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Abstract. This paper addresses the problem of how to restore degraded images where

the pixels have been partly lost during transmission or damaged by impulsive noise. A

wide range of image restoration tasks is covered in the mathematical model considered

in this paper – e.g. image deblurring, image inpainting and super-resolution imaging.

Based on the assumption that natural images are likely to have a sparse representa-

tion in a wavelet tight frame domain, we propose a regularization-based approach to

recover degraded images, by enforcing the analysis-based sparsity prior of images in a

tight frame domain. The resulting minimization problem can be solved efficiently by

the split Bregman method. Numerical experiments on various image restoration tasks

– simultaneously image deblurring and inpainting, super-resolution imaging and image

deblurring under impulsive noise – demonstrated the effectiveness of our proposed al-

gorithm. It proved robust to mis-detection errors of missing or damaged pixels, and

compared favorably to existing algorithms.

Key words: Image restoration, impulsive noise, tight frame, sparse approximation, split Bregman

method.

1. Introduction

A digital image may be distorted or degraded during image formation or transmission,

which can extend to an unacceptable loss of visual image quality. How to recover degraded

images has long been a fundamental problem in image processing. There exist many types

of image degradations in practice – e.g. image blurring by out-of-focusing or camera shake

during image acquisition, image/film deterioration due to dust spots or cracks in film, low

resolution of images due to physical limits of digital cameras, and noisy images caused by
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noisy sensors or transmission errors. For simplicity, if we denote images as vectors in Rn

by concatenating their columns, the observed degraded version of the latent image u can

usually be modeled as

f = Hu+ ε, (1.1)

where f is the observed degraded image, u is the latent image, ε is the image noise and

the matrix H denotes the degrading operator. The image restoration task is then to reverse

the effect of the operator H on f to recover the latent image u. It is well known that image

restoration is an ill-conditioned inverse problem sensitive to image noise. It makes things

even harder when the complete version of the degraded image f is unavailable. This can

happen when, for example, some image pixels go missing during the transmission, or some

image regions are damaged due to scratches in films. In all these cases, only a subset of

image pixels is available or reliable. If Λ denotes the index set of all available image pixels,

then the image degradation model (1.1) becomes

PΛ f = PΛ(Hu+ ε) (1.2)

where PΛ is the projection operator, defined by a diagonal matrix with diagonal entries 1

for the indices in Λ and 0 otherwise.

The goal of this paper is to develop a robust algorithm to solve (1.2) – i.e. to restore

the latent image u from its incomplete, degraded and noisy version PΛ f . The quite generic

operator H in (1.2) includes many types of image degradations. For example, H may be

the matrix form of the discrete convolution operator for image deblurring, a projection

matrix for image inpainting, or an identity matrix for image denoising. Image restoration

with missing or damaged pixels is not only ill-conditioned but also ill-posed with an infinite

number of solutions. To recover the latent image u, we need to assume that there exists

some structure prior or image redundancy such that all pixels can be inferred from partial

degraded information for u. There have been many image priors proposed in the past

– e.g. the Tikhonov functional-based smoothness prior for images [41], total variation

functional [20, 38] or Mumford-Shah functional-based piece-wise smoothness prior [33]

for cartoon images, and the exemplar-based local patch redundancy prior of natural images

[23]. In recent years, sparsity-based priors of images in certain domains have been used

widely in many image restoration tasks, based on the observation that images usually

have sparse representations (or sparse approximations) in some transformed domains. For

example, there can be Fourier or windowed Fourier transforms, local cosine transforms,

wavelet or framelet transforms, or discrete gradient operators. In particular, the sparsity

prior of images in tight frame systems [24, 37] has been used successfully in many image

restoration tasks, such as image inpainting [11, 12, 16], non-blind image deblurring [15,

16] and blind motion deblurring [13,14]. All of this sparsity-based research motivates us

to investigate the application of the sparsity prior of images in a tight frame domain to

solve (1.2), for image restoration with missing or damaged pixels.

In order do so, one may find a sparse solution of (1.2) in the tight frame domain, which

can be approximated by solving an ℓ1-norm regularized minimization problem. Based on

different regularization strategies, there are three types of sparsity priors – viz. synthesis-

based sparsity prior [15], balanced sparsity prior [12], and analysis-based sparsity prior
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[16]. The approach proposed in this paper uses the analysis-based sparsity prior, as it is

empirically observed in many imaging applications that this tends to yield the result with

less undesirable artifacts. Let W ∈ Rm×n be a linear transform, called an analysis operator,

acting from Rn to Rm. The matrix W can be generated by any tight frame transform, and

we use redundant transforms in the implementation of the algorithm such that m ≥ n.

Then the resulting minimization from the analysis-based sparsity prior in a tight frame

domain is

min
u

1

p
‖PΛ(Hu− f )‖pp +λ‖Wu‖1, (1.3)

where ‖ · ‖p denotes the ℓp-norm with p ≥ 1, u is the resulting latent image, f is the

degraded image, H is the degradation operator, PΛ is the projection matrix, W is the tight

frame transform and λ is the regularization parameter.

