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Abstract. Numerical oscillation of the total energy can be observed when the Kohn-
Sham equation is solved by real-space methods to simulate the translational move of
an electronic system. Effectively remove or reduce the unphysical oscillation is crucial
not only for the optimization of the geometry of the electronic structure, but also for
the study of molecular dynamics. In this paper, we study such unphysical oscillation
based on the numerical framework in [G. Bao, G. H. Hu, and D. Liu, An h-adaptive fi-
nite element solver for the calculations of the electronic structures, Journal of Computational
Physics, Volume 231, Issue 14, Pages 4967-4979, 2012], and deliver some numerical
methods to constrain such unphysical effect for both pseudopotential and all-electron
calculations, including a stabilized cubature strategy for Hamiltonian operator, and an
a posteriori error estimator of the finite element methods for Kohn-Sham equation. The
numerical results demonstrate the effectiveness of our method on restraining unphys-
ical oscillation of the total energies.

AMS subject classifications: 35Q55, 65N30

Key words: Translational invariance, adaptive finite element methods, Kohn-Sham equation, un-
structured mesh.

1 Introduction

Density functional theory (DFT) [11] has been becoming one of the most important mod-
els for the electronic structure calculations. In DFT, the Kohn-Sham equation [14] plays a
crucial role in both theoretical and numerical studies [19].
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Lots of research has been done towards the numerical methods for Kohn-Sham equa-
tion. For example, the plane-wave expansion methods [16, 32], the real-space methods
including the finite difference methods [7, 8], the finite element methods [23, 29], the dis-
continuous Galerkin methods [18], etc. Among these methods, the plane-wave pseu-
dopotential (PWP) methods have been well developed and widely applied in the com-
putational chemistry community. One of the main advantages of plane-wave expansion
methods is that the plane-wave basis functions are independent of the ionic positions.
Hence no Pulay corrections [25] is needed on the calculation of the ionic force. Although
the real-space methods have a lot of advantages such as the flexibility on handling vari-
ous boundary conditions and complex practical domains, all these methods suffer from
the numerical oscillation of the total energy when simulating the translational or/and
rotational move of the electronic systems in the domain.

To explain the numerical oscillation of the total energy, let us consider an electronic
structure system with Nnuc atoms in the domain. By real-space methods, the Hamiltonian
operator is discretized based on a mesh of the computational domain, i.e., the Hamilto-
nian operator needs to be evaluated pointwisely. It can be imagined that when a different
mesh is used, or the molecule moves, the evaluation of the Hamiltonian would not be
consistent with the previous one. It is acceptable in the calculations if the inconsistency
is sufficiently small. This happens when all terms in the Hamiltonian are smooth and
vary gently. However, once there is singularity in the Hamiltonian, and such singular-
ity does not resolved well by the numerical methods, this kind of inconsistency could
be large enough to qualitatively affect the numerical result such as the ground-state to-
tal energy of the system and the derived intermolecular force from Hellman-Feynman
theorem [9]. Unfortunately, the Coulomb interaction between the electron and nucleus,
which is called the external potential in the Hamiltonian, is quite singular. For example,
the external potential in the Kohn-Sham equation for system we discussed can be given
as

Vext(~x)=−
Nnuc

∑
i

Zi

|~x−~Ri|
, i=1,2,··· ,Nnuc,

where Zi and ~Ri stand for the i-th nucleus charge and position, respectively. Besides the
external potential, the kinetic energy operator could also behave singular in the vicinity of
the nucleus because the wavefunctions vary dramatically in the same area. Large numer-
ical error will be introduced if we evaluate these terms inadequately. Furthermore, when
we use a fixed uniform mesh to partition the domain, and let the electronic structure do a
translational move in the domain, the numerical error from the inadequate discretization
will appear periodically with the period the mesh size. Consequently, the total energy
of the system obtained from the calculation will also oscillate periodically with the same
period, which is called egg-box effect. This is not physical because nothing is changed
in the system but the position of the electronic structure, so the total energy should be
kept as a constant theoretically. This numerical oscillation is unacceptable since it will
affect the evaluation of ground-state total energy, and the calculation of the ionic force
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acting on each nucleus. In computation, the ionic force acting on the i-th nucleus along
the x-coordinate direction, Fi,x, is calculated by

Fi,x =−
∂Etol

∂Xi
, (1.1)

where Etol here denotes the total energy of the system. Hence, the break of the transla-
tional invariance of the total energy will obviously introduce large error on the computa-
tion of the ionic force by the above formula.

The use of the pseudopotential in the simulation can effectively remove the singu-
larity mentioned above. Consequently, the numerical oscillation of the total energy can
also be restrained significantly. In a chemical reaction process, one observes that only
outer electrons (valence electrons) are chemically active, and inner electrons (core elec-
trons) are relatively stable, in most cases. The idea of pseudopotential is simple. Since
the core electrons are quite stable, they are frozen with the nucleus together. In this case,
a more gentle effective potential is introduced in the simulation, instead of the singular
Coulomb potential. Hence, in a similar simulation environment, the numerical oscilla-
tion of the total energy can be reduced significantly by using pseudopotential, compared
with the all-electron simulation. To further pursue the translational invariance, a few
numerical methods have been introduced such as the Fourier filter method [12], the grid-
cell sampling method [10]. The Fourier filter method further removes the large variation
introduced by wavefunctions, potential terms in Hamiltonian. This method has been
applied in real-space methods [1,22], and excellent results can be observed. For the grid-
cell sampling method, it sufficiently takes advantage of the periodic property of the mesh
grids to reduce the numerical error of the total energy by averaging the results on several
sample points. Although the effect of the Fourier filter method and grid-cell sampling
methods is impressive, both methods need some kind of uniform property of the mesh
grids to guarantee the effectiveness, also there is requirement on the regularity of the
computational domain. Compared with the uniform mesh, the nonuniform mesh has
the potential to deliver more efficient simulations, and is more powerful for the practical
problems. However, the good properties such as the periodic property of the mesh grids
will lose once the nonuniform mesh is adopted.

