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Abstract. In this article, a fully discrete finite element approximation is investigated for
constrained parabolic optimal control problems with time-dependent coefficients. The
spatial discretisation invokes finite elements, and the time discretisation a nonstandard
backward Euler method. On introducing some appropriate intermediate variables and
noting properties of the L2 projection and the elliptic projection, we derive the super-
convergence for the control, the state and the adjoint state. Finally, we discuss some
numerical experiments that illustrate our theoretical results.
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1. Introduction

Optimal control problems arise extensively in many social, economic, scientific and
engineering applications. Nowadays, finite element (FE) methods seem to be the most
widely used numerical approach for solving optimal control problems — cf. Refs. [1,6,8,
11,20,25,28,29] for systematic discussions of such methods for PDE and optimal control
problems.

In the FE approximation for elliptic optimal control problems, a priori error estimates
have been established [15], a posteriori error estimates of both recovery and residual type
derived [13, 18], and adaptive FE approximations for optimal control problems investi-
gated [12]. Recently, a posteriori and a priori error estimates in mixed FE methods for
elliptic optimal control problems have been obtained in Refs. [5] and [30], respectively;
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and a variational discretisation approximation for optimal control problems with control
constraints has also been considered [9, 10].

Parabolic optimal control problems are frequently met in mathematical models describ-
ing petroleum reservoir simulation, environmental modelling, groundwater contaminant
transport, and many other applications that can be difficult to handle. A priori and a pos-
teriori error estimates of FE methods for such optimal control problems have also been es-
tablished in Refs. [16] and [19,31], respectively. Relevant a priori estimates for space-time
FE discretisation have also recently been obtained [22,23], and a characteristic FE approx-
imation for optimal control problems governed by transient advection-diffusion equations
has been investigated [7].

There has been extensive research on the superconvergence of FE methods for elliptic
optimal control problems. The superconvergence of linear, semilinear and bilinear elliptic
optimal control problems was established in Refs. [24], [3] and [32], respectively; and for
mixed FE approximation of Stokes optimal control problems in Ref. [17]. Some supercon-
vergence results of mixed FE approximation for elliptic optimal control problems have also
been obtained [2,4,21,33]. Recently, we have derived the superconvergence of fully dis-
crete FE approximation for linear and semilinear parabolic control problems in Refs. [27]
and [26], respectively. In this article, we investigate the superconvergence of fully dis-
crete FE methods for an optimal control problem governed by parabolic equations with
time-dependent coefficients and control constraints, and then undertake some numerical
experiments to confirm our theoretical results.

We consider the following parabolic optimal control problem:

T
min1 (y—y)*+ | «?|dt,
uek 2 Q Q

Ye(x, t) = div(A(x, ) Vy(x, 1)) = f(x, £) +u(x,t), x€Q,ted, (1.1)
y(x,t)=0, xe€dQ, ted,
y(x)o):.yO(x)) XEQ,

where Q is a bounded domain in R? with a Lipschitz boundary 99, J = [0, T] with T > 0,
the coefficient A(x, t) = (a;;(x, 1))zx2 € (WH™(J; Wl’c"’(fl)))2X2 such that for any £ € R2
and t € J, (A(x,t)£)-£>c | & |?> with ¢ > 0. Let f(x,t) € C(J; L2(Q)) and yo(x) € Hé(Q).
Further more, we assume that K is a nonempty closed convex set in L2(J; L?(Q2)) defined
by

K= { v(x,t) € L2(J; L2() :a <v(x,t) < b, ae. (x,t)eQxJ },

where a and b are constants.

Here we also adopt the standard notation W™4(Q) for Sobolev spaces on Q with
norm || - |lymacgy and seminorm | - |yyma(q), set Hy(Q) = {v eHY Q) :v|z0q = 0} and de-
note W™2(Q)) by H™(Q), and denote by L°(J; W™4(Q2)) the Banach space of all L* inte-
grable functions from J into W™4(Q) with norm [|v||s¢;.wmaq)) = (fOT ”v”;vm)q(n)d t)% for
s € [1,00) and the standard modification for s = co. Similarly, one can define the space
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H(J;W™4(£)). The details can be found in [16]. In addition, ¢ or C denotes a generic
positive constant.

