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Abstract. In this paper, we discuss a gradient-enhanced ℓ1 approach for the recov-
ery of sparse Fourier expansions. By gradient-enhanced approaches we mean that the
directional derivatives along given vectors are utilized to improve the sparse approxi-
mations. We first consider the case where both the function values and the directional
derivatives at sampling points are known. We show that, under some mild condi-
tions, the inclusion of the derivatives information can indeed decrease the coherence
of measurement matrix, and thus leads to the improved the sparse recovery conditions
of the ℓ1 minimization. We also consider the case where either the function values or
the directional derivatives are known at the sampling points, in which we present a
sufficient condition under which the measurement matrix satisfies RIP, provided that
the samples are distributed according to the uniform measure. This result shows that
the derivatives information plays a similar role as that of the function values. Several
numerical examples are presented to support the theoretical statements. Potential ap-
plications to function (Hermite-type) interpolations and uncertainty quantification are
also discussed.
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1 Introduction

Compressed sensing (CS), introduced by Candes, Romberg & Tao [14] and Donoho [25],
has been a hot research field in recent years [2,3,7,12,16–19,29,37]. The main motivation
for CS is that many real world signals can be well approximated by sparse ones, more
precisely, they can be approximated by an expansion in terms of a suitable basis (e.g,
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Fourier basis), which has only a few non-vanishing terms. CS predicts that sparse vec-
tors in high dimensions can be recovered from few measurements. Recently, CS has been
successfully applied in many areas, such as imaging [42,46], radar [24], wireless commu-
nication [36], Magnetic Resonance Imaging [15], uncertainty quantification [23, 26, 32], to
name a few.

In this work, we consider the recovery of sparse Fourier expansions by ℓ1 minimiza-
tion. Particularly, we propose in this work a gradient-enhanced ℓ1 minimization, which
means that the gradient information of the Fourier expansions at samples are included in
the ℓ1 minimization. In other words, we consider the ℓ1 minimization with both function
evaluations and the derivative information and we will study the effect of the deriva-
tive on the performance of ℓ1 minimization. We next briefly introduce the motivation for
considering the derivative information:

• Uncertainty quantification (UQ) for random PDEs. In UQ, one represents the so-
lution as a linear combination of certain bases, such as orthonormal polynomials
and Fourier bases, and then uses a few sample evaluations to obtain the sparse
approximation of the solutions. Given the sample evaluations, the derivative in-
formation can sometime be obtained in a cheaper way, e.g, by solving the adjoint
equations [13, 21, 41]. This is a well known approach in the numerical PDE com-
munity, and has been used in UQ studies [4, 25, 28, 35]. Naturally, one hopes to use
both the function evaluations and the gradient information to enhance the sparse
approximation of the solution to PDE.

• Sparse Hermite-type interpolation. Recently, one employs the result in CS to study
the sparse interpolation [1, 14, 40, 52] which shows many potential applications. To
find a function from a finite dimensional function space which interpolates function
value and derivatives at some points is called Hermite interpolation [5, 31, 44, 48]).
The gradient-enhanced approach here can be viewed as a sparse Hermite-type in-
terpolation which seeks to find a sparse interpolation from the function values and
derivatives. Hence, the results in this paper also show the connection between com-
pressed sensing and the classical approximation theory.

A simple observation is that the gradient-enhanced ℓ1 approach uses more informa-
tion than the standard approach (or in other words, enhance the row size of the sensing
matrix), and this opens up the possibility to improve the sparse recovery ability of the
ℓ1 minimization. This work aims at analyzing the gradient-enhanced ℓ1 minimization and
provide precise conditions under which the new approach can indeed improve the sparse
recovery. To this end, we begin with some preliminaries on CS.

1.1 Compressed sensing

The aim of compressed sensing is to find a sparse solution to linear equations

Φc = f,
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where f=( f (z1),··· , f (zN))
T ∈CN is usually the function evaluations, c∈CM is the un-

known vector and Φ∈RN×M is the measurement matrix (Typically, the components here
are often evaluations of certain bases on given samples). In CS, one usually uses the
following programming to obtain the sparse solution

argmin‖c‖0, subject to Φc= f. (1.1)

The convex relaxation of (1.1) is

argmin‖c‖1, subject to Φc= f. (1.2)

Note that the constraints Φc=f can be relaxed to ‖Φc−f‖≤ǫ for some tolerance value ǫ,
yielding a regression type denoising approach.

Several types of sufficient conditions (for Φ) have been presented in CS, such as mu-
tual incoherence property (MIP) and restricted isometry property (RIP), under which the
solution to (1.2) is the same with the one of (1.1). In the following, we shall give a brief
review of these conditions. We first introduce the results about MIP. The mutual incoher-
ence constant (MIC) of Φ is defined as

µ := µ(Φ) := max
k 6=j

|〈Φk,Φj〉|
‖Φk‖2 ·‖Φj‖2

, (1.3)

where {Φj}M
j=1 are the associated column vectors. Assume that c0 is a s-sparse vector in

CM, i.e., ‖c0‖0≤ s, and if

µ <
1

2s−1
, (1.4)

then the solution to the ℓ1 minimization (1.2) with f=Φc0 is exactly c0, i.e.,

c0=argmin
c∈CM

{‖c‖1 subject to Φc=Φc0}.