There are a few research publications using a sparsity prior in a tight frame domain to

restore images degraded by individual types of image degradations. The balanced sparsity

prior in a tight frame domain has been used to solve the problem of image inpainting [12]

with H = I being an identity matrix, and the problem of image super-resolution [18] with

PΛ being a sub-sampling operator and H a convolution operator with a particular low-pass

filter. In [15], the synthesis-based sparsity prior is proposed to deblur images with full

pixels, where H is a convolution operator and Λ is the full image domain. In [16], the

analysis-based sparsity prior is used either to deblur images with full pixels or to inpaint

images with missing pixels. In comparison, the mathematical formulation and the corre-

sponding numerical algorithm discussed in this paper work for any linear operator H and

any projection matrix PΛ, providing a unified approach to address a wide range of image

restoration problems – including image inpainting, image deblurring, super-resolution, re-

moving impulsive noise, or some combination of them. Moreover, the general ℓp-norm is

used in the fidelity term of the proposed minimization formulation (1.3), instead of the

ℓ2-norm in these existing methods, which could benefit many image restoration tasks in

the presence of outliers. As a demonstration, the ℓ1-norm is used as the fidelity term in the

application of removing impulsive noise from images, which leads to better performance

compared to the usual ℓ2-norm based data fidelity.

Compared to the synthesis-based sparsity prior and balanced sparsity prior approaches,

the minimization (1.3) using an analysis-based sparsity prior is more challenging to solve,

as the ℓ1 terms involved in (1.3) are non-smooth and non-separable. Recently, a so-called

split Bregman iteration [28] has been developed to solve this type of ℓ1-norm related mini-

mization problem, and demonstrated excellent performance and efficiency in many appli-

cations in imaging science [16,27,27]. In this paper, we propose a modified version of the

split Bregman iteration as the numerical solver to (1.3).

The rest of this paper is organized as follows. Section 2 is devoted to the formulation

and discussion of (1.3) to image restoration with missing pixels and the detailed numerical

solver for (1.3). Three representative image restoration applications related to (1.3) and

their numerical experiments are presented in Section 3 – viz.

1. simultaneous image deblurring and inpainting,
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2. super-resolution image reconstruction,

3. image deblurring under impulsive noise.

Finally, in Section 4 we briefly summarize the paper and mention possible future work.

2. Tight Frame Based Restoration of Image with Missing Pixels

In this section, we present our formulation and algorithm for image restoration in the

presence of missing or damaged pixels. The redundant tight frame system used in our

algorithm is the wavelet tight frame without down-sampling in a two variable setting. The

piece-wise linear B-spline framelet system [24, 37] is chosen as the wavelet tight frame

in our method, due to its implementation simplicity. If we denote the image as a column

vector f ∈ Rn by concatenating all columns of the image, then the framelet decomposition

operator W can be represented by an m × n matrix with m > n such that the canonical

framelet coefficient vector v is defined as v = Wu. Once we have the framelet decom-

position operator W , the inverse operator or the reconstruction operator is simply W T –

i.e. u = W T v. We emphasize that W is a rectangular matrix with the row dimension m

much larger than its column dimension n. Thus, W T W = I but WW T 6= I . If WW T = I , it

becomes an orthonormal wavelet transform without redundancy. Here we remark that W

is basically used for notational convenience. In the practical computation, we neither store

the matrix nor use matrix multiplications. Instead, there exist efficient algorithms for both

framelet decomposition and reconstruction by passing the images/coefficients through a

series of discrete framelet filters with a small memory footprint – cf. [17, 25] for more

implementation details.

2.1. Minimization Formulation

In the image degradation model (1.2), the availability of the index set Λ of remained

image pixels varies with different image restoration tasks. Temporarily, we assume that Λ

is given in advance. To seek the solution u from (1.2), we propose to solve the following

minimization problem:

min
u

1

p
‖PΛ(Hu− f )‖pp +λ‖Wu‖1, (2.1)

where the matrix W is the decomposition operator associated with the linear B-spline

framelet system. The motivation for the proposed minimization formulation is as follows.

There are two components in the minimization (2.1). The first is the fidelity term and

the second is the regularization term. The ℓ2-norm with p = 2 has been used as the dis-

tance function in most existing image restoration methods. As the ℓ2-norm based distance

function is known to be sensitive to outliers, the missing or damaged pixels have to be

detected in a pre-process with high accuracy in order to achieve high performance. The ac-

curate detection of missing pixels is possible for some applications such as super-resolution

imaging, but is very challenging for some other applications such as image deblurring in

the presence of impulsive noise. In such a case, the ℓ1-norm based distance function is
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more suitable as it is known to be robust to outliers – [35]. Thus, both ℓ2-norm and ℓ1-

norm based distance functions are discussed in this paper, and the choice is application

dependent (cf. Section 3 for more details).

The regularization term in (2.1) enforces the sparsity of the canonical tight frame co-

efficients of the solution, as the corresponding canonical coefficient vector is sparse (i.e. a

large number of canonical coefficients are equal to close to zero) for a large class of func-

tions (including piece-wise smooth functions). Moreover, it is known that the weighted

norm of the canonical frame coefficient vector of a function is equivalent to its function

norm in some spaces – e.g. Sobolev or Besov spaces (see [5,29] for more details). In partic-

ular, it is shown in [5] that the ℓ1-norm of the canonical tight frame coefficient vector of a

function – i.e. the regularization term in (2.1) – is equivalent to its Besov norm under some

mild conditions on the underlying tight frame system. Therefore, the regularization term

‖Wu‖1 also controls the smoothness of the solution, which is desirable in image restoration

as the result tends to have less artifacts. Meanwhile, the sharp edges in the images are still

preserved, as the annihilation of small coefficients in the wavelet tight frame domain by

ℓ1-norm minimization tends to sharpen image edges.

