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Abstract. A compressible and multiphase flows solver has been developed for the
study of liquid/gas flows involving shock waves and strong expansion waves leading
to cavitation. This solver has a structure similar to those of the one-fluid Euler solvers,
differing from them by the presence of a void ratio transport-equation. The model
and the system of equations to be simulated are presented. Results are displayed for
shock and expansion tube problems, shock-bubble interaction and underwater explo-
sion. Close agreement with reference solutions, obtained from explicit finite volume
approaches, is demonstrated. Different numerical methods are additionally displayed
to provide comparable and improved computational efficiency to the model and the
system of equations. The overall procedure is therefore very well suited for use in
general two-phase fluid flow simulations.
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1 Introduction

Theoretical and numerical modeling of two-phase fluid flow problems is of practical im-
portance in various areas of industry such as thermal power generation plants, propul-
sion, hydraulic turbines and also environmental applications. Despite their relevance in
industrial and environmental applications, compressible two-phase flow investigations
have remained complex and challenging areas of applied mathematics and computa-
tional methods. The most widely used modeling approach is based on averaged two-
phase fluid flow model such as the one-fluid formulation. Within such averaged model,
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there are different approaches according to the physical assumptions of interest made
on the local mechanical and thermodynamical equilibrium and to the slip condition be-
tween phases. This has resulted in the development of diverse models and system of
equations ranging from seven to three equations only. The two-fluid approach is the
most complete as it represents the dynamics of the quantities mass, momentum, energy
and void fraction. One of the most used two-fluid model is the one proposed by Baer
and Nunziato [1]. The computation of the two-fluid model is also known to be a real
challenge [2–5]. As an alternative way, a reduced five-equation model has been derived
with the assumptions of velocity and pressure equilibrium [6–8] and applied with success
in various flows. By assuming the thermal equilibrium between phases, a four-equation
model can be expressed. It is composed by three conservation laws for mixture quantities
completed by an equation for a non-conservative quantity describing the flow topology,
usually the void ratio [9, 10]. The source term includes explicitly the mass transfer be-
tween phases. A very popular formulation has been developed to simulate cavitating
flows and involves tunable parameters for the vaporization and condensation processes
(different sets of parameters are presented in [11]). The domain of variation of these co-
efficients is huge (from 1 to 106) leading to serious problems of calibration for different
configurations. Moreover, this family of models is not thermodynamically well-posed
and does not respect thermodynamic constraints [12]. With the assumption of complete
thermodynamic equilibrium between phases (local temperature, pressure and free Gibbs
enthalpy equality between phases), the three-equation models or Homogeneous Equilib-
rium Models (HEM) are derived [13–15].

A critical aspect for two-phase simulations concerns the numerical methods of inter-
est and their accuracy problems. The hyperbolic nature of such flows and their charac-
teristic analysis makes the simulation very stiff and challenging. Large variations of the
speed of sound in the mixture is also a difficult problem. Indeed, the speed of sound can
be several orders of magnitude higher in the liquid phase than in the two-phase mixture.
The non-monotonic behavior of the sound speed in the mixture causes inaccuracies in
wave’s transmission across interfaces. In addition to that, the volume fraction variation
across acoustic waves causes difficulties for the Riemann problem resolution particu-
larly in the derivation of approximate Riemann solvers. This is due to the occurrence of
the large discontinuities of thermodynamic variables and equations of state involved at
material interfaces. As a result, numerical instabilities and spurious oscillations appear
through the complete wave structure [16]. The reason for such unusual behavior lies in
the numerical dissipation of the methods which reproduce a thermodynamic path that is
not correct. This also implies computational failure for Godunov methods which is due
to the large decrease of the pressure up to vacuum ghost.

In the present paper, a four-equation model is considered. The set of equations in-
cludes three conservation laws for mixture quantities along with a void ratio transport-
equation [10, 17]. The mass transfer between phases appearing explicitly in the formula-
tion is closed by assuming its proportionality with the mixture velocity divergence. This
model does not involve any tunable parameters and the thermodynamic coherence is re-
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spected. Due to the source term and the non-conservative form, the numerical integration
of the void ratio equation is very stiff. We focus here on the numerical scheme influence
on the basis of inviscid applications. The set of equations is solved by means of explicit fi-
nite volume techniques based on different schemes such as Jameson-Schmidt-Turkel [18],
Rusanov [19], AUSM-type [20], VF Roe [21] and HLLC Riemann solvers methods [22].
This is followed by computational simulations on one-dimensional inviscid problems to
study the behavior of the considered numerical methods. Computational results are then
displayed for both shock tube and rarefaction problems, including problems of large de-
pression leading to cavitation. Numerical results are validated with reference solutions
computed with two-fluid solvers. We also compare the present model with two popu-
lar models largely used in cavitation simulations: a barotropic three-equation model and
a Kunz-type four-equation model. These test cases establish the ability, accuracy and
efficiency of our computational treatment.

The method is also tested on two-dimensional inviscid problems. A shock-bubble
interaction and an underwater explosion with cavitation are performed. Comparisons
between computational results are proposed.

The paper is organized as follows. In Section 2, we first review the theoretical formu-
lation and models. The description of numerical methods is presented in Section 3. Then,
one-dimensional numerical results are proposed and compared with reference solutions
in Section 4. In Section 5, two-dimensional cases are considered for the assessment of the
proposed formulation. Finally, conclusions and future investigations are discussed.

2 Governing equations and models

The homogeneous mixture approach is used to model two-phase flows. The phases are
assumed to be sufficiently well mixed and the disperse particle size are sufficiently small
thereby eliminating any significant relative motion. The phases are strongly coupled and
moving at the same velocity. In addition, the phases are assumed to be in thermal and
mechanical equilibrium: they share the same temperature T and the same pressure P. The
evolution of the two-phase flow can be described by the conservation laws that employ
the representative flow properties as unknowns just as in a single-phase problem.

2.1 A four-equation model

We consider a reduction of the five-equation Kapila model [6]. We assume that the liq-
uid is at its saturation state. The model consists in three conservation laws for mixture
quantities and an additional equation for the void ratio α. We present below the inviscid
two-dimensional equations, expressed in variables w=(ρ,ρ~V,ρE,α):

∂ρ

∂t
+div(ρ~V) = 0, (2.1)
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∂(ρ~V)

∂t
+div(ρ~V⊗~V+PId) = 0, (2.2)

∂(ρE)

∂t
+div(ρ~VH) = 0, (2.3)

∂α

∂t
+~V.grad(α) =




ρlc

2
l −ρvc2

v

ρlc
2
l

1−α+
ρvc2

v
α





︸ ︷︷ ︸

=K

div(~V), (2.4)

where ~V = (u,v) is the center of mass velocity vector, E= e+V2/2 denotes the mixture
total energy and H=h+V2/2 the mixture total enthalpy. The term K involves the speed
of sound of pure phases ck and it reflects the effects of changes in volume of each phase.