This result was first presented in [16] for the case with Φ being the union of two orthog-
onal matrices, and was later extended to general matrices by Fuchs [20] and Gribonval &
Nielsen [22]. In [7], it is also shown that µ<

1
2s−1 is sufficient for stably approximating c

in the noisy case.
We next turn to RIP. We say that the matrix Φ satisfies s-order RIP with restricted

isometry constant (RIC) δs∈ [0,1) if there holds

(1−δs)‖y‖2
2≤‖Φy‖≤ (1+δs)‖y‖2

2 (1.5)

for all y ∈ CM with ‖y‖0 ≤ s. In fact, δs yields a uniform bound on the spectral radius
of the sub-matrices of Φ formed by selecting any s columns of Φ. It was shown that
one can recover a s-sparse vector by solving the ℓ1 minimization if Φ satisfies RIP with
δ3s+3δ4s < 2 [9]. The RIP condition is recently improved to δs <

1
3 in [8]. More precisely,

we have



Z. Xu and T. Zhou / Commun. Comput. Phys., 24 (2018), pp. 286-308 289

Theorem 1.1 (Sparse recovery for RIP-matrices [8,9]). Let Φ∈RN×M be a matrix satisfying
s-order RIP with δs <

1
3 . For any given c0 ∈RM, let c# be the solution of the ℓ1-minimization

argmin‖c‖1 s.t. Φc=Φc0. (1.6)

Then we have

‖c#−c0‖2≤C
σs,1(c0)√

s
with σs,1(c0)= inf

‖y‖0≤s
‖y−c0‖1, (1.7)

for some constant C>0 that depends only on δs. In particular, if c0 is s-sparse then reconstruction
is exact, i.e., c#= c0.

1.2 The recovery of sparse trigonometric polynomials

We denote by Π(Γ) the space of all trigonometric polynomials which are of the following
form

f (x) = ∑
k∈Γ

ckeik·x, x=(x1,··· ,xd)
⊤∈ [−π,π)d, (1.8)

where ck∈C and Γ⊂Zd is a finite index set. The dimension of Π(Γ) (or the cardinality of
the index set Γ) is denoted by M=#Γ. To state conveniently, we also impose an order on
these bases and re-write the expansion into the following single index version

f (x) =∑
k∈Γ

ckeik·x=
M

∑
j=1

cjφj(x), (1.9)

where we denoted by {φj}M
j=1 the re-ordered trigonometric bases. Suppose that Ξ =

{zj}N
j=1⊂ [−π,π)d. Throughout this paper, we define the interpolation matrix correspond-

ing to {φt}M
t=1 and {zj}N

j=1 as

Φ=
[
φt(zj)

]
j=1,···,N,t=1,···,M∈C

N×M.

We denote the support of the coefficient vector {ck}k∈Γ by T, i.e.,

T :={k : ck 6=0}.

In this work, we are concerned with the recovery of sparse trigonometric polynomials,
namely, we assume that s=#T is much smaller than the dimension of M=#Γ, i.e., s≪M.
We shall also set

Πs(Γ) :=
⋃

T⊂Γ
#T≤s

Π(T),

where Π(T) denotes the space of all trigonometric polynomials whose coefficients are
supported on T. Note that the set Πs(Γ) is the union of linear spaces and consists of all
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trigonometric polynomials in Π(Γ) with the number of nonzero Fourier coefficients less
than or equal to s.

An important topic in CS is to design a sampling set Ξ={zj}N
j=1⊂ [−π,π)d to recover

f ∈Πs(Γ), and this is equivalent to find a s-sparse solution to

Φc = Φc0,

where Φ :=(φt(zj))j=1,···,N,t=1,···,M ∈CN×M and c0 ∈CM satisfying ‖c0‖0 ≤ s. Hence, it is
possible to use the ℓ1 minimization to recover f ∈Πs(Γ) from f (zj), j=1,··· ,N. According
to Theorem 1.1, to guarantee

argmin{‖c‖1 : Φc=Φc0}= c0, (1.10)

it is enough to require that Φ satisfies the s-order RIP with δs <1/3 (see also [50]). Vari-
ants choices of sampling strategies have been proposed recently to guarantee the RIP
condition. In [11], Candès and Tao consider the case where z1,··· ,zN have the uniform

distribution on the grid {0, 2π
N ,··· , 2π(N−1)

N }d and the result is improved by Rudelson and
Vershynin [43]. In [37, 39], Rauhut consider the case where z1,··· ,zN have uniform dis-
tribution on [−π,π)d and show that Φ satisfy RIP δs ≤ δ with probability at least 1−ǫ
provided

N/log(N)≥ C

δ2
slog2(s)log(M)log(ǫ−1).

Beyond RIP, one can also use MIP to study the performance of the ℓ1 minimization for the
recovery of f∈Πs(Γ). As said before, µ< 1

2s−1 is a sufficient condition for (1.10) holding. In

[38], Kunis and Rauhut proved that µ< 1
2s−1 holds with probability at least 1−ǫ provided

N ≥C(2s−1)2 log(4M2/ǫ) and z1,··· ,zN are uniformly distributed on [−π,π)d. In [51],
for the case where Γ=[−q,q]d and d≥2, Xu introduce the deterministic sampling points

zj =2π(j, j2,··· , jd)/N, j=1,··· ,N, (1.11)

and show that µ(Φ)< 1
2s−1 provided N>max{(2s−1)2(d−1)2,2q+1} is a prime number.

We would like to remark that for the case d = 1, a deterministic sampling strategy has
been introduced in [49].

