

lim
u→∞

tu,n(xℓ,ms)= fLz(xℓ) fSz(ms) (4.2)

uniformly in xℓ with

fLz(xℓ) :=
1

2
fIH,n

( xℓ
2
+

n

2

)

, fSz
(ms) := fbin,n, 1

2

(

ms+
n

2

)

. (4.3)

In particular, fLz and fSz have zero mean and variances σ2
ℓ
=n/3 and σ2

s =n/4, respectively.

The factor u in the definition of tu,n ensures normalization in the sense that

∑
ms

∫

[−n,n]
tu,n(xℓ,ms)dxℓ=dim(∧nVu)

−1
∑
ms

∫

[−nu,nu]
T([mℓ],ms)dmℓ

∼=dim(∧nVu)
−1

∑
mℓ,ms

T(mℓ,ms)=1. (4.4)

Proof. First label the basis vectors (“spherical harmonics”) spanning Vu abstractly as

Yu :={u↑,u↓,··· ,(−u)↑,(−u)↓}. (4.5)

Now let ψ= |ϕ1,··· ,ϕn〉 ∈∧nVu be a uniformly random Slater determinant, with ϕi ∈Yu

pairwise different. In other words, ψ randomly selects n distinct elements from Yu. As
already shown in the beginning of Section 2, ψ is a simultaneous Lz-Sz eigenvector. To
estimate the distribution (eigLz

(ψ),eigSz
(ψ)), note that Lz and Sz just sum up the corre-

sponding terms in ψ. Thus, for example,

eigLz
(|2↑,1↓,−1↑〉)=2+1−1=2, (4.6)

eigSz
(|2↑,1↓,−1↑〉)= 1

2− 1
2+

1
2 =

1
2 . (4.7)

Observe that the error incurred by ignoring the exclusion principle goes to zero as u→∞

due to n≪ u. That is, we may replace ψ by ψ̃ := ϕ̃1⊗···⊗ ϕ̃n ∈
⊗nVu with ϕ̃i ∈Yu i.i.d.

(independent and identically distributed). Then eigLz
(ψ̃) and eigSz

(ψ̃) are independent

as well and can be handled separately. The distribution fSz stems directly from eigSz
(ψ̃)=

∑ieigSz
(ϕ̃i). Considering eigLz

(ψ̃), first note that the discretization error

∣

∣

∣

∣

fLz(xℓ)− fLz

(

[uxℓ]

u

)∣

∣

∣

∣

→0 (4.8)

as u→∞ since fLz is uniformly continuous. Thus, the distribution of 1
u eigLz

(ϕ̃i) ap-

proaches U(−1,1), and consequently, 1
u eigLz

(ψ̃)=∑i
1
u eigLz

(ϕ̃i)∼ fLz .
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4.1 Run time

This subsection is concerned with the asymptotic run time of the main algorithm, as
already stated in the introduction.

Proposition 4.2. For any fixed integer n≥1, the run time Rn(u) of Algorithm 2 obeys

Rn(u)=O
(

u3n−2
)

(4.9)

as u→∞.

Proof. Due to the sparse matrix structure of the lowering operators L− and S−, each ma-
trix multiplication in line 3 of the algorithm has linear (instead of quadratic) cost. Thus,
the main computational cost stems from line 4. Denote the tuples (ℓi,si) after deleting
duplicates by (ℓ′k,s′k). For each simultaneous Lz-Sz eigenspace Wℓ′k,s′k

with dimension

dk :=dim(Wℓ′k,s′k
), the algorithm calculates dk orthogonal complements within Wℓ′k,s′k

, each

of which takes O(d2
k) operations. So in total, Rn(u) =O(∑k d3

k). Combining this result
with (4.2) yields the following upper bound,

Rn(u).
1

4
dim(∧nVu)

3
∫

[−nu,nu]
u−3 fLz(mℓ/u)3dmℓ∑

ms

fSz
(ms)

3

=
1

4
dim(∧nVu)

3u−2
∫

R

fIH,n(xℓ)
3dxℓ

n

∑
xs=0

fbin,n, 1
2
(xs)

3

=O
(

u3n−2
)

. (4.10)

The factor 1
4 stems from the observation that for each k, neither Wℓ′k,−s′k

, W−ℓ′k,s′k
nor W−ℓ′k,−s′k

contribute to the cost. The second line follows from a change of variables, and the third
from noting that the integral and sum in the second line do not depend on u.

Taking one step further, we can now investigate the dependency of Rn(u) on n in
more detail and evaluate the terms in the second line of (4.10). We obtain the following:

Lemma 4.1. Assume that n is large enough such that fLz and fSz can be well approximated by
Gaussian normal distributions with mean 0 and variances σℓ and σs from Proposition 4.1. Then

Rn(u).
dim(∧nVu)

3

48π2 u2 σ2
ℓ

σ2
s

=
dim(∧nVu)

3

(2πnu)2
. (4.11)

4.2 Dimension of the central Lz-Sz eigenspace

Let du,n label the maximum dimension of any simultaneous Lz-Sz eigenspace on ∧nVu,
which is attained by the “central” eigenspace with eigenvalues (mℓ,ms) = (0,0) for n
even and (0, 1

2) for n odd, respectively. Thus, du,n can be approximated by evaluat-
ing the right side of Eq. (4.2) at these eigenvalues. A comparison with the exact du,n
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Figure 3: Log-log plot of du,n versus u for various n. Dots are exact values, and lines show the right side of

Eq. (4.2) evaluated at (mℓ,ms)=(0,0) for n even and (0, 1
2 ) for n odd, respectively.

is shown in Fig. 3, which nicely illustrates the polynomial scaling in u. As a remark,
fIH,n(

n
2 )=

2
π

∫ ∞

0 sinc(x)n dx due to the convolution theorem applied to the uniform prob-
ability density function on the interval [−1/2,1/2].

To derive Eq. (1.8), we follow the same procedure as above and replace fLz and fSz by
Gaussian normal distributions. We then set ms = 0 both for n even and n odd since 1

2 is
small compared to n. Plugging in (mℓ,ms)=(0,0) yields

Lemma 4.2. Assume that n is large enough such that fLz and fSz can well be approximated by
Gaussian normal distributions. Then

du,n
∼= dim(∧nVu)

2πuσℓσs
=
√

3
dim(∧nVu)

πnu
. (4.12)

5 Conclusions

The main principle of the algorithm is the implicit simultaneous diagonalization of the
many-particle angular momentum, spin and parity operators by algebraic traversal of
the Lz-Sz eigenstates in the correct order. This involves O(u3n−2) operations for angular
subshell u filled with n electrons. When taking any admissible n into account, subshells
up to u=d are feasible at present, and u=f for all n=1,··· ,14 might still be attainable. No-
tably, the electronic ground state configurations found in the periodic table are precisely
constructed from the atomic s, p, d, f subshells.
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