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Abstract. A front tracking method combined with the real ghost fluid method (RGFM)
is proposed for simulations of fluid interfaces in two-dimensional compressible flows.
In this paper the Riemann problem is constructed along the normal direction of inter-
face and the corresponding Riemann solutions are used to track fluid interfaces. The
interface boundary conditions are defined by the RGFM, and the fluid interfaces are
explicitly tracked by several connected marker points. The Riemann solutions are also
used directly to update the flow states on both sides of the interface in the RGFM.
In order to validate the accuracy and capacity of the new method, extensive numer-
ical tests including the bubble advection, the Sod tube, the shock-bubble interaction,
the Richtmyer-Meshkov instability and the gas-water interface, are simulated by using
the Euler equations. The computational results are also compared with earlier compu-
tational studies and it shows good agreements including the compressible gas-water
system with large density differences.
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1 Introduction

The dynamics of multimedium flow has become a research hotspot nowadays for its sig-
nificant applications in many engineering fields. The investigation of the multimedium
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flow behaviors in the micro- and nanochannels [25], for example, can be applied to col-
loidal and interfacial systems, such as bioassays, microreactors, emulsification and en-
capsulation, etc.

As for the computation of multimedium flows, a relatively dominant part is the treat-
ment of moving material interface and its vicinity. Among the numerical simulations
used to compute the contact discontinuities based on Euler framework, two basic ap-
proaches may be distinguished. One is the shock capturing method and the other is the
front tracking method. Early algorithms have treated the material interfaces with the γ-
based model [14], the mass fraction model [1, 15], the volume of fluid [2] or a level set
function [19, 21]. These algorithms, based on shock capturing methods, always yield a
numerical diffusion of contact discontinuities over several nodes. However, for the front
tracking method [8–10], fluid interfaces are explicitly tracked by connected marker points
and a sharp interface boundary is maintained during the computation. In this method, a
Riemann problem is constructed near the fluid interfaces to handle the sharp jump across
the interface. Similar idea based on Riemann solutions can also be found in the study of
Cocchi et al. [5]. In their algorithm, a Riemann problem is solved at material interfaces in
the corrector step and the Riemann solutions are used to correct the results from the pre-
dictor step which generally generates spurious oscillations or numerical diffusion. The
method proposed by Tryggvason et al. [28] is in fact a hybrid between front capturing
and front tracking since a stationary regular grid is used for fluid flow and the interface
is tracked by a separate grid of lower dimension.

The basic ideas of ghost nodes have more recently been used in the ghost fluid method
(GFM) introduced by Fedkiw et al. [4, 6, 7]. In the GFM, the discontinuous physical vari-
ables, such as entropy, are extrapolated across the interface which can efficiently prevent
pressure oscillations and reduce smearing of discontinuous variables. The GFM is ro-
bust and can easily handle fluids with different material properties. However, when the
pressure or the velocity experiences a large gradient across the interface, the GFM cannot
work well. Indeed, the ghost fluid states should consider the influence of both wave in-
teraction and material properties on the interfacial evolution. This leads to the proposal
of improved versions of GFM, for example, the modified ghost fluid method (MGFM)
and the real ghost fluid method (RGFM). In the MGFM, Riemann problem is defined and
solved approximately to predict interface states [17, 18]. The predicted interfacial states
are then used to define the ghost fluid states. The RGFM described in [30] further predicts
the flow states for the real fluid nodes just next to the interface because wave interaction
at the interface can propagate upward and downward simultaneously. The RGFM en-
ables a better imposition of interface boundary conditions and less conservative errors,
especially for those critical problems of shock impendence matching.