The minimization (2.1) is actually one extreme case of a more general sparsity-based

minimization formulation discussed in [40] – viz.

min
v

1

2
‖GW T v − g‖22 +

β

2
‖(I −WW T )v‖22+λ‖v‖1, (2.2)

where G is some matrix and β ≥ 0 is a positive parameter, and v is the frame coefficient

vector such that the solution u = W T v. If we set β = ∞, essentially the middle term in

(2.2) enforces the equality constraint:

(I −WW T )v = 0, or equivalently v ∈ range(W ).

Thus (2.2) is equivalent to

min
u

1

2
‖Gu− g‖22 +λ‖Wu‖1. (2.3)

Obviously, our formulation (2.1) is the same as the formulation (2.3) above with

p := 2, g := PΛ f and G := PΛH.

Such a minimization formulation is an analysis-based approach, as it enforces the sparsity

of the canonical frame coefficients (or analysis coefficients) of the solution. If β = 0, the

second term vanishes and the minimization (2.2) becomes

min
v

1

2
‖GW T v − g‖22 +λ‖v‖1. (2.4)

The minimization (2.4) is the synthesis-based approach which assumes that the image can

be synthesized from a sparse frame coefficient vector v by u :=W T v. It is seen that the two

minimization formulations (2.3) and (2.4) will yield different results when WW T 6= I . The
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synthesis-based approach (2.4) emphasizes more the sparsity of the solution, as it finds the

solution in a larger space than the analysis-based approach (2.3). Instead, the analysis-

based approach (2.3) emphasizes the balance between the sparsity of frame coefficients

and the smoothness of the solution, as the term ‖Wu‖1 is linked to the smoothness of the

underlying function [5]. When 0 < β <∞, the minimization (2.2) is called the balanced

approach, which has been used with β = 1 and p = 2 in image inpainting [11,12]. For our

purpose, it is empirically observed that the analysis-based approach (2.3) is likely to yield

the results with more pleasant visual quality, and there also exists an efficient numerical

solver as discussed in the following section.

2.2. Numerical Computation

The numerical method to solve the minimization problem (2.1) was very computation-

ally expensive with excessive memory requirements. Recently, a so-called split Bregman

iteration [28] proved to be efficient for solving a class of ℓ1 related minimization problems.

The Bregman iteration was first introduced to the image processing community in [36] and

was then applied to a variety of signal and image processing problems. The split Bregman

iteration extends the utility of the Bregman iteration to a more general class of ℓ1-norm

related minimization problems with the convergence proved in [16]. The basic idea is to

convert (2.1) by introducing one more constraint involving an auxiliary variable d = Wu,

and then invoking the Bregman iteration to solve the constrained minimization problem.

The split Bregman algorithm is particularly suitable for many image restoration tasks as

it converges fast, uses a small memory footprint and is easy to implement. The applica-

tion of split Bregman iteration to some existing algorithms in optimization is pointed out

by [26, 39]. In fact, the split Bregman algorithm is equivalent to the alternating direction

method of multipliers and the Douglas-Rachford splitting algorithm for the dual problem.

We use the split Bregman iteration to solve the minimization problem (2.1). The iter-

ative algorithm is outlined here, and more detailed discussions of the algorithm may be

found in [16,28]. Consider a general ℓ1 minimization problem

min
u

E(u) +λ‖Lu‖1, (2.5)

where E(u) is a smooth convex function and L is a linear operator. Let u0 := 0, d0 = b0 := 0

be the initial seeds, when the split Bregman algorithm for (2.5) is as follows:





uk+1 := arg minu E(u) +
µ

2
‖Lu− dk + bk|22,

dk+1 := Tλ/µ(Luk+1+ bk),

bk+1 := bk + (Luk+1− dk+1),

(2.6)

where µ > 0 is a parameter of the algorithm, and Tθ is the soft-thresholding operator

defined by

Tθ : x = [x1, x2, · · · , xM]→Tθ (x) = [tθ (x1), tθ (x2), · · · , tθ (xM)],



114 H. Ji, Z. Shen and Y. Xu

where

tθ (ξ) = sgn(ξ)max{0, |ξ| − θ}.

During the iteration (2.6), the second and the last step are both trivial to compute. The

computation of the first step varies with different choices of function E(u).