To constrain the unphysical oscillation on the nonuniform mesh, one possible way
is to raise the order of the cubature formula in the evaluation of the Hamiltonian oper-
ator. In this way, the numerical error introduced by numerical integration of singular
potentials in Hamiltonian can be reduced effectively. However, since the dimension of
the problem we consider is three, the growth of the cubature points is quite fast with the
raise of the cubature order. Hence, using the high order cubature formula only for singu-
lar terms, or only in the “trouble” regions are reasonable choices to enhance the efficiency.
The numerical tests in the paper will show the effectiveness of such strategy.

The pseudopotential method can remove the singularity in the Hamiltonian effec-
tively, and has been widely applied in the simulations. However, more and more ev-
idences [6, 26] show that it is not enough in some simulations if we only consider the
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valence electrons. The core electrons also play important role in the simulations. As a re-
sult, how to efficiently obtain the translational invariance of the ground-state energy in an
all-electron simulation becomes inevitable. In [2], the authors develop an adaptive finite
element method to solve the Kohn-Sham equation, which provides a general framework
of the implementation of h-adaptive methods to calculate the ground-state of a given elec-
tronic system. With the proposed hierarchy geometry tree (HGT) data structure [17], the
refinement and coarsening process can be implemented very efficiently. Consequently,
this framework provides an effective way to deliver translationally invariant simulations,
as long as the error indicator used in the method can resolve the singularity effectively.
In [2], only the gradient of the wavefunction is considered to design the indicator for h-
adaptive method. Although this indicator works well in calculating the total energy, it
can be shown that the mesh grids will be overrefined if an accurate result is desired. In
the meantime, since the lack of the error information from the external potential term,
its performance on preserving the translational invariance of the total energy is also not
good.

In this paper, we will follow [30] to introduce a heuristic a posteriori error estimation
of our finite element method for Kohn-Sham equation, and numerically study its perfor-
mance on translational invariance property of the ground-state total energy. Basically, in
each element, this local error estimation includes two parts. One is from the jump of the
gradient of the wavefunctions on the edge of the element, while the other part is from the
local residual. The numerical tests will show that the mesh adaptive method with this
error indicator will resolve the above issue effectively.

The rest of this paper is arranged as follows. In next section, the Kohn-Sham equation
and its finite element discretization are briefly reviewed. In Section 3, the translational
variance phenomenon will be demonstrated, and our methods on resolving this issue
will be introduced in detail. The numerical tests will be delivered in Section 4 to show
the effectiveness of our methods on preserving the translational invariance of the total
energy. Finally, the conclusion and future work will be given in Section 5.

2 Kohn-Sham equation and finite element discretization

In this section, we briefly review Kohn-Sham equation first. Then the h-adaptive finite
element method for the Kohn-Sham equation in [2] follow.

2.1 Kohn-Sham equation

The Kohn-Sham equation is given by

Hψi(~x)=ǫiψi(~x), i=1,2,··· ,N, (2.1)

where H stands for the Hamiltonian operator of the system, N is the number of the elec-
trons in the system, and ǫi and ψi denote the i-th eigenstate (wavefunction) and the i-th
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eigenenergy, respectively. The Hamiltonian operator H includes four terms for a closed
system,

H=−
1

2
∇2+Vext(~x)+VHartree(~x,ρ)+Vxc(~x,ρ).

In the above expression, the first term is the kinetic energy operator. The second and
the third terms describe the classical Coulombic interaction. They have the following
analytical expressions

Vext(~x)=−
Nnuc

∑
i

Zi

|~x−~Ri|
, and VHartree(~x,ρ)=

∫

ρ(~x′)

|~x−~x′|
d~x′. (2.2)

where ρ(~x) denotes the charge density, and has the relation with the wavefunctions as
the follows

ρ(~x)=
N

∑
i

|ψi(~x)|
2.

The last term in the Hamiltonian operator is the exchange-correlation potential. It ex-
plains all the manybody effect in the system, and no analytical expression is available.
In the simulations in this paper, the local density approximation (LDA) [24] is employed.
For a review of the exchange-correlation potential, we refer to [20] and references therein.

The task of the numerical methods for the Kohn-Sham equation is to solve (2.1) under
the constraint

∫

Ω
ψ⋆

i (~x)ψj(~x)d~x=δij,

where ψ⋆
i is the conjugate of ψi, and δij is the Kronecker delta function. After the eigen-

pairs (ǫi,ψi), i=1,2,··· ,N are obtained, the total energy of the system is given by

E=
N

∑
i

ǫi−U(ρ)+Exc(ρ)−
∫

Vxc(~x,ρ)ρ(~x)d~x, (2.3)

where U(ρ(~x))= 1
2

∫ ∫

ρ(~x)ρ(~x′)/|~x−~x′|d~xd~x′ is the Hartree electrostatic self-repulsion of
the electron density, and Exc denotes the exchange-correlation energy, and has the relation
Vxc=δExc/δρ to the exchange-correlation potential Vxc.