The purpose of this paper is to simulate the multimedium flows in a more accurate
and simple way. As is well known, the way to track the interface and define the interface
boundary conditions plays the critical role in the numerical simulations. With legitimate
concerns over these factors, we combine a front tracking method with RGFM (RGFM-
FT) in this paper. Unlike the front tracking method in [29] where the marker points are
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moved with fluid velocities interpolated from fixed grid, here we propose the method
based on the Riemann problem constructed near the interface to determine the motion of
interface. In addition, the new method is easy in implementation where the flow states
updating in the RGFM [30] are all done by the Riemann solutions obtained at the marker
point. The organization of this paper is as follows: in Section 2 and Section 3, we give
the algorithms of advancing the material interface procedure in detail and describe the
implementation in RGFM with the Riemann solutions. Extensive numerical examples
for simulating the multimedium flow problems are presented in Section 4 to verify the
effectiveness of these procedures. Concluding remarks are then given in Section 5.

2 Governing equations

The governing equations are the two-dimensional compressible Euler equations written
in Cartesian coordinate:

∂~U

∂t
+∇·~F(~U)=0, (2.1)

where ~U=[ρ,ρu,ρv,E]T , ~F(~U) = [~F1(~U),~F2(~U)], ~F1(~U)= [ρu,ρu2+p,ρuv,(E+p)u]T ,
~F2(~U)= [ρv,ρuv,ρv2+p,(E+p)v]T . Here ρ is the density, u and v are the velocities, p is
the pressure, E is the total energy per unit volume. The total energy is given as:

E=ρe+ρ(u2+v2)/2, (2.2)

where e is the internal energy per unit mass.
For closure of the system, the equation of state (EOS) is required. The EOS for gas or

liquid medium can be written uniformly as:

p=(γ−1)ρe−γB, (2.3)

where γ and B are treated as fluid constants, and will be specified in Section 4.

3 Numerical procedures

3.1 Solving the compressible Euler equations

The motion of the fluid interfaces and the determination of Euler equations are treated
separately. For solving the compressible Euler equations, the spatial discretization is
treated by the fifth-order weighted essentially non-oscillatory with Lax-Friedrichs flux
scheme (WENO-LF) [13]. The time integration is solved by a third-order TVD Runge-
Kutta scheme [24] and the time step ∆t which should satisfy the CFL condition is:

∆t=min
(i,j)

{

CFL

((|u|+a)/∆x+(|v|+a)/∆y)

}

, (3.1)

where ∆x and ∆y are the grid spacing, a is the sound speed and (i,j) represents all the
grid points in the flow field.
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3.2 Tracking fluid interfaces

As indicated in Fig. 1, the medium 1 and the medium 2 are separated by the fluid interface
at time tn. The marker points are the intersections of the interface and the grid lines. ~N is
the normal vector and ~T is the tangential vector, respectively. The orientation of normal
vector ~N is from the medium 1 to the medium 2. Point A and point B are in different
mediums, obtained by the distance △n from the marker point P. Here:

△n=

[

( Nx

△x

)2
+
( Ny

△y

)2
]− 1

2

, (3.2)

where Nx and Ny are the components of unit normal vector at the marker point P. Point
A and point B are all in the normal direction of the marker point P. Here, the density, the
normal velocity and the pressure at point A and point B are denoted by the statevectors:
~WA =[ρA,uA

N,pA]T and ~WB =[ρB,uB
N,pB]T, which can be obtained by the inverse distance

weighting interpolation from the fixed grids in the same medium nearby:

ψ=
( m

∑
i=1

ψi

ri

)/( m

∑
i=1

1

ri

)

, (3.3)

where ψi is the density, the normal velocity or the pressure and ri is the distance. The
inverse distance weighting interpolation has no special requirements for the number of
interpolation points, and therefore it is very suitable for this problem. The Riemann prob-

lem can be constructed if ~WA and ~WB are taken as the initial conditions and an approxi-
mate Riemann problem solver (ARPS) based on a two shock structure can be applied to
obtain the Riemann solutions [16]. As the tangential velocity of the marker point P is not
determined accurately from the Riemann problem, the method in [5] is used. Suppose
that the tangential velocity is equal to the velocity of one of the two mediums at time tn.