To close the system, an equation of state (EOS) is necessary to link the pressure and
the temperature to the internal energy and the density. For the pure phases, we used the
convex stiffened gas EOS (see [23]):

P(ρ,e) = (γ−1)ρ(e−q)−γP∞, (2.5)

P(ρ,T) = ρ(γ−1)CvT−P∞, (2.6)

T(ρ,h) =
h−q

Cp
, (2.7)

where γ=Cp/Cv is the heat capacity ratio, Cp and Cv are thermal capacities, q the energy
of formation and P∞ is a constant reference pressure. The speed of sound c is given by:

c2 = γ
P+P∞

ρ
= (γ−1)CpT. (2.8)

In the mixture area, an expression for the pressure and the temperature can be de-
duced from the thermal and mechanical equilibrium assumption [24]. These expressions
are available in all possible fluid states, function of the void ratio α and the vapour mass
fraction Y=αρv/ρ:

P(ρ,e,α,Y) = (γ(α)−1)ρ(e−q(Y))−γ(α)P∞(α), (2.9)

1

γ(α)−1
=

α

γv−1
+

1−α

γl−1
, (2.10)

q(Y) =Yqv +(1−Y)ql, (2.11)

P∞(α) =
γ(α)−1

γ(α)

[

α
γv

γv−1
Pv

∞+(1−α)
γl

γl−1
Pl

∞

]

, (2.12)

T(ρ,h,Y) =
hl−ql

Cpl

=
hv−qv

Cpv

=
h−q(Y)

Cp(Y)
, (2.13)

Cp(Y) =YCpv +(1−Y)Cpl
. (2.14)
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The four equations form a system of conservation laws having a hyperbolic nature.
The eigenvalues of the system are: u−cwallis,u,u,u,u+cwallis, where cwallis is the propa-
gation of acoustic waves without mass and heat transfer [25]. This speed of sound is
expressed as a weighted harmonic mean of speeds of sound of each phase:

1

ρc2
wallis

=
α

ρvc2
v

+
1−α

ρlc
2
l

. (2.15)

2.2 Mass transfer modelling

When mass transfer between phases occurs, the expression for the void ratio equation
becomes:

∂α

∂t
+div(α~V) =













ρlc

2
l −ρvc2

v

ρlc
2
l

1−α+
ρvc2

v
α





︸ ︷︷ ︸

=K

+α










div(~V)+





c2
v

α +
c2

l
1−α

ρlc
2
l

1−α +
ρvc2

v
α





︸ ︷︷ ︸

=1/ρI theinter f acialdensity

ṁ, (2.16)

where ṁ is the mass transfer between phases.
By assuming that the mass transfer is proportional to the divergence of the velocity, it

is possible to build a family of models in which ṁ is expressed as (the demonstration is
presented in [26])

ṁ=
ρlρv

ρl−ρv

(

1−
c2

c2
wallis

)

div(~V). (2.17)

The speed of sound in the mixture can be expressed as a function of the enthalpy of each
phase [10]:

ρc2 = (γ(α)−1)

[
ρvρl

(ρl−ρv)
(hv−hl)

]

. (2.18)

Enthalpies of pure phase hl and hv are computed with the mixture temperature T. The
system is hyperbolic with the characteristic waves speeds: u−c,u,u,u,u+c.

To ensure the thermodynamic coherence, the mixture speed of sound has to vary
between the Wallis velocity (without mass transfer) and the equilibrium one evaluated
with the assumption of local thermodynamic equilibrium: equalities of pressure, temper-
ature and free Gibbs enthalpy between phases. An expression of the equilibrium speed
of sound is given in [12]. Properties as regard to both convexity and mixture speed of
sound conditions have been previously studied [14, 26].

We assume that the vaporization pressure varies linearly with the temperature:

Pvap(T) = Pvap(Tre f )+
dP

dT
(T−Tre f ). (2.19)

The constant quantity dP/dT is evaluated with a thermodynamic table.
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The mass transfer term is activated when the local pressure P is smaller than the
vapour pressure Pvap(T) evaluated using the relation (2.19). The temperature and pres-
sure relations are coupled and an iterative procedure on the temperature is done with
five iterations. For all considered test cases, the temperature difference at the end of the
iterative process is smaller than 0.005 K. It has been checked that the numerical solution
did not change with a higher number of iteration.

3 Numerical methods

In one-dimensional space, the four-equation model can be represented in a matrix form
as:

∂w

∂t
+

∂(F(w))

∂x
= S(w). (3.1)

Here w=(ρ,ρu,ρE,α) is the vector of conserved variables and the void ratio, F the con-
vective flux and S the source term given in (2.16).

Based on finite volume techniques, the computational cells involve the discretization
of the spatial domain x into regular meshes of length ∆x and the temporal domain t into
intervals of duration ∆t. A discrete form of equations (3.1) can be written as:

∆x
wn+1

i −wn
i

∆t
+Fn

i+1/2−Fn
i−1/2 = Sn

i ∆x, (3.2)

where the time step should fulfill the CFL condition in order to guarantee stability re-
quirement and Fn

i+1/2 is the numerical flux through the cell interface. This numerical
flux can be computed using the solution of the Riemann problem or any other numerical
method of interest where the resolution of the Riemann problem is fully numerical.

Various formulations of numerical flux have been proposed to solve multiphase com-
pressible flows. See for instance [27,28], and references therein, for such formulations and
extensions. In the present study, we tested and compared different formulations, namely,
the Jameson-Schmidt-Turkel scheme, an AUSM-type scheme, the Rusanov scheme, two
formulations of HLLC scheme and a VF Roe non-conservative scheme.

3.1 The Jameson-Schmidt-Turkel scheme

The space-centered Jameson scheme [18] is stabilized by an artificial viscosity, which in-
cludes a second-order dissipation term D2 and a fourth-order dissipation term D4. Each
term involves a tunable numerical coefficient, k(2) and k(4) respectively.

Fi+1/2 =
1

2
[F(wi)+F(wi+1)]− |u+c |i+1/2

(

ε
(2)
i+1/2δwi+1/2+ε

(4)
i+1/2δ3wi+1/2

)

,

ε
(2)
i+1/2 = k(2) Max

(
νpi

,νpi+1
,νρi

,νρi+1

)
, ε

(4)
i+1/2 = Max

[

0,k(4)−ε
(2)
i+1/2

]

,

νpi
=

|Pi+1−2Pi+Pi−1 |

Pi+1+2Pi+Pi−1
, νρi

=
|ρi+1−2ρi+ρi−1 |

ρi+1+2ρi+ρi−1
. (3.3)
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The coefficient ε(2) is activated near discontinuities according to the sensor ν based
on pressure gradients. For two-phase flows, the sensor ν is also evaluated with density
gradients.

3.2 An AUSM-type scheme

The flux formulas of AUSM-type have been tested in the resolution of shock waves and
interfaces in multicomponent problems under high density ratio between two phases
[20, 29–32]. We proposed an AUSM+type formulation following the AUSM+up model
proposed by Chang and Liou [20].

We define the interface speed of sound and the interface density as:

c1/2 =
1

2
(cL+cR) and ρ1/2 =

1

2
(ρL+ρR), (3.4)

where subscripts L and R denote the left and right states with respect to the interface.
The left and right Mach numbers are then defined based on this speed of sound as:

ML =
uL

c1/2
and MR =

uR

c1/2
. (3.5)

The interface values for Mach number and pressure are defined using splitting func-
tions:

M1/2 = M+
(4)
(ML)+M−

(4)
(MR),

P1/2 = P+
(5)
(ML)PL+P−

(5)
(MR)PR+KuP+

(5)
(ML)P−

(5)
(MR)ρ1/2c1/2(uL−uR),

where Ku is a coefficient set to 0.125. The expression of splitting functions are given in
Appendix A.