For solving the minimization problem (2.1), the split Bregman iterations are described

for both p = 1 and p = 2, respectively. For p = 2, the first step in the split Bregman

iteration is to find a least squares solution. Let E(u) = 1

2
‖PΛ(Hu− f )‖22 and let L =W . The

corresponding algorithm is




uk+1 := (HT PΛH +µW T W )u= HT PΛ f +µW T (dk− bk),

dk+1 := Tλ/µ(Wuk+1+ bk),

bk+1 := bk + (Wuk+1− dk+1)

(2.7)

with the initialization u0 = and d0 = b0 = 0. The stopping criterion adopted is ‖dk −
Wuk‖ ≤ ε with ε being a given tolerance. The main computational cost of the iterative

scheme (2.7) lies in solving the linear system in the first step. If all pixels are available

(Λ = Ω), then the linear system can be solved efficiently in the Fourier domain by using a

periodic boundary condition, since the matrices HT H and W T W are circulant and can be

diagonalized by fast Fourier transform (see e.g. [42]). However, such an approach does

not work when there is missing data, as the circulant structure is lost even using a pe-

riodic boundary extension. In our approach, the symmetric boundary extension is used

as it causes less boundary artifacts in the results. The resulting linear system in (2.7) is

positive definite and therefore can be solved by the conjugate gradient (CG) method. It is

emphasized that a very accurate numerical solution of the linear system (2.7) is unneces-

sary at each split Bregman iteration, and instead an approximate solution turns out to be

adequate. Thus only a few CG iterations are used to generate an approximate solution of

(2.7) in our implementation.

For the case of p = 1, both the data fidelity term and the regularization term in (2.1) are

based on the ℓ1-norm that is not differentiable. Thus the split Bregman iteration in (2.6)

should be modified accordingly. The term E vanishes but, in addition to the quadratic

functional in the first step of (2.6), another quadratic functional related to the ℓ1 norm

based data fidelity term comes into the first step and the corresponding coefficient vectors

are updated in a similar way as for the regularization term ‖Lu‖1. The corresponding split

Bregman iteration for the case of p = 1 is




uk+1 := (µ1HT PΛH +µ2W T W )u= µ1HT PΛ(v
k −wk + f ) +µ2W T (dk − bk)

vk+1 = T1/µ1
(Huk+1− f +wk)

dk+1 = Tλ/µ2
(Wuk+1+ bk)

wk+1 = wk + (Huk+1− vk+1− f )

bk+1 = bk + (Wuk+1− dk+1)

(2.8)

where µ1 and µ2 are the algorithm parameters related to the data fidelity term and regu-

larization term, respectively. The initialization is set to be u0 = w0 = 0 and d0 = b0 = 0.
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Similar to (2.7), the linear system in the first step of (2.8) can be solved using the CG

method, and in the implementation only an approximate solution on running a few CG

iterations is used. Both iterations (2.7) and (2.8) are very efficient, as demonstrated by

numerical simulations in Section 3.

3. Applications

The model considered in (2.1) is quite general, and can be applied to many image

restoration tasks in the presence of missing pixels or pixels with heavily distorted inten-

sity. In this section, we will demonstrate three such applications: 1) simultaneous image

deblurring and inpainting; 2) super-resolution image reconstruction; and 3) image deblur-

ring in the presence of impulse noise. The details of each application and its formulation

as a special case of (2.1) are given in the remainder of the section, and the results are

compared with some existing methods. The performance of the method is evaluated in

terms of both visual quality and the PSNR value of the restored images. Recall that the

peak signal to noise ratio (PSNR) is defined by

PSNR= 10 log10

2552

1

mn

m∑

i=1

n∑

j=1

(bx i j − x i j)
2

,

where m and n are the width and height of the image, and x i j and bx i j are the intensity

values of the original image and of the restored image, respectively.

3.1. Simultaneous Image Deblurring and Inpainting

In many situations, some regions of the image could be damaged or lost – e.g. there are

scratches on film frames or un-wanted texts are written on the images. The goal of image

inpainting is then to fill in (or interpolate) the missing or damaged pixels based on the

available information of the image. The problem of image inpainting has been extensively

studied since the pioneering work in [4], and reference may also be made to [20] for a

thorough review on this topic. In this subsection, we address a more complicated image

degradation problem – viz. images are blurred and pixels are missing in some regions. Let

Λ denote the index set of available pixels. The corresponding image degradation model is

then

f |Λ = (Hu)|Λ+ ε,

where f is the blurred image, u is the latent image, H is the matrix form of the convolution

with some blurring kernel and ε is additive Gaussian white noise. Presumably, the blur

kernel is known from other sources and the missing pixels are identified accurately by

some pre-process or by user interactions. Then, the goal of image restoration is to recover

the latent image u by simultaneously deblurring and inpainting f |Λ.
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(a) (b) (c)Figure 1: Simultaneous image deblurring and inpainting. (a) Image blurred by the motion-blur kernelgenerated from MATLAB fun
tion f special(′motion′, 15, 45), (b) blurred image with 30% randomlymissing pixels, (
) the restored image with the PSNR value of 40.25dB. λ = 0.001 is used in thealgorithm.
(a) (b) (c)Figure 2: Simultaneous image deblurring and inpainting. (a) Noisy blurred image, (b) noisy blurredimage with 30% missing pixels, (
) restored image with the PSNR value of 27.76 dB. λ= 0.3 is used inthe proposed algorithm.