Interface

Medium 1

Medium 2

A
P

B

N
T

Figure 1: Construction of the Riemann problem at the marker point.
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The choice of the tangential velocity depends on the sign of the normal velocity of the
marker point P and is defined as:

vI
T =

{

vB
T , uI

N ≥0,

vA
T , uI

N <0,
(3.4)

where uI
N and vI

T are the normal and tangential velocities of the marker point P, vA
T and

vB
T are the tangential velocities of point A and point B.

Once the velocity of each marker point has been solved, its new position is updated si-
multaneously with the compressible flow equations by the same time integration scheme:

~x
(1)
f =~xn

f +∆t·~v f (~x
n
f ), (3.5a)

~x
(2)
f =

3

4
~xn

f +
1

4
~x
(1)
f +

1

4
∆t·~v f (~x

(1)
f ), (3.5b)

~xn+1
f =

1

3
~xn

f +
2

3
~x
(2)
f +

2

3
∆t·~v f (~x

(2)
f ), (3.5c)

where ~xn
f and ~xn+1

f are the positions of the interface at time tn and tn+1, respectively. ~v f is

the interface velocity and ∆t is the time step in (3.1).

Here we briefly illustrate the process of interface reconstruction at time tn+1. As
shown in Fig. 2, points P1, P2 and P3 are three marker points at time tn and are moved
to points M1, M2 and M3 according to (3.5) respectively. Connect points M1, M2 and
M3 by the piecewise linear curves, which generates the intersections Q1, Q2 and Q3 with
the grid lines. Now points Q1, Q2 and Q3 are the new marker points at time tn+1 and
the interface is represented by connecting these new marker points. More details about
interface reconstruction can be found in [9].

P1

P2

P3

M1

M2

M3

t n

(a)

P1

P2

P3

Q1 Q2

Q3

t n

t
n+1

(b)

Figure 2: Interface reconstruction at time tn+1.
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3.3 Determining the ghost fluid region

Since we solve the Euler equations in each fluid domain independently, it is required that
we be able to identify fluid domain which the fixed grid points may fall within near the
interface. In this paper we adopt the idea of indicator function which was originally used
for evaluating one-field material properties in the front tracking implementation [28,29].

The front marks the jump in the indicator function and this jump is translated into a
steep gradient on the fixed grid. The indicator function I(~x), which is based on a Heavi-
side function and designed to be 1 if the grid position ~x is in one medium and −1 in the
other medium at each side at time tn, is defined as:

I(~x)=1−2H(~x), (3.6)

where H(~x) is the Heaviside function. If we calculate the gradient we find:

∇I(~x)=−2∇H(~x)=−2
∫

∆H(~x)~nδ(~x−~x f )ds, (3.7)

here, ∆H(~x) should be 1.0. Upon taking the divergence of (3.7)) and replacing the δ
distribution with a smooth approximation, we have the following Poisson equation in
the discrete version for the fixed grid:

(∇2 I(~x))i,j=−2∇·(∇H(~x))i,j=−2∇·
(

∑
l

ωl
i,j~nl∆sl

)

, (3.8)

where i and j identify the nodes on the fixed grid, l is the index for the marker elements
of the interface, ~nl is the unit normal vector of element l, ∆sl is the length of element l
and ωl

i,j is the weight of grid point (i, j) with respect to element l which should satisfy:

∑
l

ωl
i,j=1. (3.9)

Since the weights have a finite support, there are a relatively small number of elements
that can be used. For propagating from the geometric center of the element l which is
denoted as ~xp=(xp,yp), the weight for the grid point (i, j) is given by:

ωi,j(~xp)=d(xp−ih)d(yp− jh), (3.10)

here, h is the grid spacing and d(r) is taken as [22]:

d(r)=

{

(1/2ξh)[1+cos(πr/ξh)], |r|< ξh,

0, |r|> ξh.
(3.11)