1.3 Our contribution

In this work, we shall analyze a gradient-enhanced ℓ1 approach for the recovery of sparse
trigonometric polynomials. More precisely, we denote the sampling set by

Ξ={zj}N
j=1⊂ [−π,π)d with #Ξ=N.

The aim is to reconstruct f ∈Πs(Γ) from its sample evaluations and/or the gradient eval-
uations. We shall consider the following two problems:
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• Problem 1: Recover f ∈Πs(Γ) from

f (zj) = f j, zj ∈Ξ, (1.12)

Dvt f (zj) = f ′j,t, t=1,··· ,k, zj ∈Ξ, (1.13)

where Dvt f (zj) :=〈∇ f (x),vt〉|x=zj
and vt∈Rd,t=1,··· ,k (k≤d). Namely, we assume

that both function values and the directional derivative information at the sampling
points are known.

• Problem 2: Recover f ∈Πs(Γ) from

D
τj
vj

f (zj) = yj, zj ∈Ξ, (1.14)

where vj ∈Rd,τj ∈Z≥0, j= 1,··· ,N. Here, it is supposed that one knows either the
τj-order directional derivative of f at zj or the function value f (zj). If τj = 0, then
(1.14) means that we know only the function value of f at zj, i.e., yj = f (zj). We
consider this problem as an purely approximation problem, as its connection to UQ
is up to now unclear.

We shall adopt the MIP framework and the RIP framework to analyze the above two
problems respectively. We first consider Problem 1. We denote by Φ the interpolation
matrix corresponding to {φj}M

j=1 and Ξ. Similarly, for t = 1,··· ,k, we denote by Φt the

interpolation matrix corresponding to {Dvt φj}M
j=1 and Ξ. Then, the gradient-enhanced ℓ1

minimization yields:

argmin‖c‖1 subject to Φ̃c= f̃, (1.15)

where

f̃=




f

f1
...

fk


, Φ̃=




Φ

Φ1
...

Φk


.

Notice that by combining gradient information, we have increased the row size of the de-
sign matrix, i.e., (k+1)N instead of N, while the length of the unknown vector remains
the same. Naturally, one is interested in whether Φt is helpful in improving the MIP
condition of Φ̃. One of our main purpose is to show µ(Φ̃)≤λµ(Φ) where λ<1 is a pos-
itive constant depending on Γ and v1,··· ,vk which implies that the gradient information
is indeed helpful for improving the recovery guarantee of ℓ1 minimization.

For Problem 2, we consider the following ℓ1 minimization

argmin‖c̃‖1 subject to ΨW̃c̃= f, (1.16)
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where Ψ :=
[
D

τj
vj

φt(zj)
]

t=1,···,M,j=1,···,N, f :=(y1,··· ,yN)
T and W̃ is a diagonal normalizing

matrix so that the column norm of Ψ̃=ΨW̃ is normalized. If the solution to (1.16) is c̃#

then the coefficient vector of f ∈ Πs(Γ) is W̃c̃#. We shall study the RIP of Ψ̃ under the
setting of z1,··· ,zN being uniformly distributed samples on [−π,π)d. In particular, we
show that Ψ̃ satisfies RIP with RIC δs≤δ with probability at least 1−ǫ provided

N≥2
(C0R0)2

δ2
s(ln100s)2 ln(4M)ln(10N)ln

β

ǫ
+κ,

where κ and R0 are defined in Section 3. This indicates that the gradient information
plays a similar role as that of the function values.

1.4 Related work

We are not only one investigating the performance of the gradient-enhance ℓ1 approach.
We would like to mention that many numerical experiments were reported in [4, 25, 28,
35]. In [28], the new bases (Sobleve orthogonal bases) are constructed which are suitable
for the gradient-enhanced approach for the least-squares regression. A special case of
Problem 1 is studied in [35] under the setting of the bases being Hermite polynomial
and the sampling points being random. The results in [35] show that µ(Φ̃)≤µ(Φ) and
this inequality is almost-surely strict. Our analysis is a little bit more general and it is
shown that µ(Φ̃)≤λµ(Φ) where λ<1 is a positive constant and our result does not suffer
from probabilistic qualifiers (e.g., “almost surely”). We also present an estimation for the
constant λ (see Theorem 2.1). However, we would like to remark that in UQ applications,
Hermite polynomials are more important than that of the trigonometric polynomials.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we focus on Problem 1 and we
shall show that µ(Φ̃)≤λµ(Φ) with λ<1 being a constant. We also shown that multiplying
a diagonal matrix W to the interpolation matrix is helpful to decrease the coherence of
Φ̃. We turn to Problem 2 in Section 3. Particularly, we present the RIP of Ψ̃ under the
setting of z1,··· ,zN being uniformly distributed samples on [−π,π)d. Numerical results
are presented in Section 4 to support the theoretical finding, and we finally give some
concluding remarks in Section 5.

2 Coherence analysis for Problem 1

This section is devoted to the coherence analysis of Problem 1.
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2.1 Preliminary results

Recall that f ∈Πs(Γ), i.e.,
f (x) = ∑

k∈Γ

ckeik·x,

where ‖c‖0 ≤ s with c=(ck)k∈Γ. We set V :=(v1,··· ,vk)∈Rd×k where v1,··· ,vk ∈Rd are k
directions. We first introduce the following definition.