A general form of interface mass flux in the AUSM-type scheme is defined as:

(ρu)1/2 = c1/2

(

ρL M+
(1)(M1/2)+ρR M−

(1)(M1/2)
)

+Dp, (3.6)

where Dp is a dissipation term based on pressure difference:

Dp =Kp
∆MMax(1−M

2
,0)(PL−PR)

c1/2
, (3.7)

∆M = M+
(4)(ML)−M+

(1)(ML)−M−
(4)(MR)+M+

(1)(ML), (3.8)

M =
1

2
(ML+MR), (3.9)

where Kp is a coefficient set to 1.
For the void ratio equation, we introduce the interface velocity:

u1/2 = c1/2

(

M+
(1)

(M1/2)+M−
(1)
(M1/2)

)

. (3.10)
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With the four-equation system, the expression of the numerical flux is:

Fi+1/2 =








(ρu)1/2

1
2 (ρu)1/2(uL+uR)−

1
2 | (ρu)1/2 | (uR−uL)+P1/2

1
2(ρu)1/2(HL+HR)−

1
2 | (ρu)1/2 | (HR−HL)

1
2 u1/2(αL+αR)−

1
2 |u1/2 | (αR−αL)








.

3.3 The Rusanov scheme

The Rusanov’s scheme [19] is a central-based Godunov-type method:

Fi+1/2=
1

2

[
F(wi)+F(wi+1)−|S+ | (wi+1−wi)

]
, (3.11)

where the wave speed S+=Max(uL+cL,uR+cR) is the maximal eigenvalue evaluated at
the cell interface.

The Rusanov scheme is known for its excessive diffusive behavior in presence of a
contact discontinuity. To avoid this problem, an anti-diffusive term for the contact dis-
continuity can be directly added in formulation. A low-diffusive formulation can be pro-
posed by modifying the eigenvalue associated to the contact discontinuity, as proposed
in [33]:

Fi+1/2 =
1

2
[F(wi)+F(wi+1)]−

1

2







|S+ | 0 0 0
0 |S+ | 0 0
0 0 |Su | 0
0 0 0 |Su |






(wi+1−wi),

where Su=Max(uL,uR).
With respect to the original scheme, the first two equations, which are related to the

acoustic waves, are unchanged, while for the energy equation and the void ratio equa-
tion, the diffusive part of the scheme has been reduced. In the following, this scheme will
be named LD-Rusanov.

3.4 A first HLLC scheme

A HLLC Riemann solver [22,34,35] is investigated for the convective flux density compu-
tation. The method considers two averaged intermediate states w∗

L et w∗
R separated by the

contact wave of speed SM. The numerical flux Fi+1/2 at a cell interface can be expressed
as:

Fi+1/2=







F(wL) if SL>0,

F(w∗
L) if SL≤0<SM,

F(w∗
R) if SM≤0≤SR,

F(wR) if SR<0,
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where SL and SR are referred to the speeds of the smallest and largest waves at the cell
interface.

The left (K= L) and right (K=R) states of the variables w∗
K, and corresponding fluxes

F(w∗
K), are defined by:

w∗
K=







ρ∗K
(ρu)∗K
(ρE)∗K

α∗
K






=

1

SK−SM







ρK(SK−uK)
(ρu)K(SK−uK)+P∗−PK

(ρE)K(SK−uK)+P∗SM−PKuK

αK(SK−uK)







,

F(w∗
K)=







ρ∗KSM

(ρu)∗KSM+P∗

(ρE)∗KSM+P∗SM

α∗
KSM







,

where the pressure P∗ is given by:

P∗= PL+ρL(uL−SL)(uL−SM) = PR+ρR(uR−SR)(uR−SM). (3.12)

And the contact-wave speed SM is defined by:

SM =
PR−PL+ρLuL(SL−uL)−ρRuR(SR−uR)

ρL(SL−uL)−ρR(SR−uR)
. (3.13)

The HLLC solver requires the estimates of wave speeds SL and SR in the Riemann
problem. A direct and simple wave speed estimation is used:

SL = Min(uL−cL,uR−cR) and SR = Max(uL+cL,uR+cR). (3.14)

In the following, this scheme will be named HLLC v1.

3.5 A second HLLC formulation

Another discretization is proposed based on the following general form of the system:

∂U

∂t
+

∂G(U)

∂x
+B(U)

∂u

∂x
= 0, (3.15)

with

U=

(
w
α

)

, G(U)=

(
F(w)

αu

)

, and B(U)=

(
0

−K−α

)

.

The conservative part is discretized used the flux F(w∗
K) similarly to the first formulation

v1. The non-conservative part is discretized following the idea of Daude et al. [8]. The
term B(U) is approximated with the following relation:

∫ xi+1/2

xi−1/2

B(U)
∂u

∂x
dx≃B(Ui)(ui+1/2−ui−1/2). (3.16)
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The cell interface value ui+1/2 is expressed as:

ui+1/2=







uL if SL >0,
SL−uL
SL−SM

SM if SL ≤0<SM,

SR−uR
SR−SM

SM if SM ≤0≤SR,

uR if SR <0.

In the following, this scheme will be named HLLC v2.
Second- and third-order accuracy in space can be obtained using the MUSCL ap-

proach proposed by van Leer for the construction of UL and UR. The minmod slope
limiter is used with the MUSCL extrapolation.

3.6 A VFRoe ncv scheme

The VFRoe non-conservative scheme is an approximate Riemann solver introduced in
[21, 36, 37]. Finding a matrix satisfying Roe’s condition may be difficult for two-phase
problems with complex EOS. This fact has motivated the development of an alterna-
tive to the Roe scheme. The scheme is based on the resolution of linearized Riemann
problems written in non-conservative variables. It admits entropy-violating stationary
discontinuities, we switch on the Rusanov scheme in this case.

Considering the change of variables w→W(w), the system reads in non-conservative
form:

∂W

∂t
+B(W)

∂Y

∂x
= 0, (3.17)

where B is the matrix of the transformed system.
At each interface, we solve the following linearized Riemann problem:

∂W

∂t
+B(W̃)

∂W

∂x
= 0 with

{
W(x,0)=WL if x<0,

W(x,0)=WR if x>0,
(3.18)

where W̃ is an average state depending on WL and WR; here we use the simple arithmetic
average. The matrix B(W̃) is diagonalizable with real eigenvalues λ̃i. We note r̃i and l̃i

the right and left eigenvectors respectively. The difference WR−WL is projected directly
into the space spanned by a linear combination of the right eigenvectors:

WR−WL =
p

∑
i=1

α̃ir̃i, with α̃i =
t l̃i.(WR−WL). (3.19)

The solution of the Riemann problem is composed of constant states separated by a
fan of p characteristic lines:

W
( x

t
;WL,WR

)

=







WL if x< λ̃1t,

Wk =WL+∑
k
i=1 α̃i r̃i if λ̃kt< x< λ̃k+1t,

WR if x> λ̃pt.
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If we suppose that no eigenvalue vanishes, we note W∗ the approximate state at the
interface, i.e. for x

t =0. The numerical flux is given by:

Fi+1/2=F(w(W∗)). (3.20)

For the considered four-equation model, we choose for the non-conservative variable
tW=(τ,u,P,Y) where τ= 1

ρ and Y= αρv

ρ is the mass fraction. Note that we have not tested

other choices for W. The expression of matrix B and associated eigenvectors are given in
Appendix B.