The Poisson equation (3.8) is solved by iterating only on a few grid points near the inter-
face for a rapid convergence. The numerical solution of Poisson equation gives a contin-
uous indicator function increasing smoothly from −1 to 1 over a distance of the order ξh
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from the actual interface. In this paper, the parameter ξ is taken as 4. The use of this rela-
tively large value of ξ increases the smoothing of the front and this smoothing permits an
accurate localization of the grid points in their appropriate phase [11]. The unit surface
normal vector ~Ng on the fixed grid cells can be determined immediately by the indicator
function:

~Ng =∇I/|∇I|. (3.12)

3.4 RGFM

In the RGFM [30], a Riemann problem is defined at the interface to update the flow states
at the real grid cells next to the interface and the ghost fluid states are obtained by solving
an advection equation. However, since the Riemann problem has been constructed when
tracking the fluid interface in this paper, the Riemann solutions can be used directly. As
indicated in Fig. 3, the medium 1 and the medium 2 are separated by the interface and
points R, P, Q are three marker points. ~NP is the normal vector of the marker point P and
~NA is the surface normal vector of the grid cell A, respectively. The flow states at the grid
cell A can be updated by the marker points nearby. The marker point P is selected if the
angle between ~NP and ~NA is the minimum compared with the other marker points. If
the Riemann solutions at marker point P are denoted as [ρI

L,ρI
R,uI

N,pI ]T, then the density,
the normal velocity and the pressure at the grid cell A can be updated by ρI

L, uI
N , pI

respectively while the tangential velocity at the grid cell A remains unchanged. It is
similar to update the flow states in other real grid cells adjacent to the interface.

In order to extrapolate the updated flow states into the ghost fluid region, the follow-
ing advection equation is used:

∂φ

∂t
±~Ng·∇φ=0, (3.13)

where φ represents the density, the normal velocity, the tangential velocity and the pres-
sure in the ghost fluid region, ~Ng is the unit surface normal vector on the fixed grid cells
(see (3.12)). As indicated in Fig. 3, the + sign is used in (3.13) if the interface boundary
conditions of medium 1 are to determine and the − sign is used in (3.13) if the interface

Interface

Medium 1
Medium 2R

P

Q

A

NPNA

Figure 3: Updating the grid cells adjacent to the interface by the Riemann solutions.
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boundary conditions of medium 2 are to determine. This advection equation is solved
by iterating in fictitious time τ at each time step. The fictitious time step is chosen to be a
little smaller than the one for the solution of the governing equations. To be time-saving
throughout the computations, we only take 5-7 grid cells across the interface as the ghost
fluid region. Once the advection equation has been solved in the ghost fluid region, the
interface boundary conditions can be obtained.

3.5 Summary of the solution procedures

Here we briefly summarize the implementation procedures for the RGFM-FT method
assuming that the flow states at time tn have been obtained:

1. Generate the ghost fluid region and calculate the unit surface normal vector for the
fixed grid cells.

2. Construct the Riemann problem to obtain the density, the velocity and the pressure
of the marker points.

3. Define ghost fluid states for each ghost fluid cell according to the RGFM implemen-
tation.

4. Obtain the flow field by solving the Euler equations with proper boundary condi-
tions.

5. Obtain the new location of the interface via the Riemann solutions of the marker
points and get the final solutions according to the new location of the interface.

6. Return to the first step.

4 Numerical tests

In this section the RGFM-FT method is used to simulate several two-dimensional com-
pressible, non-viscous multimedium flows in order to validate the accuracy and capabil-
ity in treating the fluid interface. The compressible Euler equations are solved on uniform
Cartesian grids.

4.1 Bubble advection

This problem is linear advection of a helium bubble in air and is used to test the accuracy
and conservation [7]. The computational domain is [0,2]×[0,2] and a cylindrical helium
bubble with a diameter of 0.4 is centered at (0.25,0.25). The conservative fluid variables
are simply extrapolated with zero gradient on all the boundaries. The nondimensional-
ized initial conditions are:

(ρ,u,v,p,γ,B)=

{

(1,1,1,1,1.4,0), air,

(0.138,1,1,1,1.67,0), helium.
(4.1)
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Table 1: Numerical accuracy for helium advection in air.