Definition 2.1. For any k,k′∈Γ, we define the distance between k and k′ as follows:

‖k−k′‖V :=‖VTk−VTk′‖∞.

The directions v1,··· ,vk are said to be admissible with respect to Γ if ‖k−k′‖V 6=0 for any
k,k′∈Γ with k 6=k′.

Note that ‖k−k′‖V=0 if and only if VTk=VTk′. Hence, if span{v1,··· ,vk}=Rd, then
V=(v1,··· ,vk) is admissible with respect to Γ. We next present an example to show that
there exists v1,··· ,vk∈Rd which are admissible with respect to Γ but span{v1,··· ,vk}6=Rd.
Suppose that d=2 and Γ=[−q,q]2∩Z2. Take v1 :=[1,

√
2]T ∈R2. Notice that

{η∈R
2 : 〈η,v1〉=0} = {α·(−

√
2,1)T ∈R

2 : α∈R}.

Hence, we know that the set

{η∈R
2 : 〈η,v1〉=0}∩Z

2

contains only zero point, and this implies that v1 is admissible with respect to Γ but
span{v1} 6=R2.

Recall that in Problem 1, we would like to recover f ∈Πs(Γ) from

f (zj)= f j, Dvt f (zj)= f j,t, t=1,··· ,k, zj ∈Ξ, (2.1)

where Dvt f (zj) := 〈∇ f (x),vk〉|x=zj
and vt ∈Rd. We also recall the definition of the inter-

polation matrix corresponding to {eik·x}k∈Γ and Ξ :

Φ=
[
eik·zj

]

zj∈Ξ,k∈Γ
, Φt=

[
Dvte

ik·zj

]

zj∈Ξ,k∈Γ
, 1≤ t≤ k,

and

Φ̃ :=




Φ

Φ1
...

Φk


. (2.2)

We next study the coherence of Φ̃, i.e., µ(Φ̃). To this end, we first introduce a refinement
of Cauchy-Schwarz inequality.



294 Z. Xu and T. Zhou / Commun. Comput. Phys., 24 (2018), pp. 286-308

Lemma 2.1. [34, P.289] Suppose that x ∈Rd and y∈Rd are not proportional. Suppose that
u∈Rd satisfy 〈u,x〉=0, 〈u,y〉=1. Then

〈x,y〉2

‖x‖2 ·‖y‖2
≤ 1− 1

‖y‖2 ·‖u‖2
.

2.2 Coherence analysis

The main result of this section is summarized as the following theorem:

Theorem 2.1. Suppose that V=(v1,··· ,vk)∈Rd×k is admissible with respect to the index set Γ.
Then we have

µ(Φ̃) ≤ λ·µ(Φ),

where

λ ≤
(

1− Γmin

maxk∈Γ(1+‖VTk‖2
∞)maxk∈Γ(1+‖VTk‖2

2)

)1/2

,

and

Γmin := min
k 6=k′,k,k′∈Γ

‖k−k′‖2
V.

Proof. To state conveniently, we denote by ak the column vector of Φ, i.e.,

ak := [eik·zj : zj ∈Ξ].

A simple observation is that

µ(Φ) =
1

N
max

k 6=k′,k,k′∈Γ
|〈ak,ak′〉|.

Notice that we have

Dvte
ik·zj = 〈vt,k〉eik·zj .

Hence, the column vectors of Φt are {〈vt,k〉ak : k∈Γ}. Then a simple observation yields

µ(Φ̃)= max
k 6=k′,k,k′∈Γ

|〈ak,ak′〉| |1+∑
k
t=1〈vt,k〉〈vt,k

′〉|√
1+∑

k
t=1〈vt,k〉2

√
1+∑

k
t=1〈vt,k′〉2

,

which implies

µ(Φ̃)≤λ·µ(Φ)

with

λ= max
k 6=k′,k,k′∈Γ

|1+∑
k
t=1〈vt,k〉〈vt,k

′〉|√
1+∑

k
t=1〈vt,k〉2

√
1+∑

k
t=1〈vt,k′〉2

. (2.3)
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For fixed k,k′∈Γ with k 6=k′, we next study the quantity

|1+∑
k
t=1〈vt,k〉〈vt,k

′〉|√
1+∑

k
t=1〈vt,k〉2 ·

√
1+∑

k
t=1〈vt,k′〉2

.

We let x :=(1,〈v1,k〉,··· ,〈vk,k〉), y :=(1,〈v1,k′〉,··· ,〈vk,k′〉) and

t0 :=argmax1≤t≤k|〈vt,k−k′〉|.

Suppose that u=(u1,··· ,ud)∈Rd where u1=
−〈vt0

,k〉
〈vt0

,k′−k〉 , ut0 =
1

〈vt0
,k′−k〉 and other entries are

0. It can be shown that u satisfies 〈x,u〉=0 and 〈y,u〉=1. Then, Lemma 2.1 implies that

|1+∑
k
t=1〈vt,k〉〈vt,k

′〉|√
1+∑

k
t=1〈vt,k〉2 ·

√
1+∑

k
t=1〈vt,k′〉2

≤
√

1− 1

‖y‖2 ·‖u‖2
.

Notice that

‖u‖2 ≤ 1+‖VTk‖2
∞

‖k′−k‖2
V

≤ 1+‖VTk‖2
∞

Γmin
, ‖y‖2 =1+‖VTk‖2

2.