3.7 Treatment of the source term

The numerical simulations of the initial-boundary value problems are accomplished us-
ing splitting approach (except for the HLLC v2 formulation). One starts in solving the
source-free homogeneous part of the whole system:

∂w

∂t
+div(F(w)) = 0. (3.21)

This is followed by solving the system of ordinary differential equations describing
the mass transfer between phases to obtain the complete solution:

dw

dt
= S(w). (3.22)

A first order method is used for this step.

3.8 Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of the charac-
teristic relations of Euler equations. The number of variables to impose at boundaries is
given by the number of positive characteristics directed into the domain of interest. The
characteristic relations obtained for the 4-equation system, in two-dimensional flows, are:

−c2(ρc−ρs)+(Pc−Ps) = 0, (3.23)

Vc
t −Vs

t = 0, (3.24)

ρ(αc−αs)−K(ρc−ρs) = 0, (3.25)

(Pc−Ps)+ρc(Vc
n −Vs

n) = 0, (3.26)

(Pc−Ps)−ρc(Vc
n −Vs

n) = 0. (3.27)

The variables with superscript c denote the variables to be computed at the bound-
ary. Variables with superscript s denote the variables obtained by the current numerical
scheme. Vt and Vn are the tangential and the normal component of the mean velocity,
respectively.
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At inflow, we impose the initial values of the void ratio, densities of pure phases and
the velocity. The pressure is evaluated with the relation (3.27) and all variables can be
evaluated at the boundary.

At outflow, the static pressure is imposed. The variables are computed with four
characteristic relations (3.23)-(3.26).

4 Computational results on one-dimensional two-phase

problems

In this section we exhibit the ability of the current four-equation model, convergence
and computational performance of the proposed numerical methods on two groups of
two-phase flow problems. In the first group, we considered two shock tube problems to
validate the current numerical tool. A comparison with solutions provided with a seven-
equation model using the Discrete Equations Method (DEM) is proposed [38]. In DEM
approach, the pure fluids are first integrated at the microscopic level and then the discrete
formulae are averaged. The obtained continuous model of multiphase flow is equivalent
to the Baer-Nunziato model. The infinite rate relaxation procedures are used to correctly
treat the full system. The second group tests the expansion tube, double rarefaction,
problems which are very stiff cases for numerical methods. Results of the expansion tube
problems are validated with other models as we shall see later.

For all cases, values of artificial dissipation coefficients (k(2),k(4)) for the Jameson
scheme and numerical coefficients (Ku,Kp) for the AUSM scheme are given in Table 1.

Table 1: Numerical coefficients for the Jameson and AUSM-type schemes.

shock tube shock tube double rarefaction tubes

water-gas epoxy-spinel no cavitation cavitation cavitation

Jameson (k(2),k(4)) 1 - 0.02 1 - 0.06 1 - 0.016 1 - 0.016 3 - 0.016

AUSM (Kp,Ku) 1 - 0.125 1 - 0.125 2 - 0.2 - -

4.1 Water-gas mixture shock tube

This test case is proposed in [7], computed with five- and seven-equation models. A one
meter shock tube involves a discontinuity of the volume fraction. For x < 0.7 the gas
volume fraction is 0.2, while it is 0.8 otherwise. The fluids are governed by the stiffened
gas EOS and are initially at rest. The left chamber contains high pressure fluids (109 Pa)
while the right one contains low pressure fluids (105 Pa). The parameters of EOS are:





γ
P∞

ρ





Liq

=





4.4
6×108 Pa

1000 kg/m3



 and





γ
P∞

ρ





Gas

=





1.4
0 Pa

1 kg/m3



.
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Figure 1: Water-gas shock tube problem, numerical schemes comparison, mesh 1000 cells, t= 0.2 ms. Void
ratio and mixture density profiles along the tube (left), enlargement of these quantities between abscissa 0.6–1
m (right).

Computations have been performed with a mesh of 1000 cells and with a time step of
10−7 s. Results are shown at time 0.2 ms. Both versions of the HLLC scheme provided
similar results, only the HLLC v1 solution is presented. For this case, the analytical solu-
tion has not been evaluated according to the method proposed in [39].

Profiles of void ratio and mixture density are plotted in Fig. 1 for all numerical schemes.
An enlargement of solutions are proposed in the post-shock area (on the right). Near dis-
continuities, the Jameson scheme produced small oscillations of the solution. For the void
ratio profile, we observe a small discrepancy in the post-shock area around x = 0.85m.
The solution obtained with the Rusanov and AUSM schemes present a small variation,
not captured by other methods. In comparison with the seven-equation model, we no-
tice some differences between the solutions in the volume fraction profile. In particular,
the post-shock values of the void ratio are not the same and the seven-equation model
shows an oscillation near the contact discontinuity zone. This behaviour was also noted
in simulations presented in [7].

Profiles of mixture pressure and velocity are presented in Fig. 2 for all numerical
schemes. Results are quite similar. An inset of the post-shock area is shown (on the
right). As observed previously, the Jameson solution involves oscillations near the shock
area.
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Figure 2: Water-gas shock tube problem, numerical schemes comparison, mesh 1000 cells, t=0.2 ms. Mixture
pressure and velocity profiles along the tube (left), enlargement of these quantities between abscissa 0.6–1 m
(right).

4.2 Epoxy-spinel mixture shock tube

In [39] a one meter tube contains two chambers separated at x=0.6 m. A mixture of epoxy
and spinel fills both chambers. The initial volume fraction of epoxy is 0.5954 everywhere.
The left chamber pressure is 2.1011 Pa, while the right chamber is at atmospheric pressure.
The fluids are governed by the stiffened gas EOS are initially at rest. EOS parameters are:





γ
P∞

ρ





Epoxy

=





2.43
5.3×109 Pa
1185 kg/m3



 and





γ
P∞

ρ





Spinel

=





1.62
141×109 Pa
3622 kg/m3



.

Computations have been performed on a mesh of 1000 cells and with a time step of
10−7 s. Results are shown at time t= 29 µs. As previously, both versions of the HLLC
scheme provided similar results, only the HLLC v1 solution is presented. The analytical
solution of the equilibrium model proposed in [39] is added.

Profiles of void ratio and mixture density are illustrated in Fig. 3 for all numerical
schemes. An enlargement of solutions are proposed in the post-shock area (on the right).
In comparison with the analytical solution, discrepancies appear on the void ratio and
density jumps at shock front, which are over-estimated by all methods, especially the
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Figure 3: Epoxy-spinel shock tube problem, numerical schemes comparison, mesh 1000 cells, t=0.29 ms. Void
ratio and mixture density profiles along the tube (left), enlargement of these quantities between abscissa 0.6–1
m (right).

seven-equation model. For the void ratio profiles, the plateau after the shock is less in-
tense using the Rusanov scheme.