Mesh size Ed order EHe order

1/10 8.82×10−2 - 9.98×10−1 -

1/20 7.63×10−3 3.53 7.01×10−2 3.83

1/40 5.04×10−4 3.92 4.41×10−3 3.99

1/80 3.26×10−5 3.95 2.74×10−4 4.01

Two discrete errors are measured here, namely the L1 error in the density field, Ed and
the relative error in total mass of helium, EHe. The errors and order of accuracy are given
in Table 1 for different mesh sizes at time t = 0.5. The numerical results show that the
errors in both the density field and total mass of helium almost converge at fourth order.

4.2 Sod shock tube

This simple example is taken from [31] and is used to investigate a high pressure air
cavity expanding in water. Initially, a cylindrical air cavity is at the center of the compu-
tational domain [0,4]×[0,4] with a diameter of 1. The initial conditions are taken as:

(ρ,u,v,p,γ,B)=

{

(1.27,0,0,8000,1.4,0), air,

(1,0,0,1,7.15,3309), water.
(4.2)

The CFL number is 0.24 and the nonreflecting boundary condition is used at all the
boundaries.

Three different grids are used here for grid refinement test: coarse (100×100 mesh
points), intermediate (200×200) and fine (400×400). Fig. 4(a) gives the density distri-
butions along y= 2 at time t= 0.0045, with the effect of grid resolution, and the results
obtained by an adaptive ghost fluid finite volume method from Wang et al. [31] are also
shown in order to make comparisons. We can see that when using coarse grids there is
a density discrepancy near the center of computational domain, however, the intermedi-
ate and fine grids give mostly identical results, which show a converged solution of the
new method. Fig. 4(b) shows the interfaces at time t= 0, 0.0045, 0.00935, 0.0137 on the
fine grid. These interfaces are a series of concentric circles and the shape of interface re-
mains unchanged. The density contours at t=0.0045 on the fine grid are also presented in
Fig. 4(c), where the interface, the shock wave and the expansive wave are shown clearly.
A shock is formed running towards the boundary of the domain and an expansive wave
is running towards the center of the domain.

4.3 Shock-bubble interaction

Shock wave interactions with bubbles have been studied experimentally by Hass and
Sturtevant [12]. It also has been numerically investigated by several authors, see [20,
23, 27]. Hass and Sturtevant‘s experiment is simulated in this example, where a shock
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(a) Comparison of density along y=2

(b) The interface evolution (c) Density contours

Figure 4: The numerical results for the sod shock tube problem.

wave propagates to the left and hits a helium bubble with Mach number of 1.22. Fig. 5
shows the computational set-up and the geometrical parameters are: a=50mm, b=25mm,
c=100mm, d=325mm, e=44.5mm. Since the flow field is symmetric about the center axis,
only the bottom half domain is computed. At the axis, the velocity in y direction is set to
zero and the density, the velocity in x direction and the pressure are all symmetric. On
the left and right boundaries, all the variable are simply extrapolated with zero gradient
and the lower boundary is treated as slip-wall. For this simulation the sound speed in the
pre-shocked air and the bubble diameter are used for the nondimensionalization, and the
CFL number is 0.2. The computational domain is divided into 650×89 mesh cells. The
initial conditions are: ρ = 1, u = 0, v = 0, p = 1/1.4, γ = 1.4, B = 0, for pre-shocked air,
ρ=1.3764, u=−0.3336, v=0, p=1.5698/1.4, γ=1.4, B=0, for post-shocked air, ρ=0.1819,
u=0, v=0, p=1/1.4, γ=1.648, B=0, for helium.
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Pre-shocked air

Helium

bubble
Shock wave

Posted-shocked air

Figure 5: A schematic of computational domain (not to scale).

Figure 6: Space-time diagrams for three characteristic interface points.