Then, we obtain

λ ≤
(

1− Γmin

maxk∈Γ(1+‖VTk‖2
∞)maxk∈Γ(1+‖VTk‖2

2)

)1/2

. (2.4)

This completes the proof.

For arbitrary sampling points, the above Theorem shows that the inclusion of gra-
dient information can indeed decrease the MIP of the interpolation matrix, under the
condition that the (v1,··· ,vk) is admissible with respect to the index set Γ. For the special
case where Γ=[−q,q]d∩Zd and vj =ej, j=1,··· ,d, we have the following corollary:

Corollary 2.1. Suppose that Γ = [−q,q]d∩Zd,V = (v1,··· ,vd) ∈ Rd×d and vj = ej where ej

denotes the vector with jth being 1 and all other entries being 0. We have

µ(Φ̃) ≤
(

1− 1

(1+q2)(1+dq2)

)1/2

µ(Φ).

Proof. For V=(e1,··· ,ed) we can derive that

Γmin= min
k 6=k′,k,k′∈Γ

‖k−k′‖2
V =1.

Similarly, we have
max
k∈Γ

‖VTk‖2
∞ = q2, max

k∈Γ
‖VTk‖2

2 = dq2.

Then the desired results follows by using Theorem 2.1.
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Next, we shall present an example with showing that, without the admissible con-
dition, it is possible µ(Φ) = µ(Φ̃). Consider the two dimensional case with d = 2 and
Γ=[−q,q]2∩Zd. Suppose that p>2q+1 is a prime number and let us consider the follow-
ing samples

Ξ = {2π(j, j2)/p : j=0,··· ,p−1}.

We denote the interpolation matrix corresponding to Ξ as Ψ, i.e.,

Ψ :=
[

exp(2iπ(k1 j+k2 j2)/p)
]

j=0,···,p−1,(k1,k2)∈[−q,q]2
∈C

p×(2q+1)2
. (2.5)

We also set the matrix with gradient information as

Ψ1 :=
[

De1
exp(2iπ(k1 j+k2 j2))

]

j=0,···,p−1,(k1,k2)∈[−q,q]2
∈C

p×(2q+1)2
(2.6)

Proposition 2.1. Let Ψ̃=

(
Ψ

Ψ1

)
where Ψ and Ψ1 are defined in (2.5) and (2.6), respec-

tively. Then, we have µ(Ψ̃)=µ(Ψ).

Proof. Notice that the column vector of Ψ are

ak1 ,k2
=
[

exp(2iπ(k1 j+k2 j2)/p)
]

j=0,···,p−1
.

The Gauss sum formula shows that µ(Ψ)=1/
√

p. Particularly, we have

|〈ak1 ,k2
,ak′1 ,k′2

〉|
‖ak1 ,k2

‖·‖ak′1 ,k′2
‖ =

1√
p

,

provided that k1= k′1 but k2 6= k′2. Notice that the column vectors of Ψ̃ are

ãk1 ,k2
:=

(
ak1,k2

k1ak1 ,k2

)
. (2.7)

Then for (k1,k2) and (k′1,k′2) with k1= k′1,k2 6= k′2, we have

µ(Ψ̃)=
|〈ãk1 ,k2

,ãk′1 ,k′2
〉|

‖ãk1 ,k2
‖·‖ãk′1 ,k′2

‖ =
|〈ak1 ,k2

,ak′1 ,k′2
〉+k2

1〈ak1 ,k2
,ak′1 ,k′2

〉|
(1+k2

1)·‖ak1 ,k2
‖·‖ak′1 ,k′2

‖ =
1√
p

.

The proof is completed.
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2.3 An improved estimation

In this section, we provide an improved estimation by weighting the gradient information.
Notice that for any constant α∈R, we have

α·Dvt f (zj) = α· f j,t .

After multiplying a constant α, is it possible to decrease the coherence of the interpolation
matrix Φ̃? We answer this question in the following theorem.

Theorem 2.2. Suppose that W=diag(W1,··· ,WkN)∈RkN×kN is a diagonal matrix with

Wj =

{
1, 1≤ j≤N,

α, else.
(2.8)

Then, under conditions in Theorem 2.1, we have

µ(WΦ̃)≤λµ(Φ),

where

λ≤
(

1− α2Γmin

maxk∈Γ(1+α2‖VTk‖2
∞)·maxk∈Γ(1+α2‖VTk‖2

2)

)1/2

. (2.9)

Proof. The proof is similar with the one of Theorem 2.1. We just replace the definition of
x and y by

x :=(1,α〈v1,k〉,··· ,α〈vk,k〉), y :=(1,α〈v1,k′〉,··· ,α〈vk,k′〉).

And then the desired follows by taking u = (u1,··· ,ud)∈ Rd where u1 =
−〈vt0

,k〉
〈vt0

,k′−k〉 ,ut0 =
1

α〈vt0
,k′−k〉 and other entries are 0.

Notice that the above upper bound in (2.9)

(
1− α2Γmin

maxk∈Γ(1+α2‖VTk‖2
∞)·maxk∈Γ(1+α2‖VTk‖2

2)

)1/2

reach its minimum when

α=
1√

maxk∈Γ‖VTk‖∞ ·maxk∈Γ‖VTk‖
.