2.2 An h-adaptive finite element method for Kohn-Sham equation

In [2], the authors proposed a framework of using h-adaptive finite element methods to
numerically solve the Kohn-Sham equation (2.1). We briefly review the framework here,
and present related numerical issues.

Basically, there are two components in the algorithm, i.e., a self-consistent field (SCF)
iteration for solving Kohn-Sham equation on a fixed mesh, and a mesh adaption process.
In the implementation, on a given mesh, the SCF iteration method is used to solve the
Kohn-Sham equation till the stop criterion is satisfied, i.e., the SCF iteration converges
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or the maximum iteration number is reached. Then the mesh adaptive method is imple-
mented in terms of the numerical solutions. For detail of the algorithm, we refer to [2, 3].
The following is a brief flowchart of the algorithm.

Algorithm 1: The h-adaptive finite element algorithm for the Kohn-Sham equation.

Data: ψ, Eold, Enew, MITER, TOL
Result: (ǫ,ψ).

1 while |Enew−Eold|>TOL and iter<MITER do

2 Let Eold=Enew;
3 Implement SCF iteration to solve Eq. (2.1) on the current mesh till the stop

criterion of SCF iteration is reached. Generate (ǫ,ψ) and Enew;
4 Implement mesh adaption process;
5 iter++;

6 end

In the third step in Algorithm 1, the nonlinear Kohn-Sham equation is linearized by
the SCF iteration, i.e., the Hamiltonian is calculated with the old ψ and a generalized
linear eigenvalue problem is solved to generate the new ψ. For detail of the SCF iteration
algorithm in our method, we refer to [2,3]. In our algorithm, the finite element method is
adopted to derive the linear system. To make the description in the later section clearly,
we briefly introduce the finite element discretization of Kohn-Sham equation as follows.

Let Ω be the computational domain, and H1(Ω) denotes the standard Sobolev space,
and H1

0 ={φ∈H1(Ω) : φ=0 on ∂Ω}. The variational form of the Kohn-Sham equation is
as follows: Find (ǫi,ψi)∈R×H1

0(Ω), i=1,2,··· ,N such that

∫

Ω

{

1

2
∇ψi ·∇φ+(Vext+VHartree+Vxc)ψiφ

}

~x=ǫi

∫

Ω
ψiφd~x, ∀φ∈H1

0(Ω). (2.4)

Now let T = {Tk, k= 1,2,3,··· ,Nele} denotes a tetrahedral partition of the domain Ω,
and let Vh(T )⊂ H1

0(Ω) denotes a standard linear finite element space defined on T .
Here Nele denotes the total number of tetrahedral element in the partition. Then the finite
element discretization of the Kohn-Sham equation is as follows: Find (ǫh

i ,ψh
i )∈R×Vh(T ),

i=1,2,··· ,N such that

∑
Tk

∫

Tk

{

1

2
∇ψh

i ·∇φ+
(

Vext+VHartree+Vxc

)

ψh
i φ

}

d~x=ǫh
i ∑
Tk

∫

Tk

ψh
i φd~x, ∀φ∈Vh. (2.5)

The analytical form of the Hartree potential VHartree is given in (2.2). A direction eval-
uation of such term at each mesh grid results in the O(N2

mg) computational complexity,
which should be avoided in the simulations. Here Nmg means the total number of the
mesh grids, and also the number of unknowns for a linear finite element discretization.
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Instead, the Hartree potential is obtained by solving the Poisson equation
{

−∇2VHartree=4πρ, for x∈R
3,

VHartree=0, for x→∞.
(2.6)

In the simulation, the Poisson equation is solved in the domain Ω, and the boundary
values are given by the multipole expansion method. To solve the Poisson equation the
same finite element space to (2.5) is used for the discretization, and the derived linear
system is solved by an algebraic multigrid method. It is worth mentioning that, with
solving Poisson equation by the multigrid methods, the computational complexity for
evaluating VHartree is reduced to O(Nmg).

After the discretization, we arrive at the following generalized eigenvalue problem

Aψh =ǫhBψh,

and we need to find its N eigenpairs. It is noted that if the spin is not considered, only
N/2 eigenpairs are needed. There have been a lot of works on solving the above gener-
alized eigenvalue problem, and we choose the locally optimized blocked preconditioned
conjugate gradient (LOBPCG) [13] in the simulation. For SCF iteration, it is worth men-
tioning that although there are several numerical tricks for improving the convergence,
the theoretical results for the convergence are still desired. People may refer to [31, 33]
and references therein for the related theoretical analysis.