In Section 2, we define a fully discrete FE approximation for the model problem, and
then give some useful intermediate error estimates in Section 3. In Section 4, we derive
the superconvergence properties for the control, the state and the adjoint state. In Sec-
tion 5, we give some applications of the results in Section 4. We then discuss numerical
experiments that illustrate our theoretical results in Section 6, and draw our conclusion in
Section 7.

2. Fully Discrete FE Approximation for the Optimal Control Problem

A fully discrete FE approximation for the above model problem is now considered.
For ease of exposition, we denote LP(J;W™4(Q)) by LP(W™9), and V = L?(W) with
W = H(Q) and X = L*(U) where U = L*(Q2). Moreover, we denote || - ||gm(q) and |- [|;2(q)
by || - ||,,, and || - ||, respectively.

Let

a(v,w) :J A(x,t)Vv)-Vw, Yv,weWw,
Q

(fbfz):J fifa, Vfi,fo€U.
Q

It follows from the assumptions on A(x, t) that
a(v,v)Zclvll}, la(v,w) < Clvilhliwlly, Yv,wew.

Thus a possible weak formula for the model problem (1.1) reads:

s, ([ )

ye,w)+aly,w)=(f +u,w), YweWw,telJ,
y(x,0)=yo(x), xeQ.

2.1)

It is well known that the problem (2.1) has the unique solution (y,u) € (H HLAH)n V) x K
if and only if there is an adjoint state p € H'(L?) NV such that the triplet (y, p,u) satisfies
the following optimality conditions (e.g. see [15,19]):

Yew)+aly,w)=(f +uw), YweW,teJ, 2.2)
y(x)o):.yO(x)) XEQ) .

—(pr,q9) +alqg,p) = —y4,9), VqeEW,teJ,

2.3
p(x,T)=0, x€Q, @3)
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(u+p,v—u)>0, VveK,teJ. (2.4)
We introduce the point-wise projection operator
I}4,p1(g(x, t)) = max(a, min(b, —g(x,t))), V(x,t)eQxJ.
As in Ref. [10], it is easy to prove that (2.4) is equivalent to
u(x, t) =Tq p(p(x, 1)) (2.5)

Let 7" be regular triangulations of Q such that Q = U,eqhT. Let h = ma)%{hf}, where
TET
h. denotes the diameter of the element 7. Furthermore, set

Ut = { v, € L2(9) : vy, is constant on all T € " },
WhZ{vheC(Q):vhlfelP’l, VteT"wysq=0 },
where PP; is the space of polynomials up to order 1 and K" = { vyeUh:a<v, <b }

We now define the fully discrete FE approximation for the model problem (2.1). Let
At>0,N=T/Ate€Z" and t, =nAt,n=0,1,--- ,N. Set " = ¢(x, t,) and write

(Pn_@n_l
dyt=——"— n=1,2,---,N.
P At

For 1 < p < 0o we define the discrete time-dependent norms

1
N-I P
e lllpgwmaqy) = (At Z ||‘Pn|)€vqu(n)) ’

n=1-1

where [ = 0 for the control u and the state y and [ = 1 for the adjoint state p, with
the standard modification for p = oo. For convenience, we denote || - [||;o(;.wmaq)) By
11+ oy, and let

W™ = { ¢ :|llglllgnn <00}, 1<p<oo.

Then a possible fully discrete FE approximation of (2.1) is:

1S
mn s ([, Grooe [ ).
(dty;;‘,wh) +a (y;:,wh) = (f"-i—u,';‘,wh) , Yw,ew' n=1,2,--- N, (2.6)
) =yo(x), xeq,

where yg(x) is an appropriate approximation of yy(x).
The control problem (2.6) has the unique solution ( y}’:, uZ) eWhxkh n=1,2,---,N
if and only if there is an adjoint state pl’;‘_l € Wh, n =1,2,---,N such that the triplet
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67 pg_l, up) € WhxWhxK" n=1,2,--- N, satisfies the following optimality conditions
(e.g. see [19]):