Particular, using similar arguments the as in Corollary 2.1, we have
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Corollary 2.2. Suppose that Γ=[−q,q]d, V=(v1,··· ,vd)∈Rd×d and vj =ej where ej denotes
the vector with jth being 1 and all other entries being 0. If we set

α=
1√

maxk∈Γ‖VTk‖∞ ·maxk∈Γ‖VTk‖
=

1√
dq

,

then, it holds

µ(WΦ̃) ≤
(

1− 1

(1+
√

d)2q

)1/2

µ(Φ̃),

where W is defined in Theorem 2.2.

Remark 2.1. Notice that

(
1− 1

(1+
√

d)2q

)1/2

≤
(

1− 1

(1+q2)(1+dq2)

)1/2

.

Hence, by multiplying the matrix W, one can obtain a better estimation over the result in
Corollary 2.1.

3 RIP analysis for Problem 2

This section is devoted to the RIP analysis of Problem 2. The aim of Problem 2 is to
recover f ∈Πs(Γ) with using

yj =D
τj
vj

f (zj), j=1,··· ,N, (3.1)

where vj ∈Rd,τj ∈Z≥0. When τj = 0, the above condition reduces to the case where we
know only the function values at zj, i.e., yj= f (zj). We use the following ℓ1 minimization
to recover f :

argmin‖c̃‖1 subject to Ψ̃c̃= f, (3.2)

where Ψ̃=ΨW̃ with Ψ :=
[
D

τj
vj

φt(zj)
]

t=1,···,M,j=1,···,N ∈CN×M, and

W̃ :=diag


 1√

∑
N
j=1|〈vj,k〉|2τj

: k∈Γ


∈C

M×M.

Notice that the above normalizing matrix W̃ is chosen such that the column norm of Ψ̃

is normalized. After solving problem (3.2), we should re-normalize the solution, i.e., the
desired solution is c# =W̃c̃# where c̃# denotes the solution to (3.2).

We set
Zk :={j : 〈vj,k〉τj =0,1≤ j≤N}, κ :=max

k∈Γ
#Zk.
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Here, we set 〈vj,k〉τj =1 if τj =0. We also set

R0 :=
maxj∈Zc

k
|〈vj,k〉|τj

minj∈Zc
k
|〈vj,k〉|τj

,

where Zc
k :={1,··· ,N}\Zk . We are now ready to give the main result of this section which

presents the RIP of Ψ̃. Particularly, motivated by the results in [43] and [37], we have

Theorem 3.1. Suppose that the random sampling points z1,··· ,zN are uniformly distributed on
[−π,π)d. Assume that vj∈Rd,τj∈Z≥0, j=1,··· ,N satisfy ∑

N
j=1〈vj,k〉2τj 6=0 for any k∈Γ. For

0<δ≤1/2 and 0<ǫ<1, if

N≥2
(C0R0)2

δ2
s(ln100s)2 ln(4M)ln(10N)ln

β

ǫ
+κ, (3.3)

then we have

P(δs≤δ) ≥ 1−ǫ,

where δs is the s-order RIP constant of Ψ̃, M :=#Γ and C0,β are universal constants.

We remark that improved RIP bounds are now available, see e.g. [2,14]. According to
Theorem 1.1, the above theorem shows that the ℓ1 minimization can produce a solution
to Problem 2 with probability at least 1−ǫ provided the number of samplings N satisfies
(3.3) with δ= 1/3. Inspired by Theorem 3.1, we conclude that the gradient information
can play a similar role as that of the function evaluations, up to a constant R0 (that might
be large), when the samples are chosen uniformly according to the uniform measure. The
proof of Theorem 3.1 follows the ideas in [43] (see also [37]), and is postponed to the end
of this section. To prove Theorem 3.1, we first introduce some useful lemmas.

Lemma 3.1. [27] Assume that ¸=(ξ j)
N
j=1 is a sequence of independent random vectors in CN

equipped with a (semi-)norm ‖·‖ having expectations xj =Eξ j. Then for 1≤ p<∞

(
E‖

N

∑
j=1

(ξ j−xj)‖p

)1/p

≤ 2

(
E‖

N

∑
j=1

ǫjξ j‖p

)1/p

,

where ffl=(ǫ)N
j=1 ∈{−1,1}N is a Rademacher sequence independent of ¸.

For B∈CM×M, the semi-norm |||·|||s is defined as following

|||B|||s :=max
x∈Σs

|〈Bx,x〉|, Σs :={x∈C
M :‖x‖2 ≤1,‖x‖0 ≤ s}.

Then we have
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Lemma 3.2. [37,43] Assume that x1,··· ,xN ∈CM satisfy maxj‖xj‖∞ ≤K. Assume that s≤N.
Then (

E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

ǫjx
∗
j xj

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

s

)1/p

≤Dp,s,N,M

√√√√
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

x∗j xj

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

,

where Dp,s,N,M=CpK
√

sln(100s)
√

ln(4M)·ln(10N),

Cp =

{
C′

1, p=1,

C′
2β1/p√p, p≥2,

and C′
1=94.81, C′

2≈82.56, β=6.028.

Lemma 3.3. [45] Suppose that Z is a random variable satisfying

(E|Z|p)1/p≤αβ1/p p1/γ for all p≥ p0

for some constants α,β,γ,p0>0. Then for all u≥ p
1/γ
0 we have

P(|Z|≥ e1/γαu)≤βe−uγ/γ.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We denote by
{

X̃j, j=1,··· ,N
}

the column vectors of Ψ̃. Note that x̃j

only depends on zj and hence they are independent vectors. Then a simple observation
is that

Ψ̃
∗
Ψ̃=

N

∑
j=1

X̃∗
j X̃j, EΨ̃

∗
Ψ̃=E

N

∑
j=1

X̃∗
j X̃j = Id.