In the fourth step in Algorithm 1, the mesh adaption is implemented. For an effective
mesh adaptive method, two questions need to be answered well, i.e., where to locally
refine and coarsen the mesh grids, and how to do it efficiently. In our implementation,
the hierarchical geometry tree (HGT), which is based on the octree data structure, is used
to guarantee the efficiency on mesh management. To answer the first question, an error
indicator needs to be assigned for each tetrahedral element in terms of the numerical
solutions on the current mesh. Then the mesh grids are locally refined or coarsened
according to a given tolerance. In [2], the gradient of each wavefunction is used to design
the indicator. In the vicinity of each nucleus, the variation of each wavefunction is large,
hence such area can be effectively resolved with the indicator. In the meantime, when the
all-electron calculations are considered, the external potential Vext is also very singular in
the same area. Consequently, this kind of indicator works very well in both all-electron
and pseudopotential calculations, see [2]. However, when the all-electron calculations
are considered, it is not adequate to resolve the singularity introduced by Vext by using
the gradient of the wavefunction. Although a smaller tolerance in the mesh adaption
could improve the numerical solutions, it will result in the overrefinement of the mesh
grids. Hence, a finer error indicator becomes necessary, and the error information from
the external potential needs to be considered. In next section, a residual based a posteriori
error estimation will be introduced to cover this issue.

Remark 2.1. The above numerical framework has been adopted in the previous work
[2–5]. On the numerical convergence of the methods, we refer to those papers for detail.
In the following, we focus on the eggbox effect to improve this numerical framework.
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3 Translational variance of the total energy and restrained

methods

In this section, the variance of the total energy caused by the translational move of the
electronic structure will be demonstrated first. Then numerical methods will be intro-
duced to restrain such phenomenon.

3.1 Eggbox effect

The eggbox effect is known as an unphysical oscillation when the real-space methods are
used for simulating the translational move of an electronic system in the given domain
with the uniform mesh. When the electronic structure does a translational move in the
domain, the ground state total energy of the electronic structure should theoretically be a
constant. However, it is not the case when the real-space methods are used. This can be
seen from the result of Example 3.1 below.

Example 3.1. Find the ground state of a Helium atom system. The domain is [−10,10]×
[−10,10]×[−10,10], the initial ionic position is the origin (0,0,0). A uniform tetrahedral
mesh is used, the total number of the mesh grids is 17969, and the mesh size along the
x-axis is around 1.2. After the ground state is reached at the current position, move the
nucleus along the positive direction of the x axis with the length 0.03, and repeat. Atomic
unit is used.

The finite element framework proposed in [2] is used without the mesh adaptive pro-
cess in Example 3.1. The cross section of the mesh in the x-y plane is shown in Fig. 1. In

Figure 1: The cross section of the mesh on the x-y plane.
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Figure 2: The curve (solid line for all-electron calculation, and dashed line for pseudopotential calculation) of
the total energy versus the position of the nucleus of the Helium atom.

the simulation, the nucleus of the Helium atom moves to the right 0.03 au after the cur-
rent ground state energy is obtained, and the curve of ionic position versus total energy
is displayed in Fig. 2 (solid line).

Two observations can be made from the result. The first one is that the error of our
numerical result is quite large, compared with the reference total energy (−2.83 au from
[15]). The second one is the periodic oscillation of the total energy with the move of the
nucleus, and the period is around 1.2 au, which is consistent with the edge length of the
element along the x-axis.

The inadequate discretization of the Hamiltonian operator explains the inaccurate
total energy in the above example. Figs. 3 and 4 show this clearly. As we can see from
two figures, the mesh size 1.2 au is far from enough to resolve the variation of the all-
electron wavefunction (Fig. 3, solid line) and full external potential (Fig. 4, solid line),
which causes the large numerical error in evaluating total energy of the Helium atom. To
explain the periodic oscillation of the total energy, let us study Fig. 5 in detail. The one
dimensional function f (x)=e−|x−a| is shown in the figure with different a. The functional
varies very fast around x= a, while decays when x is away from a. This is quite similar
to the behavior of the external potential in the Hamiltonian. To form the stiff matrix in
finite element methods, the numerical integration needs to be done in each element. If we
use one-point Gauss quadrature to do the numerical integration, the point x=0.3 would
be the quadrature point for the interval [0,0.6]. This is a fair choice for evaluating the
function f (x) when a=0 and 0.6. However, the integral will be highly overestimated for
a=0.3 case, since the function value in this case is given by the lower black circle point in
the figure. With the increment of a, this kind of overestimation will appear periodically.
This explains the eggbox effect shown in Fig. 2.

Based on the above discussion, both the inaccurate total energy and the nonphysical
oscillation of the total energy are caused by the singularity introduced in the Hamiltonian
operator. Hence, from the algorithm efficiency point of view, how to effectively remove
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circle points denote the value of each function at x=0.3.

the singularity becomes the main issue on restraining the translational oscillation of the
total energy, and the use of the pseudopotential is an attractive answer towards this di-
rection.

In next subsection, we first introduce the utilize of the pseudopotential and its perfor-
mance on keeping the translational invariance of the total energy. Then, we will introduce
a nonuniform cubature strategy for further restraining the translational oscillation of the
total energy when some traditional methods such as Fourier filter method and grid cell
sampling method, are no longer applicable.