(dty,’z,wh) +a (y]':,wh) = (f"+uz,wh) ) thEWh, n=12,---,N

0 h 2.7)
Y)=y,(x), xe,
—(depfoan) +a(gwpi™) = (0 —y5an) » YareWhn=N,---,2,1, 08
py(x)=0, xe€Q, '
(u,’;‘-i-p}’:_l,v—u;;‘)zo, Vvek" n=1,2,---,N. (2.9)
As in Ref. [20], it is easy to prove that (2.9) is equivalent to
up =Tpeey (7°(pF")) , n=12,--,N, (2.10)

where ©¢ denotes the element integral average operator (e.g. see [13]).

3. Error Estimates of Intermediate Variables

We now give some error estimates of intermediate variables. For any v € K, let
(y(v),p(v)) € (HY (L) N L2(HY)) x (H(L?) N L?(H')) be the solution of
(y,w)+a(y»),w)=(f+v,w), VweW,teJ, G.1)

y()(x,0) =yo(x), x€Q, '

—(p), Q) +a(q,pM) =(yWM)—ys.q9) , YqgeW,teJ,

p(V)(x,T)=0, x€Q. (3.2)

For any v € K, a pair (y]’;‘(v),pl’;_l(v)) eWhxwh n=1,2,--- N, satisfies the following
system:

(deyp)wn) +a (), wy) =(F"+v"wy) , Yw,eWh n=1,2,--- N, (3.3)

Y =yi(x), xeQ, '

—(depp),qn) +a (@ pp ') = () = yihan), YapeW n=N,---,2,1

‘(3.4
th(v)(x)ZO, xeN. (34)

Consequently, we have (y,p) = (y(w), p(w)) and (¥, pr) = (Ya(ur), pa(ur))-
We define the following standard L2(£2)-orthogonal projection Q, : U — U™, which for

all ¢ € X satisfies

(WP — Q" v) =0, Vv, eU"; (3.5)
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and elliptic projection operators R, : W — W", which for any ¢ € V satisfies
a(¢" —Rpp",wy) = (A(x, t,)V(¢" —R,$™), Vw,) =0, Vw,eWh. (3.6)
We have the following approximation properties:
9" — Q" < Ch™ YTy, Yyt eH'(Q),s=0,1, (3.7)
6" —Rpg"ll < CR?lI¢ Iy, V" € HA(Q). (3.8)

Lemma 3.1. Let (y,(u), pr(u)) and (¥, (Quu) ,pr (Quu)) be the discrete solutions of (3.3)
and (3.4) with v =u and v = Quu, respectively. Suppose that u € llz)(H 1), Then

I1yr(Qrw) = yr(WI 2y + PR (QRW) — pr(Wl 21y < Ch2|||u|||12(H1) . (3.9)
Proof. Setting v =Quu and v =u in (3.3), we obtain the error equation

(deyf(@Quu) = deyp(u), wy) +a (y7(Quu) — yi(w), wh) = (Quut™ — u™, wy,)

Y € Wh = (3.10)
h ,n—1,2, ,N.

We note that
(dey(Quw) — doy (W), y(Quu) — ¥ (w))

1 3.11)
> oot (i@ - Rl - |y @w -y @)

and
(Quu™ —u", ¥ (Quw) — yr W) < CjQuu™ — ||, [lyi@uw) — yr@w)
< Ch? |l |yr@Qu) — v, (3.12)
< C(®M |2 + 5 ||y (Quw) — yiw)f; -

By choosing wy, = y;/(Qpu) — y;(u) and multiplying both sides of Eq. (3.10) by 2At, and
then summing n from 1 to N, we get

N
7N @) = ¥ @ +¢ > Ay - yw)|;
= (3.13)

N N
<C(&* D At +6 > At [lyiQu) — yrwf; -
n=1 n=1

Hence we have
1ya(QrW) = Ya(llzeny < Ch|[ulll2gzny - (3.14)
Setting v = Quu and v = u in the equation in (3.4), we have the error equation

— (d:pp(Quu) = d,pj(w),q1) +a (an Py~ (Quu) — P~ ()

n n h (3.15)
= (Vi QW - yrW,qn) , YgpeW'n=N,--,2,1.
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Similarly, we derive