We now consider

δs=
∣∣∣∣∣∣Ψ̃−Id

∣∣∣∣∣∣
s
=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

X̃∗
j X̃j−Id

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

=

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

(X̃∗
j X̃j−EX̃∗

j X̃j)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

.

By Lemma 3.1, we have

Ep :=

(
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

(
X̃∗

j X̃j−EX̃∗
j X̃j

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

s

)1/p

≤2

(
E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

ǫjX̃
∗
j X̃j

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p

s

)1/p

, (3.4)

where (ǫ1,··· ,ǫN)∈{−1,1}N is a Rademacher sequence. By combining (3.4) and Lemma
3.2, we obtain

E
p
p ≤ (2Dp,s,N,M)p ·

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

X̃∗
j X̃j

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

p/2

s

≤ (2Dp,s,N,M)p ·
(∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

X̃∗
j X̃j−Id

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

+1

)p/2

, (3.5)
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where Dp,s,N,M is defined in Lemma 3.2. The above equation (3.5) implies that

Ep≤2Dp,s,N,M

√
Ep+1.

Hence, we have

Ep≤2D2
p,s,N,M+2Dp,s,N,M

√
D2

p,s,N,M+1.

If Dp,s,N,M≤1/4 then

Ep ≤
1+

√
17

2
·Dp,s,N,M. (3.6)

Now, we set

θs :=min{1

2
,δs}=min

{
1

2
,

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
N

∑
j=1

(
X̃∗

j X̃j−EX̃∗
j X̃j

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
s

}
.

We claim that

(Eθ
p
s )

1/p≤min
{1

2
,Ep

}
≤ 1+

√
17

2
·Dp,s,N,M. (3.7)

In fact, when Dp,s,N,M ≤ 1
4 , (3.6) implies that Ep ≤ 1+

√
17

2 ·Dp,s,N,M. For the case where

Dp,s,N,M≥ 1
4 , we have

1

2
≤ 1+

√
17

2
·Dp,s,N,M.

Hence, (3.7) follows.
Then by Lemma 3.3, we obtain that for all u≥

√
2 we have

P

(
|θs|≥C0K ·

√
s·ln(100s)·

√
ln(4M)ln(10N) ·u

)
≤βexp(−u2/2), (3.8)

where

C0=
1+

√
17

2
·
√

e·C′
2,

and C′
2 is defined in Lemma 3.2. Notice that

K = ‖X̃j‖∞ ≤ R0√
N−κ

and 0<δ≤1/2. By taking u=
√

2
√

ln
β
ǫ in (3.8), we obtain that

P(δs≤δ)=P(θs ≤δ)≥1−ǫ,

provided that

N≥2
(C0R0)2

δ2
s(ln100s)2 ln(4M)ln(10N)ln

β

ǫ
+κ.

This completes the proof.
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Note that the lower bound in (3.3) depends on the κ and R0. To obtain a good bound,
we should require the index set Γ and the directions V have some special structure so
that κ and R0 are small. Particularly, we have the following corollary:

Corollary 3.1. Suppose that Γ = [1,q]d∩Zd with q ≥ 2, τj ∈ {0,1} and vj ∈ {e1,··· ,ed}, j =

1,··· ,N. Assume that the random sampling points z1,··· ,zN are uniform distribution on [−π,π)d.
For 0<δ≤1/2 and 0<ǫ<1, if

N≥2
(C0q)2

δ2
s(ln100s)2 ln(4M)ln(10N)ln

β

ǫ

then we have
P(δs≤δ)≥1−ǫ,

where δs is the s-order RIP constant of Ψ̃, M=(q−1)d and C0,β are universal constants.

Proof. Since Γ= [1,q]d and vj ∈{e1,··· ,ed}, we have κ= 0 and R0 = q. The desired result
follows by using Theorem 3.1.

4 Numerical examples

In this section we provide with numerical experiments to show the performance of the
gradient-enhanced ℓ1 recovery of sparse Fourier expansions f∈Πs(Γ). The main purpose
is to show that the inclusion of gradient information can indeed enhance the recovery
ability of the ℓ1 minimization. To this end, we shall compare the gradient-enhanced ℓ1

approach with the standard ℓ1 recovery. Throughout this section, we take Γ=[−q,q]d∩Zd.
In all our figures, we shall denote by “gradient-enhanced” the numerical results obtained
by using gradient-enhanced ℓ1 approach, while we shall use “standard” to denote the
numerical results by using the standard ℓ1 approach. To solve the ℓ1 minimization, we
shall employ the available tools SPGL1 from [47] that was implemented in MATLAB.