Fig. 6 shows the space-time diagram for three characteristic points (Jet, Downstream,
Upstream shown in the figure) compared with the earlier computational results (‘◦‘) from
[27] during the early stage. The present results are in a relatively good agreement with
those results, showing the accuracy of the new method. Fig. 7 shows the time histories of
the helium bubble shape and the density field. The timing is the same as in [27] for easy
comparison. We can see that the results, including the positions of shock wave, are in
good qualitative agreement with the earlier results for the entire process. However, there
are differences in the details of the interface, which is to be expected since the interface
is unstable, and without some regularization there will be no unique or resolved answer
to the Euler equations [7]. At the initial stage, the interface swept over by the shock
wave is set into motion while the others remain at rest. During the contraction of the
bubble, the length of the interface decreases and then the interface begins to fold down
over itself. The ambient fluid piercing the bubble grows and rolls up in the anticlockwise
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t=102µsec t=427µsec t=674µsec t=983µsec

(a) The interfaces at different time

t=32µsec t=62µsec t=102µsec

t=427µsec t=674µsec t=983µsec

(b) The density field at different time

Figure 7: The evolution of interfaces and density field.

direction, thus an overpressure behind the bubble is formed to compress the bubble to
the left part of the computational domain. The shock wave diffracts into two waves
after it hits the helium bubble. Part of the shock wave is transmitted to the bubble with
a stronger intensity than that of the incident shock along the normal direction of the
interface. This shock wave moves faster than the one in the surrounding air due to the
different sound speed and therefore a relative sliding of the helium on the air is observed,
which indicates the importance of the tangential velocity and the approximation made
on the determination of the tangential velocity in this paper is acceptable.

4.4 Richtmyer-Meshkov instability

We now present numerical results to the simulation of Richtmyer-Meshkov instability [3].
This example consists of two simulations with gas-gas and gas-liquid interfaces. It has
been investigated by several authors to test and validate their methods before [20, 26,
27]. The first one is a gas-gas interface taken from [20]. Only the bottom half domain is
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Figure 8: A schematic of flow field at t=0.

computed since the flow field is symmetric about the center axis. As indicated in Fig. 8,
a computational domain of [0,4]×[0,0.5] is used and we take a single mode perturbation
of an air-SF6 interface that the initial location of the interface is represented by: x=2.9−
0.1sin(2π(y+0.25)), 0< y < 0.5. The initial conditions are: ρ = 5.04, u= 0, v = 0, p = 1,
γ=1.093, B=0, for SF6, ρ=1, u=0, v=0, p=1, γ=1.4, B=0, for pre-shocked air, ρ=1.411,
u=−0.39, v= 0, p= 1.628, γ= 1.4, B= 0, for post-shocked air. To trigger the instability,
at x = 3.2 there is a planar Mach number 1.24 shock wave in air propagating from the
right to the left of the interface. The interface is accelerated by a shock wave coming
from the light fluid to the heavy fluid region. The upper and lower boundaries are taken
to be periodic and the nonreflecting boundary condition is applied at the left and right
boundaries. The CFL number is taken as 0.4 and a 1000×125 grid is used.

The flow evolution by plotting the density field is presented in Fig. 9 where the inter-
face and the transmitted shock wave can be observed clearly. Due to the initial pertur-

(a) t=2.3009

(b) t=4.6329

(c) t=6.9834

(d) t=9.2399

Figure 9: Dynamics of the interface and density field.



H. Lu, N. Zhao and D. Wang / Commun. Comput. Phys., 19 (2016), pp. 124-142 137

Figure 10: Comparison with other study on time histories of characteristic positions.

bation of the interface, there is a misalignment of density and pressure gradient, which
results in a non-zero term ( 1

ρ2∇p×∇ρ), and the vorticity is formed in the perturbed zone,

as can be seen in Fig. 9(c) and Fig. 9(d). In order to validate the accuracy of the results,
Fig. 10 presents the time evolution of the location of the spike, the leading edge of the
bubble and the thickness of the mixing layer along with the results of Nourgaliev et
al. [20]. The thickness of the mixing layer is defined as the distance between the spike
and the bubble. It shows that these results are almost identical for the location of these
characteristic points.