1Pr(Qrw) — prWlllizgy < ClllyA(QRW) — ya(Wlllizr2) - (3.16)
Consequently, inequality (3.9) follows from the inequalities (3.14) and (3.16). O

Lemma 3.2. For any v €K, let (y(v),p(v)) and (y,(v), pn(v)) be the solutions of (3.1) and
(3.2), and (3.3) and (3.4), respectively. Assume that y(v),p(v) € l%(HZ)ﬂHl(HZ)ﬁHz(LZ)
and y; € HY(L?). Then

1IRRY () = YWl iegery + 1IRRP (V) = prO)l 2y < € (At +12). (3.17)
Proof. From (3.1) and (3.3), we obtain
(y?(v) — dty;:(v),wh) +a (y”(v) —y,’:(v),wh) =0, Vw, e whon=1,2,---,N. (3.18)
By using the definition of R;, we get

(dRpy" (V) = dey (), wy) +a (Ray"(v) = ¥ (v), wy,)

(3.19)
= (dRpy"(v) = dey" (V) + doy"(v) = yI(v), wh) -
It is notable that
(d:Rpy" (") = dpy" (V). Rpy" (V) = ¥ (V)
<||deRny"(v) = doy" O)|| |Ray™ () = 20|
<Ch’ ||dty"(v)|t)nz |Rhy" (V) — ¥ ) 320)
scrhz(m)—lj |y: )|, dt |Rey" () = ¥ ()|
th—1
<ChAAD 2 |ly Wllizge, ey |[Rey ") = ¥
and
(dey™ () = Y2, Ry (V) = y1(1))
=AD" (y" ) =y ) = Aty (), Rpy"(v) — i (V)
<A |y"0) =y ) = Aty )| Ry ") = v )|
‘. (3.21)
=(an™ f (taer = ) (MIS)ds]|||Ray" (V) = ¥ (V)|
th—1
<Ay Wl 2@y [Ray"0) = i) -
Similar to Lemma 3.1, from (3.19)-(3.21) and Young’s inequality, we have
N
Ry ) =y )" +¢ > At Ry () = i3
=1 (3.22)

N
<C(8) (HHlye I Ragey + APy W22y ) + 6 AL [Rey"(0) = 32
n=1
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Consequently, we get
IRy (V) = Y Ollzgey < € (R0l 2gezy + Aty Dl ) . (3.23)
From (3.2) and (3.4), we obtain
— (pF ') = depp(v), 1) + (Alx, t,-1) Vg, VP () — a (g P (V)
= (YW -y -y +yhay) . VageWhn=N,--,2,1.
From the definition of R, we derive
— (deRp"(v) = dPp(v),q1) +a (qn, Rpp" ' (v) = pj ' (1))
= (=dRpp" )+ P} M+ Y ) = YD+ yi = ¥y ) (3.25)
+ ((AGx, t) = Alx, t,21)) Vay, VD" ' ()

(3.24)

where A(x, t) = (a;;(x, t))axs € (W1’°°(W1’°°))2X2. Similarly, we can prove that
IR (V) = pr(l 20,
< ¢(®) (IRnY () = a2y + B O oy H D Pae))  (3.26)
+CENA? (PO gy + 1Pee Iz + e O agyy + 1INy ) -

From inequalities (3.23) and (3.26), we get inequality (3.17). O

4. Superconvergence Analysis

We now discuss superconvergence between the FE solution and projections of the exact
solution, and begin by deriving the superconvergence of the control variable. Let u be the
solution of (2.2)-(2.4). For a fixed t* (0 < t* < T), we divide Q into the following subsets:

Qt={urt:7tcQa<u(,t)<b},
Q={ur:tcQu(,t);=a or u(,t,=b},
o =a\(atu’).

It is easy to see that the above three subsets do not intersect and Q = QT UQ° U Q™. We
now assume that u and %, are regular such that meas (Q_) < Ch (e.g. see [23]).

Theorem 4.1. Let u and uy be the solutions of (2.2)—-(2.4) and (2.7)-(2.9), respectively.
Assume that all the conditions in Lemmas 3.1 and 3.2 are valid, and the exact control and
adjoint state solution satisfy

u,pe ZLZ)(WLOO) .