The minimization based approach (2.1) is used to solve such an image restoration

problem with p = 2 – i.e.

min
u

1

2
‖PΛ(Hu− f )‖22+λ‖Wu‖1; (3.1)

ℓ2 is used as the distance function of the fidelity term as the image noise is assumed to

be i.i.d., and for Gaussian noise N(0,σ2). Two types of missing pixels are studied in the

numerical experiments – viz. randomly missing pixels and non-randomly missing pixels. In

the first experiment, the sample image is blurred by a linear diagonal motion blur kernel of

15-pixel length, and 30% of all pixels are randomly missing. The result from the proposed

algorithm is shown in Fig. 1 in the absence of image noise. It is seen that the visual quality

is nearly perfect with a high PSNR value of 40.25 dB. In the presence of image noise,

the result is shown in Fig. 2 for the case of noise variance σ = 5. The visual quality of

the recovered image is still quite good with a respectable PSNR value of 27.76 dB. It is

noted that the appropriate value of λ is determined by the noise level of the image. In the

experiments, a small value of λ = 0.001 is used when there exists no image noise, and a

relative large value of λ= 0.3 when there exists noticeable image noise (with σ = 5).

In the second experiment, the missing pixels of the tested image are not random. In-

stead, the pixels are missing due to scratches in the films or by texts on the images, and
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(a) (b) (c)Figure 3: Simultaneous image deblurring and inpainting. (a) Image blurred by an out-of-fo
us kernel ofradius 6 pixel, generated by Matlab fun
tion f special(′disk′, 6), (b) iblurred mage with s
rat
hes andinserted texts, (
) restored image with the PSNR value of 34.27 dB. λ = 0.0005 is used in the algorithm.
(a) (b) (c)Figure 4: Simultaneous image deblurring and inpainting. (a) Image blurred by an out-of-fo
us kernelof radius 6 pixels and 
orrupted by additive Gaussian white noise with σ = 5, (b) image with s
rat
hesand inserted texts, (
) restored image with the PSNR of 24.43 dB. λ = 0.3 is used in the algorithm.

the image is also blurred by an out-of-focus kernel. The results shown in Fig. 3 are in the

absence of image noise, and those in Fig. 4 in the presence of image noise with σ = 5. It

is observed that the proposed algorithm is still quite capable of simultaneously deblurring

and inpainting images with non-randomly missing pixels.

3.2. Super-resolution Image Reconstruction

Super-resolution image reconstruction from multiple sensors is one technique in the

imaging industry to capture a high-resolution image from an array of low-resolution im-

ages. The array of low-resolution images are captured by an array of image sensors, with

pre-arranged image displacements between the images. In this section, we adopt the model

of the array of image sensors proposed by Bose and Boo [6]. Consider a K×K sensor array

in which each sensor (p,q) produces an image of resolution m × n, denoted by fpq for

p,q = 1,2, . . . , K . The goal of super-resolution imaging is to reconstruct a high-resolution

image of size M×N from a full (or partial) set of these low-resolution frames with M = Km,

N = Kn. The relationship between each individual low-resolution frame and the under-

lying high-resolution image can be modeled by a blurring process followed by a uniform

sub-sampling [6,18,19]

fpq = PΛpq
Hu+ εpq, p,q = 1,2, . . . , K ,
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where the blurring matrix H is associated with a specific blurring kernel modeled by the

tensor product of the 1D filter

h=
h1

2
1 . . . 1 . . . 1︸ ︷︷ ︸

K−1

1

2

i
.

Here PΛpq
is the projection on

Λpq =
�
(iK + p, jK + q), i = 1,2, . . . , m, j = 1,2, . . . , n

	
, p,q = 1,2, . . . , K ,

a uniformly distributed index subset of the high-resolution blurred image Hu.

The practical system can either use the full array or only a portion of the image sensors.

Let fS denote the set of sensors used in the system – i.e.

fS ⊆ S = {(p,q), p,q = 1,2, . . . , K}.

The following minimization is proposed to reconstruct the high-resolution image from

multiple low-resolution images:

min
u

1

2

∑

(p,q)∈ fS
‖PΛpq

(Hu− f )‖22 +λ‖Wu‖1. (3.2)

Notice that PΛpq
f = fpq. The proposed minimization (3.2) is also a special case of (2.1)

with

Λ =
⋃

(p,q)∈ fS

Λpq.

The wavelet tight frame has been used before for super-resolution images from a sensor

array [18, 19], where an iterative scheme is proposed by alternately soft-thresholding in

the tight frame domain and projecting the result back to image domain. It is proved in [11]

that such a iterative scheme actually converges to the solution of the minimization problem

min
v

1

2
‖PΛ(HW T v − f )‖22 +

1

2
‖(I −WW T )v‖22+λ‖v‖1, (3.3)

which is the balanced approach we discussed in Section 2. The formulation (3.3) becomes

the synthesis approach when the second term vanishes. Our proposed algorithm is based

on the analysis-based sparsity prior. In the experiments, the results from our proposed ap-

proach are compared against those from the balanced approach [11] and also the synthesis

approach, in terms of their PSNR values.

Two images are tested in the experiments for various configurations of image sensor

array. The results from our proposed algorithm are shown in Fig. 5 and Fig. 6, under

different configurations of a 4× 4 sensor array in the absence of image noise. Fig. 7 and

Fig. 8 show the results from our proposed algorithm in the presence of image noise, with

the signal-to-noise ratio of noisy images being SNR = 30 dB. The same set of experimental

data is used for testing the algorithm in [11]. A numerical comparison of PSNR values for
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hieved by the analysis-based approa
h in this paper, the balan
edapproa
h in [11℄ and the synthesis approa
h for super-resolution image re
onstru
tion.
Analysis approach Balanced approach Synthesis approach

(# of sensor arrays) (# of sensor arrays) (# of sensor arrays)

16 8 4 1 16 8 4 1 16 8 4 1

Boat 31.3 31.1 28.2 24.9 29.8 29 26.8 23.9 30.8 29.5 27.6 22.9

Goldhill 29.2 28.5 27.2 25.4 28.5 27.9 26.5 24.6 28.9 28.1 27.0 23.5

the noisy case in Table 1 shows that our algorithm consistently outperforms the balanced

approach proposed in [11], with average 1−2 dB gain in PSNR. The gain over the synthesis

approach is about 0.5 − 2 dB. The results indicate that the analysis-based approach is

more suitable for the application of super-resolution imaging than the synthesis/balanced

approach.