3.2 Pseudopotential

An effective way to remove the singularity introduced by the external potential Vext is to
use the pseudopotential. The idea of pseudopotential is simple. Based on the observation



G. Bao, G. H. Hu and D. Liu / Commun. Comput. Phys., 19 (2016), pp. 1-23 11

-2.6

-2.55

-2.5

-2.45

-2.4

-2.35

-2.3

-2.25

-2.2

 0  0.5  1  1.5  2

to
ta

l e
ne

rg
y

x

pseudo-potential, 17969 nodes
pseudo-potential, 137313 nodes

Figure 6: The curve of the total energy versus the position of the nucleus of the Helium atom. The results are
obtained with pseudo-potential calculation. The solid line and dashed line show the results with 17969, and
137313 nodes in the mesh, respectively.

that only valence electrons are active in the chemical reaction in most cases, the core elec-
trons can be frozen, being considered together with the nucleus as rigid non-polarizable
ion cores. In this way, the core electrons are removed from the calculation, and the sin-
gular real Coulomb potential is replaced by a gentle pseudopotential Vpseudo(~x). Fig. 4
(dashed line) shows the effect of pseudopotential for a Helium atom. The pseudopo-
tential is generated by Troullier-Martins norm-conserving method, and is provided by
APE [21]. The cutoff radius we used in the simulation is 2 au. Compared with the real
Coulomb potential −2/x, the pseudopotential in Fig. 4 (dashed line) varies much more
gently, which means that the variation of the external potential can be resolved well with
a coarse mesh. With the use of the pseudopotential, the wavefunction also varies more
gently than that from all-electron case, see Fig. 2 (dashed line) which shows the result for
Example 3.1 with the use of the pseudopotential. It is noted that with the pseudopoten-
tial, the reference result for the total energy of the Helium atom is around −2.7016 au,
which is obtained by using our mesh adaptive method with the tolerance 5e−05.

From Fig. 2 (dashed line), it can be observed that the variation of the curve becomes
much smaller than that of the all-electron calculation (solid line). However, the periodic
behavior of the curve is still there, with the same period to that of the all-electron result.
In the meantime, the numerical accuracy is still unacceptable. All these drawbacks of
the numerical results can be overcame effectively by reducing the mesh size. For exam-
ple, once we refine the mesh globally (137313 mesh grids), and redo the calculation, the
numerical result is given in Fig. 6 (dashed line). It can be observed obviously that the
numerical accuracy is improved dramatically, while the numerical oscillation of the total
energy is also restrained significantly.

To further improve the numerical accuracy, a straightforward way is to keep refining
the mesh. However, it will cause the implementation efficiency issue since refining the



12 G. Bao, G. H. Hu and D. Liu / Commun. Comput. Phys., 19 (2016), pp. 1-23

-2.26

-2.258

-2.256

-2.254

-2.252

-2.25

-2.248

-2.246

-2.244

-2.242

-2.24

 0  0.5  1  1.5  2  2.5

to
ta

l e
ne

rg
y

x

pseudopotential, cubature order 1

-2.56

-2.555

-2.55

-2.545

-2.54

 0  0.5  1  1.5  2  2.5

to
ta

l e
ne

rg
y

x

pseudopotential, cubature order 8

Figure 7: The result shown in left figure is same to Fig. 2 (dashed line), while the result shown in the right
figure is from the same calculation except for the cubature order for the external potential.

mesh globally one more time will generate a new mesh with over one million nodes for
the current case. It is noted that the inaccuracy in evaluating the integral with respect
to the Hamiltonian operator causes the inaccuracy of the total energy and the numerical
oscillation. Hence, raising the order of the Gauss cubature for such integral could be a
reasonable alternative. To show the effect, we redo the calculation of Example 3.1 with the
pseudopotential, and only raise the cubature order for the integral the external potential
to 8 and keep other configurations unchanged. The reason that we only raise the cubature
order for the external potential term is that, compared with the other potential terms, the
variation of the external potential is larger. The result is shown in Fig. 7. It is shown
obviously that with the raise of the cubature order for the external potential, both the
numerical accuracy and the translational invariance of the total energy are improved,
significantly and simultaneously. It is noted that with the uniform mesh, there are other
numerical methods to restrain the eggbox effect such as the grid-cell sampling, Fourier
filter. The excellent effect of those methods can be observed from [12] and [10]. However,
it is quite challenging to use those methods for nonuniform mesh cases, and raising the
cubature order could be an effective choice then.

Although pseudopotential method can remove the singularity introduced by the ex-
ternal potential well, the all-electron calculation is needed towards the ab-initio electronic
structure calculations. To resolve very singular external potential in the all-electron cal-
culations, a nonuniform mesh can be designed according to the structure of the given
molecule in advance, see [27, 28]. However, when we want to study the geometry opti-
mization, or the dynamics of a given molecule [4], the nucleus might move in the domain,
and a well designed fixed mesh might not a good choice since the mesh might need to be
regenerated to keep the accuracy, and it could be very CPU time demanding. The mesh
adaptive methods can overcome the above issue effectively. Ideally, the mesh adaptive
methods can always resolve the singular region with sufficient mesh grids dynamically,
while keep the mesh coarse in the region with gentle solutions. In [2, 3, 5], the authors
introduced two kinds of mesh adaptive methods. In the following section, we will fol-
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low [2] to introduce the framework of the h-adaptive methods, and introduce a residual
based a posteriori error estimator for the mesh adaptive process.

3.3 Mesh adaptive methods

In [2], the authors follow classical process

···→ Solve → Estimate and Mark → Refine → Update →···

to design the mesh adaptive algorithm. According to the above process, the Kohn-Sham
equation is solved first. Then an indicator is designed in each element based on the nu-
merical solutions. With a mark strategy, each element in the current mesh is marked to
refine or coarsen. Finally, a new mesh is generated after implementing the mesh adap-
tion, and the numerical solutions are updated from the current mesh to the new mesh.