Example 4.1. We first present a numerical example under the setting of Problem 1. We
take d = 2, q = 10 and v1 = e1, v2 = e2. The N sampling points {zj}N

j=1 are produced

according to the uniform distribution on [−π,π)d. Given the sparsity s, the support set of
f∈Πs(Γ) is drawn from the uniform distribution over the set of all subsets of [−q,q]d with
the size s and the nonzero coefficients of f have the Gaussian distribution with mean zero
and standard deviation one. Then we have N function values f (zj), j= 1,··· ,N and we
also have 2N derivative values Dv1

f (zj),Dv2 f (zj), j=1,··· ,N. The full gradient-enhanced
approach uses the 3N values (100% information, i.e., the N function values and the 2N
derivative values). A 50% gradient-enhanced approach uses N function values and N
derivative values (one randomly chosen derivative from Dv1

f (zj),Dv2 f (zj) for each j∈
[1,N]). In Fig. 1 (Left), we show the recovery success rate against the number of sampling
points N with a fixed sparsity s= 5. For each number N, we repeat the experiment 500
times and calculate the success rate. The results show that the use of gradient information
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Figure 1: Left: Recovery rate against number of samples, s=5; Right: Recovery rate against sparsity, m=20.
Two dimensional tests with d=2, q=10.

can indeed improve the recovery rate, and furthermore, the more gradient information
is included, the better recovery rate is obtained. Fig. 1 (Right) depicts the recovery rate
against the sparsity s with a fixed number of random sampling points N=20. Again, we
repeat the experiment 500 times for each fixed sparsity s and calculate the recovery rate.
Similar conclusion can be made as the one obtained by the left plot.

Example 4.2. The setting of this numerical experiment is similar with the one in Example
4.1 with d= 5 and q= 2. In Fig. 2 (Left), we show the recovery rate against the number
of sampling points N with a fixed sparsity s = 6. In this example, we test the 20% and
40% gradient-enhanced approach which means that partial derivatives with respect to
one and two variables are involved in the ℓ1 approach, respectively. Again, the better
performance can be observed when the more gradient information is included. Similarly,
Fig. 2 (right) depicts the recovery rate against the sparsity with a fixed number of random
samples N=30.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N̂

R
ec

ov
er

y 
ra

te

 

 

standard
20% gradient−enhanced
40% gradient−enhanced

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity s

R
ec

ov
er

y 
ra

te

 

 
standard
20% gradient−enhanced
40% gradient−enhanced

Figure 2: Left: Recovery rate against number of samples, s=6; Right: Recovery rate against sparsity, m=30.
Five dimensional tests with d=5, q=2.
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Example 4.3. The numerical experiment in this example is made under the setting of
Problem 2. We take d=2, q=5 and s=8. The N sampling points are produced according
to the unform distribution on [−π,π)d. We use N/4 function values f (zj), j=1,··· ,N/4
and 3N/4 derivative values De1

f (zj), j=N/4+1,··· ,N to recover f ∈Πs(Γ). Fig. 3 com-
pares the recovery rate of the gradient-enhance ℓ1-approach with the one of the standard
ℓ1 approach which uses N function values. The numerical results show the derivative
values play a similar role with the function values.
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Figure 3: Left: Recovery rate against number of samples, d=5, q=2, s=5; Right: Recovery with 1/4 function

values and 3/4 partial derivative information for s = 8, d = 2, q = 5, M = 40. Comparisons with standard ℓ1

approach (with only function values, the blue line) are also provided.

Example 4.4. In this numerical experiment, we test the gradient-enhanced ℓ1 minimiza-
tion for function approximations. In this example, we take d = 2. The aim is to use ℓ1

minimization to find a sparse Fourier approximation of a given function. Notice that in
this case the target is a function but not exact Fourier expansions. In Fig. 4 (Left), we con-
sider to approximate the function g(x)=sin

(
cos
(

∑
d
j=1 xj

))
by sparse Fourier expansions

f ∈Π(Γ) where Γ= [−q,q]2 and q= 10 with random evaluations using the ℓ1 approach.
The right plot shows the approximation results for g(x)=cos

(
∑

d
j=1 xj

)
exp

(
sin(∑d

j=1 xj)
)
.

In fact, we use the following programming to find the sparse Fourier approximation of g:

min‖c‖1 s.t. f (zj)= g(zj), Det f (zj)=Det g(zj), t=1,··· ,k, j=1,··· ,N,

where c is the coefficient vectors of f . In Fig. 4, we use “50% gradient-enhance ” to denote
the case with k = 1 meaning that we just use the partial derivative along the direction
e1. Similarly, “100% gradient-enhance ” denotes the case with k= 2. In both cases, it is
clear that the use of gradient information can dramatically enhance the approximation
accuracy.
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Figure 4: Discrete L2 error against number of samples with random points, d=2, q=10.

5 Conclusion

In this work, we analyze a gradient-enhanced ℓ1 recovery approach for the recover of
sparse Fourier expansions. We have provided with conditions under which the inclusion
of gradient information can indeed improve the recovery performance of the ℓ1 mini-
mization. Our analysis also shows that in some cases the gradient information can play
similar roles as that of the function values. Several numerical examples are presented to
support the theoretical statements. Potential applications to function interpolations are
also discussed. There are, however, several issues to be addressed:

• According to the result for Problem 1, i.e. Theorem 2.1, we know the derivative
information is helpful to decrease the MIC. We are interested in the following ques-
tion: is the derivative information helpful to decrease the RIP constant? Motivated
by the numerical results in Section 4, we conjecture the answer for the question is
positive provided the sampling points z1,··· ,zN have the uniform distribution on
[−π,π)d.

• How to find the best way to include the derivative information? In view of Theorem
2.1, the choice of the directions {vj} and the constant α in equation (2.8) can affect
the performance of the ℓ1 minimization. To choose the optimal directions and the
α is the subject of the future work. Furthermore, it is also interesting to extend the
results in this paper to the case where the basis are orthogonal polynomials instead
of Fourier basis.
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