Then

3
1Quu — upllliz2y < € (hz +At) : 4.1)
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Proof. Setting v = uy, in (2.4) and v = Q,u" in (2.9), we have

0< (u” +p",uy, — u”) + (u,’;‘ +p,’;‘_1,Qhu” - u,’;‘)

“4.2)
=W"+p",Qu" —u") + (u;‘ —u" +p,’;‘_1 —p",Quu" — u;‘) .
From the definition of Q; and (4.2), we obtain
[lQuu — uh|||§2(Lz)
N N
= Z At (Qhu" —up, Quu" — u}’;) = Z At (u” —uy, Quu" — u,’;)
n=1 n=1
N N
< Z At (u" +p",Quut —ut) + Z At (pl’;_l(Qhu) —p (W), Quu" — uZ)
n=1 n=1 (43)
N N
+ > At (pp () - pp M (Qu), Quu = up) + > At (pr M (w) — p" (W), Q™ — uf)
n=1 n=1
N
+ ZAt (p"_l(u) —p"(u),Quu" — uZ)
n=1
:=Il+12+13+14+15 .
Note that
(u"+p",Qu" —u") = J +J +J (u"+p") (Quu" —u")dx, (4.4)
ot Jao Ja-
and (Quu™ —u") |0 = 0. From (2.5), we have u" + p" = 0 on Q*. Then
N
L zAtZ (u"+p") (Quu" —u™) dx
—1Ja
N
zAtZ (u"+p"— W +pM) (Quu" —u") dx
—1Ja-
(4.5)

N
<c?aeY. [lu +p| g Nl o

n=1

N
SCthtZ ||u” +p“”w1’°°(nf) llu" || w100 () meas (Q_)

n=1

<Ch® (Il + pll g sy + Nl 1y ) -
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According to (3.3) and (3.4), we have

N
L=, At (p 1 (@Qu) = pf (. Qu" — )
n=1 . 2 . 2
<0(8)Y; At [py (@)~ py 0| +5 Y A onu - uf “6)

n=1 n=1
=C(&)pn(Qnw) = Pr(III} 2y + 6111Qut — upl[Fy, 2,
<C(&)h* + 51(|Quu - Uh|||122(L2)-

From Young’s inequality and Lemma 3.1, we derive

N
Is == > At () = y(Quu), yji(un) = ¥ (Quw) o
n=1 .

== [lyn(un) = ya(QutDIll ;) < O

By using (3.7), Young’s inequality and Lemma 3.2, we get
N
I :Z At (p,’;_l(u) —Rypp" (W) + Rpp™ H(w) — p" M (W), Quut — uZ)
n=1
N
<> At ([P = Rpp" @ + [Rep™ M w) = P @) Qi — |
n=1

N N
<C(8) Y At [ @ — Rp" @|* + C(&I* Y Atlp™ Wl (4.8)

n=1 n=1
N
+ 52At HQhu” - u;:”2
n=1

<C(&)Paw) = Rpp @11,z + CER NP By pp2, + S111Qutt = wnll[ a2
<C(8) (h*+ (A6)*) +5111Quu — upl [,z -

Noting that

N
Is =" At (p" () - p"(w), Quu" — uf!)
n=1

N th
< e[ o eefaur ]

n—1

<C(EN A Ipe(Wl?2 2+ 6111Quu — uplllF 2y
12(12) 12(1?)

4.9

inequality (4.1) follows from (4.3)-(4.9). O
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Remark 4.1. Because of the lower regularity, the 3/2 order superconvergence for h be-
tween the L2-orthogonal projection and the FE solution for the control variable is optimal.