In addition, the split Bregman iteration is extremely efficient in solving the minimiza-

tion problem (3.2). It is observed in the experiment that a sufficiently accurate solution can

be obtained within 10 iterations, and 30 seconds running time in MATLAB code on a desk-

top PC with a 2Ghz Intel CPU. In comparison, the algorithm proposed in [11] is quite slow

and requires much more computational time. We note that the recent accelerated proximal

gradient (APG) algorithm [3,40] substantially accelerates the balanced approach in [11],

and takes less time to obtain a satisfactory solution in the same hardware configuration.

Hence, we also employ the APG algorithm for computation in the synthesis approach.

3.3. Image Deblurring in the Presence of Impulsive Noise

In this section, we consider how to recover blurred images corrupted by both additive

Gaussian noise and impulsive noise. Gaussian noise caused by thermal noise is prevalent

in imaging systems and impulsive noise is caused by dead pixels, analog-to-digital con-

verter errors, bit errors in transmission, etc. (see e.g. [7]). Such image degradation can be

modeled by

f = Np(Hu+ ε), (3.4)

where f and u are the observed and the latent image respectively, H is the matrix of

blurring, ε is the Gaussian noise and Np represents the process which affects image pixels

by impulse noise. Let the dynamic range of f be [dmin, dmax]. There are two main types

of impulsive noise – viz. salt-and-pepper noise and random valued impulsive noise, which

are characterized as follows:

• Salt-and-pepper noise, where a certain proportion of pixels are altered to be either dmin

or dmax , i.e.

Np(x i j) =





dmin, with probability s/2

dmax , with probability s/2

x i j, with probability (1− s)

where s is the level of salt-and-pepper noise.
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Figure 5: Super-resolution image re
onstru
tion on �Boat". Columns represent (from left to right) theavailable low-resolution images, the observed high-resolution images, the re
onstru
ted high-resolutionimages. The PSNRs a
hieved in ea
h re
onstru
tion (from top to bottom) are 39.5 dB,35.1 dB, 30 dB,
25.1 dB respe
tively.
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Figure 6: Super-resolution image re
onstru
tion on �Goldhill". Columns represent (from left to right) theavailable low-resolution images, the observed high-resolution images, the re
onstru
ted high-resolutionimages. The PSNRs a
hieved in ea
h re
onstru
tion (from top to bottom) are 37.3 dB, 31.9 dB, 28.7dB, 25.6 dB respe
tively.
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Figure 7: Super-resolution image re
onstru
tion on �Boat" (SNR = 30 dB). Columns represent (fromleft to right) the available low-resolution images, the observed high-resolution images, the re
onstru
tedhigh-resolution images. The PSNRs a
hieved in ea
h re
onstru
tion (from top to bottom) are 31.3 dB,
31.1 dB, 28.2 dB, 24.9 dB respe
tively. In 
ontrast, the PSNRs a
hieved by the algorithm in [10℄ onthe same set of experiments are 29.76 dB, 29.01 dB, 26.78 dB, 23.91 dB respe
tively.
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Figure 8: Super-resolution image re
onstru
tion on �Goldhill" (SNR = 30dB). Columns represent (fromleft to right) the available low-resolution images, the observed high-resolution images, the re
onstru
tedhigh-resolution images. The PSNRs a
hieved in ea
h re
onstru
tion (from top to bottom) are 29.20dB, 28.46 dB, 27.24 dB, 25.42 dB. In 
ontrast, the PSNRs a
hieved by the algorithm in [10℄ on thesame set of experiments are 28.51 dB, 27.93 dB, 26.48 dB, 24.58 dB.
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• Random valued impulsive noise, where a certain proportion of pixels are altered to be

a (uniform) random number in [dmin, dmax] – viz.

Np(x i j) =

(
di j, with probability r

x i j, with probability (1− r)

where di j is a uniformly distribution random number in [dmin, dmax] and r is the level

of random valued noise.

As the content of pixels contaminated by impulsive noise contains little information

of the original image content, these damaged pixels are viewed as outliers, and there has

been some research [1, 2] on developing image deblurring algorithms robust to outliers.

However, when images are corrupted by significant impulsive noise, there are too many

outliers to be handled well by these robust methods. Recently, two-phase based approaches

proposed in [8,9] demonstrated better performance on deblurring images in the presence

of impulsive noise. The basic idea of the two-phase based approach is to first detect pixels

corrupted by impulsive noise and then to deblur images using only those reliable pixels.

The detection of image pixels corrupted by impulsive noise has been studied extensively

in the application of removing impulsive noise from images. Median filtering [21, 22,

32] is the predominant available technique for detecting pixels with impulsive noise. As

the damaged pixels contain little information of the original image content, a reasonable

approach is to remove them from the deblurring process by treating them as missing pixels.