Profiles of mixture pressure and velocity are presented in Fig. 4 for all numerical
schemes. An inset of the post-shock area is shown (on the right). Differences between
solutions are weak. For all schemes, the pressure profiles are in close agreement with
the analytical solution. As previously, the solution computed with the Jameson scheme
presents small oscillations near discontinuities.

4.3 Water-gas mixture expansion tube, |u0 |=2 m/s

A double rarefaction tube problem is considered with an initial velocity discontinuity
located at the middle of the tube. This test consists in a one meter long tube filled with
liquid water at atmospheric pressure and with density ρl =1150 kg/m3. A weak volume
fraction of vapor α=0.01 is initially added to the liquid. The initial discontinuity is set at
0.5 m, the left velocity is −2 m/s and the right velocity is 2 m/s, as illustrated in Fig. 5.

The solution involves two expansion waves. As gas is present, the pressure cannot
become negative. To maintain positive pressure, the gas volume fraction increases due to
the gas mechanical expansion and creates a pocket [24]. The fluids are governed by the
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Figure 4: Epoxy-spinel shock tube problem, numerical schemes comparison, mesh 1000 cells, t = 0.29 ms.
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Figure 5: Schematic view of the double rarefaction test case.

stiffened gas EOS, for which parameters are:








γ
P∞

q
ρ

Cp









Liq

=









2.35
109 Pa

−0.1167×107 J/kg
1150 kg/m3

4267 J/K.kg









;









γ
P∞

q
ρ

Cp









Gas

=









1.43
0 Pa

0.2030×107 J/kg
1 kg/m3

1487 J/K.kg









.

The mesh contains 1000 cells and the time step is set to 10−7 s. Solutions are com-
pared at time t=3.2 ms with the two-fluid solution proposed by Zein et al. [40]. Profiles
of void ratio, density, pressure and velocity are plotted in Fig. 6 for all numerical schemes
except HLLC schemes. The pressure evolution marks large discrepancies. Solutions pro-
vided by the Jameson, Rusanov and AUSM schemes are in close agreement with the
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Figure 6: Water-gas double rarefaction |u0|= 2 m/s, numerical schemes comparison, mesh 1000 cells, t= 3.2
ms. Void ratio, mixture density, pressure and velocity profiles.
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Figure 7: Water-gas double rarefaction |u0|= 2 m/s, HLLC schemes comparison, mesh 1000 cells, t= 3.2 ms.
Void ratio and mixture pressure profiles.

two-fluid solution. Using the VF Roe ncv scheme, the rarefaction waves are badly pre-
dicted. Maybe a different choice for the primitive variable W or another discretization of
the non-conservative equation would improve the behaviour of this scheme.

As regard to the computational cost, a CPU time of 14h was necessary for the two-
fluid simulation due to the relaxation procedures. With our four-equation model, the
CPU time is only around five minutes.

The two HLLC formulations are now compared. The void ratio and mixture pressure
profiles are shown in Fig. 7. Similarly to the VF Roe solution, the rarefaction waves are
badly simulated with the first HLLC formulation. On the contrary, the second formula-
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tion provides a solution in close agreement with the two-fluid solution. The discretiza-
tion of the non-conservative void ratio transport equation is a key point for this Riemann
solver.

4.4 Water-gas mixture expansion tube with cavitation, |u0 |=2 m/s

We consider the same case presented previously adding the mass transfer term. Liquid
water is expanded until the saturation pressure is reached then evaporation appears and
a cavitation pocket is created. The solution with phase transition is composed of four
expansion waves. The extra two expansion waves correspond to the evaporation fronts.

The vapour pressure at the considered reference temperature is Pvap =51000 Pa. The
constant dP/dT evaluated using a thermodynamic table is set to 2044 Pa/K. The mesh
contains 1000 cells and the time step is set to 10−7 s. Solutions are compared at time t=3.2
ms with the two-fluid solution proposed by Zein et al. [40].

First, we propose a comparison of the considered numerical schemes. For this case, it
was not possible to obtain a solution using the VF Roe, HLLC v1 and AUSM+up schemes
(even by modifying numerical coefficients Ku and Kp for the AUSM scheme). The third-
order formulation is tested for the HLLC v2 scheme, named HLLC 3o in the following.

Profiles of void fraction (in logarithmic scale), pressure, mass fraction and velocity
are plotted in Fig. 8 for all schemes. Concerning the mass fraction Y, an enlargement of
the mid-tube area is proposed, illustrating the vaporization phenomenon. In comparison
with the previous case where the void ratio reached values around 10%, values are now
close to 70% in the cavitation pocket. For both pressure and velocity profiles, all numer-
ical results are quite similar in close agreement with the 2-fluid solution. The plateau of
pressure at the vapor pressure value is well illustrated.

Discrepancies are noticeable for the maximum values of both the volume and mass
fractions of gas. The most extreme results are obtained using the Rusanov and Jameson
schemes for which a factor 2 is observed, lower and higher, respectively. The third-order
HLLC scheme provides a solution is close agreement with the two-fluid result whereas
the first-order formulation under-estimates the maximum value.

Secondly, we compare the present model with two popular models largely used in
cavitation simulations: a barotropic model [14, 41] and a Kunz-type void ratio transport
model [9]. We evaluate the ability of these models to reproduce correctly the cavitation
pocket and all waves involved in the physics. The formulation of the barotropic model
is given in Appendix C. With this model, it is not possible to start the simulation from
a liquid/gas mixture. The model can create a cavitation pocket only from a liquid. The
Kunz-type formulation is detailed in Appendix D. This model involves two tunable pa-
rameters Cprod and Cdes. In the test case, only an evaporation process occurs therefore the
constant Cdes is set to 0. The calibration of Cprod was performed in order to fit the refer-
ence solution of Zein et al. [40] for the void ratio profile. The closest result was obtained
with Cprod = 100 m3/kg (we do not present the calibration study). All simulations with
the three models were performed using the Rusanov scheme.
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Figure 8: Water-gas double rarefaction with cavitation |u0|=2 m/s, numerical schemes comparison, mesh 1000
cells, t= 3.2 ms. Void ratio, pressure and velocity profiles along the tube, enlargement of the mass fraction
between abscissa 0.48–0.52 m.

Profiles of void ratio (in logarithmic scale), pressure, mass fraction of vapor and ve-
locity are plotted in Fig. 9 for the three considered models. The Kunz-type model predicts
a cavitation pocket with correct values of void ratio and mass fraction. Yet, the variation
of void ratio across the rarefaction waves is not simulated. Both the pressure and veloc-
ity evolutions show that rarefaction waves are badly computed. Similarly, the 3-equation
model is unable to correctly predicts the rarefaction waves. Moreover, the evaporation
fronts and the cavitation pocket are badly reproduced. This is due to the initial condition
of the simulation, started from a pure liquid.

4.5 Water-gas mixture expansion tube with cavitation, |u0 |=100 m/s

The same conditions are used except regarding velocities which are set to | u0 |= 100
m/s. The EOS parameters are similar. Due to the large value of the velocity disconti-
nuity, evaporation is much more intense resulting in a large cavitation pocket where the
gas volume fraction is close to 1. However, this pocket does not contain pure gas but a
mixture at thermodynamic equilibrium. The quantity dP/dT evaluated with a thermo-
dynamic table is set to 300 Pa/K. The mesh contains 1000 cells and the time step is set to
10−7 s. Solutions are compared at time t= 1.5 ms with the two-fluid solution proposed
by Zein et al. [40].
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Figure 9: Water-gas double rarefaction with cavitation |u0|=2 m/s, models comparison, mesh 1000 cells, t=3.2
ms. Void ratio, pressure and velocity profiles along the tube, enlargement of the mass fraction between abscissa
0.48–0.52 m.