Theorem 4.2. Let (y,p,u) and (y,pp uy) be the solutions (2.2)-(2.4) and (2.7)-(2.9),
respectively. Assume that all the conditions in Theorem 4.1 are valid. Then

IIRRY = Yulllizcny + 1IRpp = Palllizgny < C (At +h2) . (4.10)

Proof. From (2.2) and (2.7), we have the error equation

(yF —deypwn) +a (3" = yiwn) = (u" —uf, wy)

h “4.11)
Yw,eW" n=1,2,--- ,N.
From the definition of Ry, we get
(deRpy™ —deyiwh) +a (Rpy"™ = yit, ) (419
:(dtRhyn_dtyn+dtyn_.y?+un_u21wh)) n:]-)za"')N' .
It is notable that
un_un,Rhyn_yn <C u — ~ Rhyn_yn
(v = o =) < s o = .

<) |um —uf|”, + 5 ||Ruy™ = ¥2f; -

and the projection operator Ilp, 1) is Lipschitz continuous with constant 1 and in addition
¢ (p}’}_l) =Q (pl’;‘_l). From (2.5) and (2.10), we have

-1

S ’

(T Hn[a,bJP" Mgy (P P =7 (pi)

n—1 _ Q n—1
g e (4.14)
it =y (pp)

<0 oz, a0y € (B + 20) +CH o,

=< ”pn _pn—1”_1 +

<o =p M+ o = ot + ,

where we used Hp”_1 —pg_ln <C (h2 + At) — cf. Theorem 1.5 in Ref. [28]. Similar to
Lemma 3.2, from (4.12)-(4.14) we obtain

1IRry — Yulllizcan

(4.15)
< (|1l 2y + Pllizany ) + €A ([|yeellzgozy + [Pel ) -
From (2.3) and (2.8) we obtain
- (P = depjisan) + (ACx, £)Van P ) —a (g pp ") (4.16)

:(yn_l_y;z_.)’g_l"'.)’g,Qh), thEWh,n:N,-- 2,15
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and from the definition of R,
— (dRypp" — d,p}ar) +a (quRpp" " —pi ")
= ((A(x, t,) —A(x, t,_1)) Vqp, Vp”_l) (4.17)
+ (—dRpp" + P+ Y =y =y Y an)
for any g, € Wh, n =N,---,2,1. Similarly, we can prove that

1Rwp = PillZ

< €(8) (I1Rwy = Yll P2y + RN P oy + 14 1IDe) 2oy ) (4.18)
+CEA? (1Pl 1y + 1Pee oy + 15l Pagyy + 11el oz)) -
From inequalities (4.15) and (4.18), we then derive inequality (4.10). O

5. Some Applications

We now consider some applications of the results derived in Section 4. Let 7 be
regular triangulations of Q with H = 2h, such that Q = U;couT. Let H = maxycgu{Hr},
where Hy denotes the diameter of the element T. Furthermore, we set

wH Z{WhEC(Q) : WthE]PZ, VTE?H,thQ:O},

where P, is the space of polynomials up to order 2.

We first introduce a higher order interpolate operator I%h : C(Q) - wH and I, :
C(§)) — WP, the Lagrange interpolate operator (e.g. see [14]). They satisfy the follow-
ing properties:

|v—I3v|, <CRvlls, YveH3(Q), (5.1)
157, < vl Vvewh, (5.2)
LI,=I. (5.3)

Theorem 5.1. Assume that all the conditions in Theorem 4.2 are valid, and suppose that
y,p € llz)(H?’). Then

Wy — Zyulllizgny + lp — Bpalllizgny < € (hz + Af) . (5.4)
Proof. According to Theorem 2.1.1 in Ref. [14],
1Ty — Ryl < CR?|lyll5 - (5.5)

From (5.1)-(5.3) and (5.5), forn=1,2,--- ,N, we obtain
" =Bl = v = By + 13, (v = Riy™) = 13, (Ray" = 1) |,
<[y =gyl + iy = Ray" [l + € [Ray" =y, GO
<ct? |y, + ¢ |Ray" = i), -
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therefore
X 2 X 2 u 2
Yady By scnYadyredary -l 62
n=1 n=1 n=1
From inequality (4.10),
ly = Byalllzan < € (W +At) (5.8)
and similarly
llp = 3ypulllgy < € (K + At) (5.9)
Consequently, inequality (5.4) follows from inequalities (5.8) and (5.9). O

We now introduce a recovery operator Gy for the control. Let G,v be a continuous
piecewise linear function, without zero boundary constraint. Similar to the Z-Z patch
recovery in Refs. [34,35], the values of G,v on the nodes are defined by least-squares
argument on element patches surrounding the nodes. Let z be a node, w, = U cgh 527,
and v, the linear function space on w,. Set R;v(2) = 0,(2), where

E(0,) = min B(e)

-3 ([o-[ )

When z € 99, we should add a few extra neighbor elements to w, such that w, contains
more than three elements. The details can be found in Ref. [13].