Let Λ denote the index set of those reliable pixels. We propose the same minimization

formulation as (2.1) to deblur images:

min
u

1

p
‖PΛ(Hu− f )‖pp +λ‖Wu‖1. (3.5)

The main difference between our proposed approach and the two other approaches pro-

posed in [8, 9] lies in the regularization term. The algorithm used in [8] employs the

Mumford-Shah function as the regularization term and the algorithm proposed in [9]

adopts a TV-like regularizer due to consideration of computational efficiency. It is noted

that although (3.5) is very similar to (3.1) used in the application of simultaneous image

deblurring and inpainting, the differences between them lie in the accuracy of the index

set Λ. The index set Λ in (3.1) is assumed to be free of error. On the contrary, the index set

Λ in (3.5) could contain wrongly detected damaged pixels or undetected damaged pixels,

especially for the case of random valued impulsive noise.

The performance of the two-stage based image deblurring methods proposed in [8,9]

is dependent on the accuracy of detecting damaged pixels. We adopt the same median

filter techniques used in [8,9] to locate damaged pixels – the adaptive median filter (AMF)

in [30] is used to detect salt-and-pepper noise, and the adaptive center-weighted median

filter (ACWMF) in [22] is used to detect random valued impulsive noise (cf. [22, 30] for

more details). It is noted that any other impulsive noise detection technique can also be

used in our approach. The reason we choose these two median filter techniques is for a
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fair comparison with existing methods, as the main contribution of our proposed algorithm

lies in the second stage.

The detection accuracy of impulsive noise is different for the two types of impulsive

noise. The detection of salt-and-pepper noise is relatively easy and is indeed very accurate

with little error. On the contrary, the detection of random valued impulsive noise is much

more difficult and there will be a lot of outliers in the set of detected reliable pixels. Thus,

different p norms are used in these two cases:

A. If there is only salt-and-pepper noise in the image, the detection of damaged pixels

using the AMF filter is very accurate and f |Λ is nearly free of error. In such a case, we

choose p = 1 since that allows exact data fitting, i.e. (Hu)i j = fi j if fi j is not corrupted,

while p = 2 cannot do this [34,35].

B. If there is a mixture of both salt-and-pepper noise and Gaussian noise in the image, the

AMF filter still can accurately locate pixels damaged by salt-and-pepper noise. Thus

f |Λ contains only Gaussian noise. In this case, a 2-norm is used in (3.5) based on

statistical maximum likelihood reasoning.

C. If the image is contaminated by random valued impulse noise, the ACWMF filter is able

to identify impulse noise reasonably well, but with a noticeable amount of wrongly

marked pixels. Thus, fΛ contains a noticeable amount of outliers, when p = 1 is used

in (3.5) for its robustness to outliers.

D. If the image is contaminated by both random-valued impulse noise and Gaussian noise,

it is very difficult to detect small impulse noise as it is similar to Gaussian noise. It is

suggested in [8] that either p = 1 or p = 2 can be chosen depending on the level of

impulse noise and Gaussian noise, and p = 1 is used in our proposed approach.

In the first experiment, both the full variational approach (Λ = Ω in (3.5)) and the

two-phase based approach are applied to illustrate the advantages of the two-phase based

approach. In the experiments, the tested images are blurred by the out-of-focus blurring

kernel of radius 3 pixels and then corrupted by different levels of salt-and-pepper noise.

The results are shown in Fig. 9. It is seen that the performance of two approaches is

close in the case of a low noise level such as 10%. However, the performance of the full

variational approach is significantly degraded with the increase of the noise level. Indeed,

the two-stage based approach is much more consistent and performs quite well even for

the case of a noise level high as 70%. This experiment clearly indicated the advantage of

the two-stage based approach over the full variational approach.

In the second experiment, our proposed two-stage algorithm is compared against two

existing two-phase algorithms developed in [8, 9], on different images contaminated by

different configurations of image noise. The same experimental settings are used in the

comparison. The first data set involves various images with out-of-focus blur of radius 3

pixels and then corrupted by different levels of salt-and-pepper noise. The results on tested

images at the noise level s = 70% are shown in Fig. 10. The PSNR values of the results

from our algorithm under different noise level are given in Table 2 and compared against

that from the two methods in [8, 9]. It is seen from Table 2 that our results achieved
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Figure 9: The top row (from left to right) shows the images to be restored, whi
h are blurred by out-of-fo
us kernel of radius 3 pixels and 
orrupted 
onse
utively by 10%, 30%, 50%, 70% salt-and-peppernoise. The middle row shows the restored images by the full variational algorithm; the 
orrespondingPSNR values are 36.09, 29.84, 27.58, 24.13 respe
tively. The bottom row shows the restorations by thetwo-phase algorithm; the 
orresponding PSNR values are 42.51, 38.60, 35.08, 31.65 respe
tively.
higher PSNR values, with about 2−3 dB gain over the one in [8] and about 1dB gain over

the one in [9] when the noise level is lower than 50%. The advantage of our proposed

algorithm is not so much when the noise level is high, as the available reliable pixels are not

enough to constrain the image well. It is noted that the computational time needed in our

algorithm is much less than that reported in [8,9]. Such computational efficiency is mainly

from the adoption of the split Bregman algorithm. Our proposed algorithm converges fast

and the results are visually indistinguishable after a few iterations (20 iterations in this

experiment).