As we discussed in Section 2, although the indicator in [2] works well in calculating
the ground state total energy, the overrefinement of the mesh grids can not be avoided
when the all-electron calculation is considered. This can be explained by that the singu-
larity introduced from the external potential is much stronger than that from the wave-
functions. Hence, to improve the performance of the mesh adaptive methods, the error
information from the external potential needs to be considered, and the error indicator in
this paper is obtained from the following a posteriori error estimation.

It is noted that since the Hamiltonian operator H in (2.1) depends on the electron den-
sity ρ(~x), while the electron density ρ(~x) depends on the unknown ψi(~x), i= 1,2,··· ,N,
Eq. (2.1) is actually nonlinear. It is difficult to analyze the numerical error directly from
this nonlinear equation. Fortunately, the method we used to solve the Kohn-Sham equa-
tion is the so-called self-consistent field (SCF) iteration, i.e., the electron density obtained
from the previous iteration is used to update the Hamiltonian, then the linearized eigen-
value problem is solved to update the wavefunctions and electron density. It means that
a linear generalized eigenvalue problem is solved in each iteration, which also means
that we can focus on the numerical analysis on the following system







(

−
1

2
∇2+Ve f f (~x)

)

ψ(~x)=ǫψ(~x), for ~x∈Ω,

ψ(~x)=0, for ~x∈∂Ω,

(3.1)

where Ve f f (~x)=Vext(~x)+VHartree(~x)+Vxc(~x) and only depends on the spatial variable ~x.

Based on Section 2, the variation form of (3.1) is as follows: Find (ǫi,ψi)∈R×H1
0(Ω),

i=1,2,··· ,N such that

∫

Ω

{

1

2
∇ψi ·∇φ+Ve f f ψiφ

}

d~x=ǫi

∫

Ω
ψφd~x, ∀φ∈H1

0(Ω), (3.2)
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and the finite element discretization of (3.1) is as follows: Find (ǫh
i ,ψh

i ),∈R×Vh(T ), i=
1,2,3,··· ,N such that

∑
Tk

∫

Tk

{

1

2
∇ψh

i ·∇φ+Ve f f ψ
h
i φ

}

d~x=ǫh
i ∑
Tk

∫

Tk

ψh
i φd~x, ∀φ∈Vh. (3.3)

The task of the a posteriori error estimation is to develop a computable quantity from
(ǫh

i ,ψh
i ), i = 1,2,··· ,N, while the equivalence of this quantity and the distances between

ψi and ψh
i , and ǫi and ǫh

i can also be proved. This can be done following the results
in [30] by assuming that Ve f f (~x) is strictly positive, which is unfortunately not satisfied
by Ve f f from Kohn-Sham equation. However, it is noted that the Ve f f is bounded when
the pseudopotential is employed in the simulations, and that the eigenvectors of (3.2)
will not change if a real number is added in the Hamiltonian. It means that a sufficiently
large constant M can be added on Ve f f to make the generated Ṽe f f =Ve f f +M be strictly
positive, while the eigenpairs of the revised system become (ǫ+M,ψ). Hence, we could
assume that Ve f f is strictly positive here , and follow [30] to give the a posteriori error
indicator in each element

η2
Tk
=

N

∑
i

{

∑
e

he||Je(ψ
h
i )||

2
2,e+h2

Tk
||RTk

(ψh
i )||

2
2,Tk

}

. (3.4)

There are two terms in the above estimator. In the first term, Je(ψh
i )=

1
2(∇ψh

i |Tk
·~ne,kj+

∇ψh
i |T j

·~ne,jk) denotes the jump of the flux across the face e which is the common face of
two tetrahedron elements Tk and Tj. ~ne,kj and~ne,jk stand for the unit outward normals on
the face e of Tk and Tj, respectively. The parameter he stand for the diameters of the face

e. In the second one, RTk
(ψh) denotes the element residual of the equation, and has the

following form

RTk
(ψh

i )=

(

ǫiψ
h
i +

1

2
∇2ψh

i −Ve f f ψ
h
i

)

Tk

,

where hTk
stands for the diameter of the element Tk. For the pseudopotential calculations,

the effectiveness and reliability of the error indicator (3.4) can be proven theoretically,
please refer to [30] for detail. For the all-electron calculations, since the boundedness of
the Hamiltonian can not be obtained, the theoretical analysis in [30] can no longer be ap-
plied. However, the error indicator (3.4) still works very well for all-electron calculations,
as shown by the numerical tests later.

In (3.4), the jump function Je(ψ) describes the amplitude of the variation of the gra-
dient of the wavefunction on each surface of a given tetrahedron element. Hence, as an
indicator, its behavior is similar to the one in [2]. If we only use the first part in (3.4) in
the simulation, it can be imagined that the numerical accuracy for the ground-state en-
ergy can still be improved significantly. For example, by using the h-adaptive framework
in [2] and the indicator only with Je(ψ) part, and with the tolerance 2.0e−04, the numer-
ical results for Example 3.1 are given by Figs. 8 and 9. Here the all-electron calculation
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Figure 8: The cross section of the mesh on the x-y
plane with the h-adaptive method.
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Figure 9: The curve of the total energy versus the
position of the nucleus of the Helium atom. The
h-Adaptive method is used.

is used. In Fig. 8, it shows the mesh obtained with Algorithm 1 when the nucleus at its
original position. With the jump function Je(ψ), the region with the large gradient jumps
of the wavefunctions is resolved successfully. Consequently, the numerical accuracy of
the ground-state energy in Fig. 9 (the upper dashed line) is much better than that in Fig. 2,
and the amplitude of the nonphysical oscillation of the total energy with the move of the
Helium atom is also significantly reduced.