Theorem 5.2. Let u and uy be the solutions of (2.2)—(2.4) and (2.7)—(2.9), respectively.
Assume that all the conditions in Theorem 4.1 are valid and  is convex. Then

3
1t = Gruglll22y sc(hz +At). (5.10)

and

Proof. It follows from Lemma 4.2 in Ref. [13] that
lu" = Guagi]| < [[u" = Goa”| + [ Gn” = GrQuu”| + | GnQu” = Guas|

3 (5.11)
<Ch2 + ||Ghu” - Gthu”H + HGthu” - Ghu,’:H .
From the definition of G;, we have
Gy = G, Q" (5.12)
and
|GrQu™ — Gy || < € ||Quu™ —ug| - (5.13)
From Theorem 4.1 and (5.11)-(5.13),
1l = GruplllFs 2y < €+ CllIQuu = wnlllZy 2y < € (B + (AD?) . (5.14)

Consequently, inequality (5.10) follows from inequality (5.14). O
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6. Numerical Experiments
For a constrained parabolic optimisation problem

inJ
min (w),

where J(u) is a convex functional on X and K is a close convex subset of X, we have the
iterative scheme (n =0,1,2,---)

b(u,, 1,v)=b(u,,v)—p, (J'(u,),v), Vvex,
y —Zpb(u ) (6.1)
n+l = Fx\tnyd )

where b(-,:) = f 0 (:,-) is a symmetric and positive definite bilinear form, py, is a step size
of iteration, and the projection operator PIlg can be computed as in Ref. [13]. For the
piecewise constant element K" = { v,eU" : a<v, <bh }, then

P (pp) |, =T (=°(p})],), VreZ"n=0,1,---,N.

For an acceptable error Tol (cf. also Ref. [13]), by applying (6.1) to the discretised optimal
control problem (2.6) we arrive at the following projection gradient algorithm (for ease of
exposition, we have omitted the subscript h).

Algorithm 6.1. Projection gradient algorithm

Step 1. Initialise u.
Step 2. Solve the following equations:

1,un€Uh,Vv€Uh,
2

T
b(un+%,v): b(un,V)_PnfO (un +pn’v) > Upy

i_ i1 . . . . .
(—y”Ayt” ,w) +a(y}1,w) = (fl—i-u;,w) , yiyFlewh vwewh, ©2)

(%CI) +a(ep!)=(-vpa), ppiteWh¥gewt.

— pb
Upp1 = PK(U,H.%) .

Step 3. Calculate the iterative error: E, 11 = |||t — upllli212) -
Step 4. If E,,,; < Tol, stop; else go to Step 2.

The following examples were solved numerically by the Algorithm 6.1 with codes de-
veloped based on AFEPack. (This package is freely available and the details can be found at
http://www.acm.caltech.edu/ rli/AFEPack/.) The discretisation was described in Section
2 —i.e. the state and the adjoint state are approximated by piecewise linear functions and
the control is approximated by piecewise constant functions. Let I be the 2 x 2 identity
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matrix and denote |||-||[;2¢;2) by [[|-[||. We choose the domain 2 = [0,1]x[0,1] and T =1,
and also assume that

Kz{v(x,t)eLz(J;Lz(Q)):aSv(x,t)Sb, (x,t)eQxJ }

We solve the following parabolic optimal control problems:

o1 , )
u(g,ltl)réKEJO (Jﬂ(y(x’ t)_yd(x’ t)) +Jﬂ(u(x3 t)) )dt,

$ Yl £) = div(A(x, ) Vy(x, t)) = f(x, t) +ulx,t), x€Q,teJ,

y(x,t) =0, xe€dQ, tel,

¥(x,0)=yo(x), xe€Q.