First, we propose a comparison of the considered numerical schemes. As previously,
VF Roe, HLLC v1 and AUSM+up schemes were not able to provide a solution. The evo-
lution of mass and volume fractions, pressure and velocity are plotted in Fig. 10. The
two evaporation fronts are clearly highlighted. The decrease of pressure in the cavita-
tion pocket, due to the temperature cooling associated to the evaporation phenomenon,
is well simulated. The intensity is more pronounced using the Jameson scheme. In com-
parison with the 2-fluid solution, evaporation fronts are stiffer. The void ratio profiles
show that the cavitation pocket is quasi fill of pure vapor. As previously, discrepancies
are noticeable for the maximum value of the mass fraction of gas, but with smaller gaps.
The better agreement is obtained with the Jameson scheme and the HLLC 3o provides the
highest value (25% of error). Using the Jameson scheme, we clearly observe oscillations
of the solution close to the evaporation fronts.

We compare now the present model with the barotropic formulation and the Kunz-
type model. For the barotropic model, it was not possible to obtain a solution (we did
not try to modify the value of parameter cbaro). For the Kunz-type model, the calibration
of Cprod was performed in order to fit the reference solution of Zein et al. [40] for the void

ratio. The closest result was obtained with Cprod = 105 m3/kg, that is a factor 1000 in
comparison with the previous case. The large variation of the parameter Cprod is clearly
questionable.
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Figure 10: Water-gas double rarefaction with cavitation |u0|=100 m/s, numerical schemes comparison, mesh
1000 cells, t=1.5 ms. Void ratio, pressure, mass fraction and velocity profiles.

The evolution of mass and volume fractions, pressure and velocity are plotted in
Fig. 11. As observed for the previous case, the Kunz-type model provides a cavitation
pocket with good values of void ratio. Yet, the mass fraction is over-estimated by a factor
4. For the pressure distribution, the rarefaction waves are badly simulated and the evap-
oration fronts are not visible. The velocity profile illustrates oscillations of the solution
near positions of evaporation fronts.

To conclude, both double rarefaction test cases with cavitation show the ability of the
present model and the numerical treatment to correctly simulate the cavitation pocket
development and all wave fronts. On the contrary, the 4-equation Kunz-type formulation
fails to compute these cases. It is certainly due to its lack of thermodynamic coherence.
Moreover, a key point in the void ratio formulation is the term Kdiv(~V), which takes
into account the effects of changes in volume of each phase. This term is missing in the
Kunz-type model.

5 Computational results on two-dimensional two-phase

problems

In this section, we present simulation results for two-dimensional problems: a shock-
induced bubble collapse and an underwater explosion. Due to difficulties discussed pre-
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Figure 11: Water-gas double rarefaction with cavitation |u0|= 100 m/s, models comparison, mesh 1000 cells,
t=1.5 ms. Void ratio, pressure, mass fraction and velocity profiles.

viously on one-dimensional cases, VF Roe, HLLC v1 and AUSM-type schemes will be
not considered in the following.

5.1 Shock-bubble interaction

The considered test is similar to the one presented in [42, 43]. A cylindrical air bubble,
6 mm in diameter, is immersed in a water pool, under the following initial conditions:
~V = (0,0) m/s, P = 105 Pa, ρair = 1 kg/m3 and ρwater = 1000 kg/m3. The center of the
bubble is located at (9,6) mm in the computational domain of size 12×24 mm. The
bubble is collapsed by a normal shock wave moving at Msh = 1.72, initially located at
abscissa xsh=4 mm. Parameters of the EOSs and post-shock conditions are:





γ
P∞

ρ





Liquid

=




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
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



γ
P∞

ρ





Gas

=





1.4
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1 kg/m3



,





P
ρ
u





post-shock

=





1.9109 Pa
1323.65 kg/m3

681.58 m/s



.

The top and bottom boundary conditions are assumed to be walls, and the boundary
conditions for the left and right sides are assumed to be non-reflecting. The schematic
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Figure 12: Initial situation for the shock-bubble interaction.

diagram of the test case is given in Fig. 12. Simulations are performed using an uniform
grid composed by 800×400 cells and a time step ∆t=10−9 s. For all simulations, a very
weak volume fraction of gas α0=10−10 is added to the liquid phase.

Firstly, a description of the main phenomena involved in this shock-bubble interac-
tion is proposed based on the second-order HLLC simulation. Note that the mass transfer
term is not activated in this study. The time evolution of the density gradient modulus
(Schlieren-type representation) is plotted in Fig. 13. After the water shock wave has col-
lided with the bubble, at time t= 2 µs, a strong rarefaction wave is reflected backwards
from the interface and a weak shock wave transmits from inside of the bubble.

At time t= 3 µs the incident water shock has traversed almost the full cavity width.
The interaction between this shock and the expansion waves originating at the bubble
surface has resulted in significant weakening and curvature of the shock. The shock in-
side the bubble propagates more slowly. Due to the pressure difference between back and
forth of pressure waves, the bubble is asymmetrically contracted with concave shape. As
time moves on, the bubble becomes kidney shaped and spreads laterally in the process.
This change in shape is driven by vorticity generated at the edge of the bubble due to the
passage of the wave which induces a jet of water along the axis of flow symmetry.

When this jet impinges on the water at the downstream edge of the bubble, at time
t=3.6 µs, the bubble forms a pair of distinct vortical structures.

Such physical phenomena were described in the case of shock-bubble interactions.
According to the sign of the difference of acoustic impedance of pure phases dR=ρvcv−
ρlcl , two scenarios are depicted. In our case, dR< 0 and this situation is commonly re-
ferred to as divergent geometry [44]. After several shock-passage times, the features
observed in the flow field are dominated by the vortical motion.

On impact with the bubble, the jet produces an intense blast wave (also called water
hammer shock [45]) in the surrounding water, which is clearly illustrated after time t=3.6
µs. The developing blast wave advances relatively slowly to the left below the bubble,
due to the high water velocity in the jet fluid, so that the blast front is highly asymmetric.
The rightward blast wave increases as a spherical wave. Both shocks lose strength as they
advance, the rightward wave more so than its leftward twin.
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a) d)

b) e)

c) f)

Figure 13: Shock-bubble interaction, evolution of the density gradient at times: a) t= 2 µs, b) t= 3 µs, c)
t=3.6 µs, d) t=4 µs, e) t=4.8 µs, and f) t=5.6 µs. HLLC 2nd order scheme, mesh 800×400 cells.

Caused by the leftward blast wave, secondary jets penetrate into the smaller bubbles
and cut the initial bubble into four pieces (time t= 4.8 µs). The interaction of the blast
wave with the remains of bubble generates high pressure levels [46]. Finally, the blast
wave continues its expansion and the cavity its shrinkage.