To further improve the numerical behavior of the method, a straightforward way is
to reduce the tolerance used in the mesh adaptive procedure, since the smaller tolerance
gives more accurate description of the wavefunctions. However, with only jump function
Je(ψ) in the indicator, reducing the tolerance helps little on improving the numerical
results. For instance, if we redo the Example 3.1 with the h-adaptive method with the
tolerance 1.0e−04, a slightly better result can be observed from Fig. 9 (lower dashed line).
However, 40% more mesh grids are introduced in the simulation, which also increases
the CPU time. Furthermore, almost nothing is improved on the nonphysical oscillation.
The reason for this phenomenon is that the error information from evaluating the external
potential Vext is totally missed in the indicator.

In (3.4), the local residual RTk
(ψ) supply us a quite good estimation for the error in-

troduced by Vext. With a good approximation of the wavefunction, the error in the evalu-
ation of the integral

∫

Vextψφd~x dominates the term ||R(ψ)||Tk
. Hence, it can be imagined

that the numerical results would be improved effectively with adding the local residual
term in the error indicator. In Fig. 9, the result (solid line) is obtained with the tolerance
2e−04 and the indicator (3.4). It can be observed clearly that the numerical result of the
total energy is much closer to the reference value (-2.83 au). In the meantime, the ampli-
tude of the nonphysical oscillation is also reduced significantly. In this simulation, only
20% more mesh grids are introduced in the simulation, compared with that in Fig. 8.
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Figure 10: Convergence history of the simulation with h-adaptive methods for Helium atom.

It is worth mentioning that the Hierarchical Geometry Tree (HGT) [2] structure is used
in our h-adaptive methods, which allows an efficient implementation of the interpolation
of the solutions after an adaptive refinement of the mesh. In the meantime, the quality
interpolation provides a quality starting point for the next SCF iteration, which makes
the convergence of each SCF iteration quite stable. This can obviously be observed from
Fig. 10. In the figure, the SCF iteration history with Algorithm 1 for Helium all-electron
calculation is shown. In Algorithm 1, after the SCF convergent solution is obtained with
the current mesh, the mesh adaptive process in Algorithm 1 will generate a new mesh if
the stop criterion for the loop is not reached, and the solution will be updated from the
current mesh to the new mesh. Then a new SCF iteration will be implemented. As we
can see, when a new SCF iteration is started, the initial density difference is large. This
can be explained by the interpolation error. However, the solution obtained from the
interpolation still serve as a very good initial solution for the new SCF iteration, which
makes the convergence quite stable, i.e., around 30 iteration steps are needed in each SCF
iteration to make the L2 norm of the density difference below 1.0e−06.

4 Numerical results

In this section, we present several numerical examples to demonstrate the ability of our
methods on preserving the translational and rotational invariance of the total energy.
The numerical results also show that the bond length of a given molecule, and ionic force
acting on the nucleus can be calculated accurately with our methods.

All numerical experiments are implemented using the library AFEABIC [2, 3] on a
Dell precision T5600 workstation (Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, 64G
memory). OpenMP is used to accelerate the simulations.
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4.1 A dihydrogen molecule with all-electron calculation

The example in this subsection is to predict the bond length of a H2 molecule. All-electron
calculation is used for this simulation. The size of the computational domain is [−80,80]3,
and the initial positions for two hydrogen atoms are [−0.3,0,0] and [0.3,0,0], respectively.
The simulation process is as follows. After the ground state is reached at the current
configuration, the distance between two nuclei will be enlarged by 0.04 au, i.e., the left
nucleus will move towards left by 0.02 au, and the right nucleus will move towards right
by 0.02 au. Fig. 11 shows the results of this simulation.

(a) (b)

(c) (d)

Figure 11: (a): the isosurface of H2; (b): the mesh cross section on x-y plane; (c): the convergence history;
(d): local mesh of the one in (b).
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Fig. 11(a) shows the isosurface of the H2 molecule. With our mesh adaptive method,
the isosurface is resolved smoothly. Fig. 11(b) and (d) shows that the error indicator
(3.4) successfully and dynamically resolve the trouble region with the move of the nuclei,
while keeps the mesh grids coarse in the region away from the trouble region. Fig. 11(c)
shows the convergence history of the SCF iteration in the simulation. From the figure
we can see that the SCF iteration converges very smoothly in each mesh generated by
the mesh adaptive methods. It can also be observed that quality solution interpolation
significantly reduces the initial L2 norm of the density difference, and also accelerates the
convergence. Although around 10 times mesh adaptive refinement, and 18 SCF iteration
steps by average in each mesh, are needed for implementing Algorithm 1 when the nuclei
of H2 are at their original positions, only around 5 times mesh adaptive refinement, and
around 9 SCF iteration steps in each mesh, are needed after the nuclei move.