Example 6.1. The data are as follows:
sin(51)(t 4 0.5) 0
Alx, )= ( 0 sin(Z2)(1.5 — ) )
a=—-0.25, b=0.25,
p(x,t) = sin(27mx)sin(27wx,)sin(7t),
y(x,t) =sin(27x;)sin(2mwx,)t,
u(x,t) = max(—0.25,min(0.25, —p(x, t))),
flx,t) =y (x,t) = div(A(x, t)Vy(x,t)) — u(x,t),

ya(x,t) = y(x,t) + p.(x, t) + div(A* (x, £ )Vp(x, t)).

Numerical results based on a sequence of uniformly refined meshes are shown in Table 1.
In Fig. 1, we plot the profile of the numerical solution uy, at t = 0.5 when At = 1/270 and
h=1.25E—-2.

Table 1: The error of the control variable, Example 6.1.

h At | |llu—wlll | Rate | [[|Quu —uylll | Rate | ||ju— Gpuyl| | Rate
1.0E-1 | 1/10 [ 5.01845E-2 | — [ 2.38443E-2 | — [ 3.81096E-2 | —
5.0E-2 | 1/30 | 2.62036E-2 | 0.94 | 8.51186E-3 | 1.49 | 1.34949E-2 | 1.50
2.5E-2 | 1/90 | 1.29308E-2 | 1.02 | 2.98631E-3 | 1.51 | 4.97359E-3 | 1.51
1.25E-2 | 1/270 | 6.36698E-3 | 1.02 | 1.05551E-3 | 1.50 | 1.71985E-3 | 1.53
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s

Figure 1. The exact solution u (left) and the numerical solution u,, (right) at ¢t =0.5.

Example 6.2. The data are as follows:

A(x,t)=2(t+0.5)I, a=—0.5, b=0.5,

p(x,t) = 2xx,8in(27wx; )sin(27x,)(1 — t),

y(x,t) = 2x7x58in(27x; )sin(27x,)t,

u(x, t) = max(—0.5,min(0.5, —p(x, t))),

fOx,t) =y (x,t) = div(A(x, t)Vy(x,t)) —u(x, t),
ya(x,t) = y(x,t) + p,(x, t) + div(A*(x, ) Vp(x, t)).

Numerical results are listed in Table 2. In Fig. 2, we show the profile of the numerical
solution uy, at t = 0.5 when At =1/270 and h = 1.25E — 2.
The convergence rate is computed from the formula

log(eit1) —log(e;)
log(hiy1) —log(hy)’
where e; (e;;1) denotes the error when the spatial partition size is h; (h;;1). From Table 1

and Table 2, it easy to see that |||u — up||| = O(h + At), |||Quu — uy||| = O(h*? + At) and
||lu — Gpuy||] = O(h®? + At), confirming our theoretical results.

Rate =

Table 2: The error of the control variable, Example 6.2.

h At | lllu—ulll | Rate | [[IQuu —uyll | Rate | ||ju— Gpuyll | Rate
1.0E-1 | 1/10 [ 3.66180E-2 | — | 1.26204E-2 | — | 2.23411E-2 | —
5.0E-2 | 1/30 | 1.82111E-2 | 1.01 | 4.47999E-3 | 1.49 | 8.24907E-3 | 1.50
2.5E-2 | 1/90 | 9.13557E-3 | 1.00 | 1.58406E-3 | 1.50 | 2.87023E-3 | 1.52
1.25E-2 | 1/270 | 4.57745E-3 | 1.00 | 5.54272E-4 | 1.52 | 9.98743E-4 | 1.52
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Figure 2. The exact solution u (left) and the numerical solution u,, (right) at ¢t =0.5.

7. Conclusion

We discussed the superconvergence analysis of fully discrete FE approximation for
parabolic optimal control problems with time-dependent coefficients. Our superconver-
gence results for FE discrete parabolic optimal control problems seem to be new, and can
be extended to general convex optimal control problems. In future, we will investigate
superconvergence for hyperbolic optimal control problems, and in particular the supercon-
vergence of these problems by the mixed FE method.
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