The second data set includes images corrupted by different levels of random-valued

impulse noise. Random-valued impulse noise is much more difficult to detect than salt-

and-pepper noise. The ACWMF filter is used to detect random-valued impulsive noise in

the first phase of our proposed algorithm. There are unavoidably outliers in the detected

reliable pixels and thus the ℓ1-norm is used as the distance function in the fidelity term of

(3.5). The ℓ2-norm is not a good choice in the presence of outliers, as it is shown in [31]

that the results can be either over-smoothed by using a large regularization parameter or

attracted to the outliers by using a small regularization parameter. The advantage of using
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omputational time (se
onds) between our algorithm and two otheralgorithms [8, 9℄ in the presen
e of salt-and-pepper noise. The blurring kernel is the out-of-fo
us ofradius 3 pixel.
Our algorithm Algorithm in [9] Algorithm in [8]

Image Ratio
PSNR Time PSNR Time PSNR Time

30% 38.6 42 37.5 187 35.9 504

50% 35.0 42 33.7 212 32.7 496

70% 31.7 39 30.7 239 30.1 488
Lena

90% 27.3 32 27.1 335 26.7 623

bridge 70% 27.2 42 26.4 241 26.2 514

baboon 70% 25.2 42 24.7 223 24.7 452

boat 70% 28.7 42 27.7 231 26.7 488

goldhill 70% 29.5 41 28.8 208 28.4 402

Figure 10: Restoration results for the 
orrupted images with the out-of-fo
us kernel of radius 3 and 70%salt-and-pepper noise. The PSNR values of the results are given in Table 2.
Figure 11: From left to right shows the 
orrupted image with the out-of-fo
us kernel of radius 3 pixelsand 40% random-valued impulse noise, the intermediate output from median �ltering, the restoration byusing ℓ2-norm based data �delity term in (3.5) and the restoration by using ℓ1-norm based data �delityterm in (3.5).
the ℓ1 norm over the ℓ2 norm in the presence of outliers is clearly demonstrated in Fig. 11.

The PSNR values of the results from our algorithm are listed in Table 3 for different levels

of impulsive noise, and compared against those in [8, 9]. Overall, about 1− 2 dB gain of

the PSNR value over that from [8, 9] is achieved by our algorithm when the noise level is

less than 60%. The advantage of our proposed algorithm over those in [8,9] is much less

noticeable in the presence of high-level random-valued impulse noise.

Lastly, we come to the case when both Gaussian noise and impulse noise are present
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omputational time (se
onds) between our algorithm and two otheralgorithms [8,9℄ under random-valued impulse noise. The blurring kernel is the out-of-fo
us of radius 3.
Our algorithm Algorithm in [9] Algorithm in [8]

Image Ratio
PSNR Time PSNR Time PSNR Time

10% 40.2 46 35.6 65 38.7 584

25% 36.3 49 32.8 66 34.4 606

40% 32.4 63 30.5 68 31.2 739
Lena

55% 28.6 70 27.2 104 27.8 784

bridge 40% 27.8 63 26.4 81 27.3 726

baboon 40% 25.7 56 24.7 64 25.3 635

boat 40% 29.4 63 27.7 91 28.2 709

goldhill 40% 30.2 57 28.8 64 29.5 705Table 4: Comparison of the PSNR value of the results from our algorithm and that from the algorithmin [8℄ in the presen
e of both Gaussian and impulse noise.
Our algorithm Algorithm in [8]

Image Ratio
PSNR PSNR

s= 30% 27.5 27.2

s = 50% 27.2 26.9

s = 70% 26.7 26.4

s = 90% 25.2 24.7

r = 10% 27.3 27.2

r = 25% 27.1 27.0
Lena

r = 40% 26.8 26.7

in the blurred image. The tested images are “lena" blurred by out-of-focus kernel of ra-

dius 3 and then corrupted with Gaussian noise (σ = 5, SNR = 26.9 dB) followed by

30%,50%,70%,90% salt-and-pepper noise. The PSNR of the restored images by our al-

gorithm is given in Table 4, in which as a comparison the PSNR’s achieved by the method

in [8] for the same experimental setting is provided. When Gaussian noise and random-

valued impulse noise are present, the corresponding figures are also as shown in Table 4.

In both cases, our algorithm only achieves slight improvement over [8].

4. Brief Discussion and Possible Future Work

In this paper, we present a unified approach to recover degraded images with missing or

damaged pixels for several typical image degradations. Under the analysis-based sparsity

prior of images under a wavelet tight frame domain, the proposed regularization-based

approach can effectively recover degraded images in the presence of missing or damaged

pixels. Furthermore, the proposed approach is robust to the detection error of missing or

damaged pixels, which makes it more appealing in practice. The resulting minimization

can be solved efficiently by an adaptive version of the split Bregman iteration algorithm.
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In our experiments on various types of image restoration tasks, our algorithm compares

favorably against many existing methods. In future, we are interested in developing image

restoration methods that are robust to a wide range of image noise – e.g. Gaussian noise,

Poisson noise, impulsive noise, or a combination of these.
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