The second one is a gas-liquid interface that is interacting with a planar Mach number
1.95 shock wave at x=3.025 initially in liquid. The computational domain, the grids and
the initial location of the interface are the same with the first simulation of Richtmyer-
Meshkov instability. The initial conditions are: ρ=1, u=0, v=0, p=1, γ=1.4, B=0, for air,
ρ=5, u=0, v=0, p=1, γ=4, B=1, for pre-shocked liquid, ρ=7.093, u=−0.7288, v=0, p=10,
γ=4, B=1, for post-shocked liquid. The density field at different time is shown in Fig. 11
where the interface and the transmitted shock wave can be seen clearly. The complex
wave structure is once again present in this problem and is relatively well captured. To
check the correctness of the computed solutions, Fig. 12 compares the distributions of
density and pressure along line y = 0.5 with the results (‘◦‘) obtained by using the γ-
based model in [26]. Good agreement of the solutions is clearly observed.

4.5 Gas-water interface test

The final example is about a shock wave in air impacting on the cylindrical water droplet.
It has been numerically and experimentally investigated by several authors [20, 27, 31].
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(a) t=0.1094

(b) t=0.3041

(c) t=0.4995

(d) t=1.0098

(e) t=1.6349

Figure 11: The density field at different time.

This is to test the method for multimedium flow with large density jump across the in-
terface. It involves a curved interface and associated with rather complex irregular shock
refraction patterns. Here we take the same initial and boundary conditions as in [31]
and also only the bottom half of the problem is simulated. A right-moving shock wave
with the Mach number 1.47 is initially placed at x = 6. The computational domain is
[0,20]×[0,6] and the cylindrical water droplet surrounded by the air is centered at (10,6)
with the radius of 3.2. The initial conditions are: ρ=1, u=0, v=0, p=1, γ=2.8, B=3036,
for water droplet, ρ=0.001, u=0, v=0, p=1, γ=1.4, B=0, for pre-shocked air, ρ=0.001811,
u=24.624, v=0, p=2.35, γ=1.4, B=0, for post-shocked air. The computational domain
is divided into 200×60 mesh cells. The upper boundary is symmetric and nonreflecting
boundary condition is applied on the other boundaries. The CFL number is taken as 0.24.

The early stage of the interaction of the shock wave with water droplet is shown in
Fig. 13 with the interface and the pressure contours. When the incident shock hits the
droplet, it is reflected as a shock, transmitting a pressure wave into the droplet. The
results, including the positions of incident shock wave and transmitted shock wave, are
in good agreement with those shown in [31].
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(a) t=0.1

(b) t=0.3

(c) t=0.5

(d) t=1

Figure 12: Comparison of density (left) and pressure (right) along line y=0.5.

5 Concluding remarks

We have introduced a front tracking method combined with the RGFM for simulations
of fluid interfaces in compressible flows. Fluid interface boundary conditions are defined
with the RGFM and the motion of interface is obtained by solving a Riemann problem
near the interface. This new method is more accurate and easier to implementation. Ex-
tensive numerical tests are performed to demonstrate the accuracy and capability of the
new method. The numerical results of bubble advection indicate, by grid refinement
tests, that the present method is convergent and stable. A Sod shock tube study shows
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Figure 13: The pressure contours and the interface.

that the new method is able to handle the high pressure air expansion in water. In simula-
tions of shock-bubble interaction, it shows that the bubble deformation and the motion of
characteristic points compare well with earlier experimental observations and computa-
tional results. Simulations of Richtmyer-Meshkov instability demonstrate the capability
of the method to track complicated interface caused by the passage of a shock wave. A
simulation of compressible gas-water system shows that the new method can be applied
to multimedium flows with large density jump across the interface. The results presented
in this paper show that this new method can accurately simulate multimedium flows for
a wide range of initial conditions.
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