Fig. 12 shows the variation of the total energy and ionic force with respect to the
change of the bond length of H2 molecule. The ionic force here is calculated by using
(1.1), i.e., the negative of the partial derivative of the total energy with respect to the ionic
position. The numerical differentiation is employed for the calculation. Two observations
can be made from the figure. First, with the help of the error indicator (3.4), our mesh
adaptive method generates a very smooth curve for the variation of the total energy, no
high frequency numerical oscillation can be observed from the curve. Our numerical re-
sult shows that the bond length of the H2 molecule is around 1.420 au, which agrees with
the experimental value (1.401 au) very well. Second, the ionic force acting on the nucleus
is zero around 1.420 au, and the directions of the force are opposite when the bond length
becomes small and large. Furthermore, the curve for the ionic force is monotone. All
these observations agree with the theory very well, which shows that our mesh adaptive
method can serve the force calculation very well.
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Figure 12: The curve of the bond length vs total energy (solid line), and the curve of the bond length vs ionic
force (dashed line).



G. Bao, G. H. Hu and D. Liu / Commun. Comput. Phys., 19 (2016), pp. 1-23 19

4.2 A body-centered cubic unit cell of sodium with pseudopotential
calculation

In this example, the pseudopotential calculation for a sodium body-centered cubic (BCC)
unit cell will be implemented. The purpose of this example is twofold. First, the lattice
constant will be predicted by our method to compare with the experimental one. Second,
the rotational invariance of the total energy of the sodium BCC unit will be demonstrated.

The first test in this example is for the prediction of the lattice constant of the BCC unit
cell. The structure of the BCC unit cell of the sodium is shown in Fig. 13 (left one), where a
there denotes the lattice constant. In the simulation, a cube with the dimension [−80,80]3

is adopted as the computational domain, and the nucleus in the center of the BCC unit
cell is put at the origin of the coordinate system. The simulation process is as follows. The
initial lattice constant a is equal to 3 au. After the system is solved self-consistently, each
nucleus except for the centered one moves 0.173 au along the line which connects the
origin and the ionic position, and the direction is the one which is away from the origin.
Then the Kohn-Sham equation is solved in the new configuration. We repeat the above
process to get the results shown in Fig. 13 (right one). In the figure, we can see that the
lattice constant is around 6.600 au. This value is far from the experimental one, i.e., 8.108
au. This is because only one BCC unit cell is considered in our simulation. By increasing
the number of the BCC unit cell, the prediction should become more accurate, see [28].
Our point in this example is for the nonoscillatory curve of the total energy vs the lattice
constant, and for the derived quality curve of the ionic force vs the lattice constant.

Figure 13: Left: a body-centered unit cell, the nuclei locate at eight corners and the center of the cube. a
denotes the lattice constant. Right: the curve of the bond length vs total energy (solid line), and the curve of
the bond length vs ionic force (dashed line)

The second test in this example will show the ability of our method on preserving the
total energy when the BCC unit cell does a rotational move. Similar to the case of trans-
lational move, since nothing is changed but the positions of those nuclei, the total energy
should be a constant theoretically. To show that our numerical method can preserve this
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Figure 14: Left: the isosurface of a BCC unit cell of sodium from the initial configuration. Right: the total
energy of BCC unit cell of sodium versus the rotation angel.

property well, we rotate the BCC unit cell by π/6 each time around the z-axis, then calcu-
late the ground-state total energy. Fig. 14 shows the results of our simulation where the
rotational invariance of the total energy can be observed obviously. In this simulation,
the lattice constant 6.635 au from our above simulation is adopted.

5 Conclusion

In this paper, we numerically study the translational variance of the total energy of the
Kohn-Sham equation when the finite element method is used. By using the pseudopo-
tential, the singularity introduced by the external potential can be reduced effectively,
while the eggbox effect can also be restrained significantly. We introduce a stabilized cu-
bature strategy to further reduce the eggbox effect, which is applicable for both uniform
and nonuniform meshes.

For the all-electron calculations, we follow [2] to use the h-adaptive finite element
methods to reduce the numerical oscillation. Different from the error indicator in [2],
we follow [30] to introduce a residual based a posteriori error estimator to serve as the
indicator. The numerical results show that with such error indicator, the performance of
our h-adaptive method is improved effectively, i.e., with the decreasing the tolerance in
the h-adaptive process, both the numerical accuracy of the numerical solution, and the
translational and rotational invariance of the total energy, are improved significantly.

Numerical tests show that our method works very well for both all-electron (a dihy-
drogen molecule) and pseudopotential (a BCC unit cell of sodium) calculations on the
bond length and ionic force. The accurate evaluation on the ionic force is crucial for
the geometry optimization of the electronic structure, and for the numerical study of
the molecular dynamics. Although our method works well on the force calculation, it
should be noted that using (1.1) to calculate the force is not an efficient way, since extra
three SCF iterations are needed for the force evaluation for one single nucleus. This could
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be very time consuming, especially for the large molecules. This issue can be resolved by
using the Hellmann-Feynman theorem. The theorem indicates that under some condi-
tions, the force can be calculated only based on the current Hamiltonian, which dramati-
cally simplifies the ionic force calculation. Unfortunately, there are some issues on using
Hellmann-Feynman force instead of the original ionic force, when the real-space meth-
ods are employed. In our forthcoming paper, we will deliver some results on calculating
ionic force with the mesh adaptive finite element methods.
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