The pressure evolution is illustrated in Fig. 14. During the impact of the water jet
with the stationary water at the front of the bubble, a high-pressure zone is formed and
a blast wave is generated (see time t = 3.6 µs). This blast wave expands continuously
in the radial direction. At time t= 4.8 µs, the low-pressure area inside the vortices core
are well illustrated. The interaction of the leftward blast wave with the cavity leads to a
very strong pressure peak, which is the most intense during the collapse. The pressure
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a) d)

b) e)

c) f)

Figure 14: Shock-bubble interaction, evolution of the pressure (in bar) at times: a) t= 2 µs, b) t= 3 µs, c)
t=3.6 µs, d) t=4 µs, e) t=4.8 µs, and f) t=5.6 µs. HLLC 2nd order scheme, mesh 800×400 cells.

amplitude depends on the initial bubble size and the incident shock intensity. These
results show that the most phenomenon associated to this interaction such as the water jet
formation, the bubble division, the formation of a high-pressure zone and the generation
of a strong blast wave shock which expands in the liquid are well captured in comparison
with previous numerical results [42, 43, 46].

Secondly, the influence of the numerical scheme is investigated. The dissipation co-
efficients for the Jameson scheme are (k(2),k(4))=(1.5,0.1). The use of smaller values for
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a) d)

b) e)

c) f)

Figure 15: Shock-bubble interaction, comparison of the density gradient contour at time t= 4.8 µs obtained
with different schemes, mesh 800×400 cells: a) HLLC, b) HLLC finer mesh 1600×800 cells, c) Rusanov, d)
HLLC 2nd-order, e) Jameson and f) LD-Rusanov.

the parameter k(4) led to large oscillations of the solution. Moreover, it was not possi-
ble to compute the case using the third-order HLLC scheme and also the second-order
LD-Rusanov scheme.

The density gradient modulus obtained with all schemes is plotted in Fig. 15 at time
t = 4.8 µs. As regard to the cavity shape and the presence of four pieces of the initial
bubble, this phenomenon is clearly highlighted using the Jameson scheme, Fig. 15e. Yet,
spurious oscillations are generated near discontinuities. The bubble cutting phenomenon
is not captured by the HLLC scheme (Fig. 15a) and only a little piece can be observed
with the second-order formulation, Fig. 15d. Using a finer grid composed by 1600×800
cells, the four pieces are well simulated with the HLLC scheme, Fig. 15b. As expected,
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Figure 16: Shock-bubble interaction, evolution of the pressure during the bubble collapse on the symmetry axis
y=6 mm, numerical schemes comparison, mesh 800×400 cells: a) HLLC, b) Rusanov, c) Jameson, d) HLLC
2nd order and e) LD-Rusanov. In f) evolution of the maximum pressure during the collapse.

the numerical dissipation of the Rusanov scheme is huge, Fig. 15c. The low-diffusive
formulation improves the fronts capturing but not the bubble shape evolution, Fig. 15f.

The pressure evolution in a cutting plane y=6 mm (corresponding to the symmetry
axis) is plotted in Fig. 16 for all schemes and highlights the pressure peaks during the
cavity collapse. For all simulations, we can observed the first peak at time t=3.8 µs when
the water jet impacts the bubble front and the second peak (more intense) at time t=4.8 µs
when the leftward blast wave collides the remains of bubble. The intensity of both peaks
varies with the scheme. The evolution of the maximum pressure during the collapse is
plotted in Fig. 16f. The simulation performed with the finer grid, 1600×800 cells, predicts
a first peak at time 3.8 µs around 40000 bar (the double of the incident shock wave inten-
sity) and the second peak at time 4.7 µs around 65000 bar. The lowest amplitude, around
55000 bar, is provided by the Rusanov scheme. The use of the low-diffusive formulation
slightly improves both peaks. The peak predicted by the HLLC scheme is around 60000
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bar and the effect of the second-order formulation is very weak. The solution obtained
with the Jameson scheme presents two consecutive peaks at times 4.65 and 4.75 µs with
an amplitude around 60000 bar. In comparison with previous simulations, we obtain an
intermediate value between results of Ball et al. – 4.7 GPa [42] – and Nourgaliev et al. –
10.1 GPa [43].

5.2 Underwater explosion with cavitation

The cylindrical underwater explosion near a flat free surface is considered. A similar case
has been studied in [47,48]. The initial conditions are given as follows. A high-pressured
gas cylinder with a radius of 0.5 m is located in the center of the computational domain
and the initial flow parameters for explosive gas, water and air are:


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

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
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0







.

The stiffened gas parameters for water and its vapor are similar to the previous dou-
ble rarefaction case with cavitation. The vapor pressure is Pvap = 51000 Pa. The quantity
dP/dT is set to a low value, i.e. 100 Pa/K. The computational domain is a rectangular
region with x×y∈ [0,12]×[0,12] and the free surface is located at the straight line y= 8
m (see Fig. 17). An uniform grid composed by 400×400 cells is distributed in computa-
tional domain. The top and bottom boundary conditions are walls. On other frontiers,
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Figure 17: Initial condition for the underwater explosion.
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a) c)

b) d)

Figure 18: Underwater explosion, evolution of the density gradient at times: a) t=1 ms, b) t=1.5 ms, c) t=2
ms, d) t=3 ms. HLLC 2nd order scheme, mesh 400×400 cells.

variables are extrapolated. The time step is set to 10−6 s. As previously, a very weak
volume fraction of gas α0=10−10 is added to the liquid phase.

A first simulation is performed using the second-order HLLC scheme in order to de-
scribe the main physical phenomena. Fig. 18 illustrates a series of density gradient con-
tours as time progresses where the shock and free surface interaction are clearly observed.
At t=1.0 ms, Fig. 18a, the initial shock generated by the explosion impacts the free sur-
face. It reflects with strong rarefaction waves while a transmitted shock is propagating
into the air medium, Fig. 18b. The reflected rarefaction wave interacts with the explo-
sion zone’s interface, leading to a formation of the reflected compression wave and a
transmitted rarefaction wave, Fig. 18c. Next, due to the interaction between the reflected
rarefaction wave and upper boundary of the bubble, the top section of the bubble is ac-
celerated in the vertical direction, causing an elongation of the bubble shape, Fig. 18d.

The density evolution is plotted in Fig. 19 and illustrates the initial shock wave prop-
agation, its impact with the free surface, the generation of the reflected rarefaction wave
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a) c)

b) d)

Figure 19: Underwater explosion, evolution of the density (kg/m3) at times: a) t=1 ms, b) t=1.5 ms, c) t=2
ms, d) t=3 ms. HLLC 2nd order scheme, mesh 400×400 cells.

and its interaction with the gas area leading to the elongated bubble shape. At the same
time, the free surface is disturbed and moves upwards due to relief of the main shock.

A numerical schemes comparison is proposed, especially as regard to the cavitation
pocket development. The dissipation parameters for the Jameson scheme are (k(2),k(4))=
(1.5,0.085). Note that the second-order HLLC scheme is started from a first-order solu-
tion on 1000 iterations. The starting from the initial condition led to the computation
divergence.

Isolines of pressure at time t=3 ms are presented in Fig. 20 for all schemes. The isoline
at the vapour pressure value (i.e. 51000 Pa) is plotted in order to observe the cavitation
evolution. The rarefaction waves generated by the impact of the initial shock wave with
the free surface cause the water pressure just below the free surface to drop very rapidly.
With the decrease of the water pressure, a cavitation pocket appears just below the free
surface. All simulations predict the appearance and growth of such cavitation pocket.
The size of the pocket varies with the numerical scheme. The simulation performed on
a finer grid, 800×800 cells, with the HLLC scheme highlights the shape of the cavitation
pocket, Fig. 20b. Except the Jameson simulation, Fig. 20e, all results under-estimate the
cavitation development and predict two separated pockets. Yet, as observed previously,
the Jameson solution provides spurious oscillations. The second-order HLLC scheme
improves the cavitation prediction in comparison with the first-order result by predicting
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Figure 20: Underwater explosion, isoline of pressure and cavitation pocket at time t=3 ms, numerical schemes
comparison, mesh 400×400 cells: a) HLLC, b) HLLC finer mesh 800×800 cells, c) Rusanov, d) HLLC 2nd-order,
e) Jameson and f) LD-Rusanov.

a quasi single pocket, Fig. 20d. The two cavitation pockets obtained with the Rusanov
simulation are very small (Fig. 20c) and the use of the low-diffusive formulation largely
increases the pockets size (Fig. 20f).

Finally, the pressure profile at time t= 3 ms in a cutting plane x = 3 m is plotted in
Fig. 21 for all schemes. It illustrates the shock wave front (y ≃ 2 m) and the explosion
area, the rarefaction front (y≃6 m) generating the cavitation pocket, the free surface area
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Figure 21: Underwater explosion, pressure profile at time t=3 ms in a cutting plane x=3 m, numerical schemes
comparison, mesh 400×400 cells.

(y≃8 m) and the transmitted shock wave front in air (y≃10 m). As regard to the shock
wave front, the Jameson solution is in close agreement with the finer mesh result. Yet,
oscillations are noticeable even using large values of the artificial dissipation coefficient.
With other schemes, the shock front is spread. The second-order MUSCL formulation
improves a little the solution in comparison with the first-order HLLC scheme. Concern-
ing the cavitation pocket extension, all results are quite similar, except using the Rusanov
scheme. The low-diffusive formulation largely improves the cavitation development, as
observed previously. The transmitted shock wave front in air is spread, except using the
Jameson scheme. Yet, the post-shock value is over-estimated with the Jameson scheme in
comparison with other results and with the finer mesh solution.

6 Conclusions

A void ratio transport-equation model involving mass transfer was presented and im-
plemented in a one-fluid two-phase compressible software. Different numerical schemes
were proposed to integrate the system based on a finite volume approach: HLLC, Ru-
sanov, VF Roe, Jameson-Schmidt-Turkel and AUSM-type schemes. The behavior of the
numerical tool was studied and verified by several benchmark problems. First, the com-
putation of one-dimensional shock tube problems demonstrated the ability of the pro-
posed model and schemes to capture strong shock waves adequately by comparison with
analytical solution or two-fluid solution. Secondly, double rarefaction cases leading to the
apparition of cavitation were simulated. These cases illustrated difficulties for Riemann
solver to capture strong rarefaction and evaporation fronts. It was not possible to com-
pute accurately these cases using both VF Roe and AUSM-type schemes. Moreover, the
importance of the numerical treatment for the void ratio equation was highlighted using
the HLLC scheme. The non-conservative term has to be carefully discretised to obtain a
good solution.
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Then, a two-dimensional shock-bubble interaction leading to the bubble collapse was
simulated. This case demonstrated the ability of the model associated to the HLLC
scheme to capture the main physical phenomena: the blast wave development and the
interaction with the bubble pieces leading to the largest pressure peak. It showed also
the robustness of the present solver in the multidimensional framework. The influence
of the numerical schemes was analyzed on an intermediate refined grid. As regard to the
bubble cutting during the collapse, only the second-order schemes (HLLC-MUSCL and
Jameson) predicted this phenomenon. The low-diffusive formulation for the Rusanov
scheme did not clearly improve the solution.

Finally, the numerical tool was applied to an underwater explosion near a free surface
for which a cavitation pocket develops. Results clearly showed that the model associated
to the HLLC scheme is well-suited to simulate the formation and development of cavita-
tion zones in a complex compressible flow. As regard to the cavitation pocket prediction,
the low-diffusive LD-Rusanov formulation largely improved the solution. Yet, it was not
possible to compute the case using the second-order LD-Rusanov-MUSCL formulation.

Ongoing works are to pursue comparative analysis and to develop high-order schemes
for cavitating flows.

Acknowledgments

The authors gratefully thank K. Tang and A. Beccantini from the Commissariat à l’Energie
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Appendix A: Splitting functions for the AUSM+up scheme

The splitting functions for Mach numbers and pressures are defined as polynomials, for
which the numerals in the subscripts indicate the degree of the polynomials:
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(M±|M |), (A.1)

M±
(4)

=







±
1

4
(M±1)2

(

1+
1

2
(M∓1)2

)

if |M|<1,

M±
(1)

otherwise,

(A.2)

P±
(5)

=







1

4
(M±1)2(2∓M)±

3

16
M(M2−1)2 if |M|<1,

M±
1

M
otherwise.

(A.3)



200 E. Goncalves and D. Zeidan / Commun. Comput. Phys., 24 (2018), pp. 167-203

Appendix B: Matrix and eigenvectors for the VF Roe ncv scheme

The matrix B is expressed as:

B=
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
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0 u τ 0
0 ρc2 u 0
0 0 0 u
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The associated right eigenvectors are:
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And the left eigenvectors:
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Appendix C: A barotropic model

We consider the sinusoidal barotropic model [41] extended for compressible solver [14].
When the pressure becomes smaller than the quantity Pvap+∆P and greater than Pvap−
∆P, we have the relation:

P(α) = Pvap+

(
ρsat

l −ρsat
v

2

)

c2
baro Arcsin(A(1−2α)), (C.4)

where ∆P represents the pressure width of the law and, for a void ratio value of 0.5,
the pressure is equal to the saturation pressure Pvap. This law involves an adjustable
parameter cbaro, which can be interpreted as the minimum speed of sound in the mixture.
The constant A, close to 1, is introduced to avoid infinite value of the speed of sound.
The continuity of both the pressure and the speed of sound is ensured and determines
the value of cbaro for given values of the saturation conditions (see [14]). For the tube case,
ρsat

l =1150 kg/m3 and ρsat
v =0.31 kg/m3, which lead to cbaro =1.31 m/s.
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Appendix D: A Kunz-type void ratio transport model

A class of cavitation models introduces a mass transfer between phases involving a sepa-
rate contribution for vaporization and condensation processes. Two tunable parameters
are associated for each process. Different formulations and sets of parameters are pre-
sented in [11]. In this study, we consider a formulation derived from the model proposed
by Kunz et al. [9]:

∂α

∂t
+~V.grad(α) =

ṁ

ρl
, (D.5)

ṁ = ṁ++ṁ− =Cprodρv(1−α)2α
Min(0,P−Pvap)

0.5ρre f U2
re f

+Cdesρv(1−α)
Max(0,P−Pvap)

0.5ρre f U2
re f

,

where Cprod and Cdes are constants to calibrate.
With this model, the void ratio value can be higher than one. We added a limiter in

the solver to clip the void ratio into its physical domain of evolution.
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