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Abstract. The multishift QR algorithm is efficient for computing all the eigenvalues of
a dense, large-scale, non-Hermitian matrix. The major part of this algorithm can be per-
formed by matrix-matrix multiplications and is therefore suitable for modern processors
with hierarchical memory. A variant of this algorithm was recently proposed which can
execute more computational parts by matrix-matrix multiplications. The algorithm is
especially appropriate for recent coprocessors which contain many processor-elements
such as the CSX600. However, the performance of the algorithm highly depends on
the setting of parameters such as the numbers of shifts and divisions in the algorithm.
Optimal settings are different depending on the matrix size and computational environ-
ments. In this paper, we construct a performance model to predict a setting of param-
eters which minimizes the execution time of the algorithm. Experimental results with
the CSX600 coprocessor show that our model can be used to find the optimal setting.
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1. Introduction

We consider computing all the eigenvalues of the standard eigenvalue problem
Ax =Ax, x #0 (1.1
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where A is an n X n complex non-Hermitian matrix. We suppose that the matrix A is
dense and large-scale. Examples of non-Hermitian eigenvalue problems arising in scientific
computing and many other applications are given in [1].

In the standard procedure to solve the problem in Eq. (1.1), the non-Hermitian matrix
A s first reduced to a Hessenberg form by the Householder algorithm [10]. After that, the
Hessenberg matrix is transformed to a Schur form by the QR algorithm [8,9,13]. These
two steps consist of unitary transformations, i.e., the eigenvalues A of the matrix A are not
changed by these steps and are finally given by the diagonal elements of the Schur form.
Among these steps, the second step by the QR algorithm requires more computational
work. Hence it is necessary to speed up the QR algorithm. The promising approach is
a block implementation of the QR algorithm which is referred to as the multishift QR
algorithm [2,3]. The algorithm can perform most of the computational work by matrix-
matrix multiplications and is therefore suitable for modern processors with hierarchical
memory.

Recently, a recursive implementation of the multishift QR algorithm was proposed [18]
to perform more computational parts by matrix-matrix multiplications. The algorithm is
especially appropriate for recent coprocessors which have many processor-elements, e.g.,
GRAPE-DR [11] and CSX600 [4]. The performance of the recursive algorithm highly de-
pends on the setting of parameters in the algorithm. Optimal settings are different depend-
ing on the matrix size n and computational environments.

In this paper, we optimize the recursive multishift QR algorithm for coprocessors to
attain the minimal execution time of the algorithm for a given matrix size n and a compu-
tational environment. We adopt the hierarchical modeling approach [5-7] and construct
a performance model of the algorithm. For a given set of parameters, our model provides
the prediction of the execution time of the algorithm. By using the model, we can predict
the execution time for several sets of parameters and choose the optimal one among them
before running the algorithm.

Note that the hierarchical modeling approach has long been exploited to optimize the
multishift QR algorithm [14,17]. Here we consider optimizing the recursive version of the
multishift QR algorithm. This approach enables us to fully exploit the potential of recent
COprocessors.

This paper is organized as follows. The multishift QR algorithm and its recursive ver-
sion are described in Section 2. We give performance modeling of the recursive algorithm
in Section 3. Experimental results with the CSX600 coprocessor are presented in Sec-
tion 4. Section 5 gives some concluding remarks and future work. Throughout this paper,
the conjugate transpose is denoted by (- )*. The n X n identity matrix is denoted by I.

2. The Multishift QR Algorithm and Its Recursive Implementation

In this section, we review some of the standard facts on the multishift QR algorithm [3]
and its variant to fully utilize coprocessors [18]. We focus on computing all the eigenvalues
of a complex Hessenberg matrix.
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2.1. The multishift QR algorithm

The convergence of the QR algorithm can be accelerated by shifts which are approx-
imate eigenvalues. The double-shift QR algorithm [10], which uses two shifts, is well
known and is widely used in many applications for long years. As a block version of
this, Bai et al. [2] proposed the multishift QR algorithm, which uses m shifts, to perform
m/2 steps of the double-shift QR algorithm at once (m is even). A major part of this
algorithm can be executed by matrix-matrix multiplications and is therefore suitable for
modern processors with hierarchical memory. However, this algorithm suffers from slower
convergence due to numerical errors [15]. To overcome this difficulty, Braman et al. [3]
modified the multishift QR algorithm while keeping the good property of the original al-
gorithm. In this paper, we focus on the modified algorithm and refer to it as the multishift
QR algorithm.

Let Ay be an n x n complex Hessenberg matrix and A, be the matrix after the {-th QR
iteration. In the multishift QR algorithm, to obtain A, ,, from A,, m shifts ¢, 04, ..., O
are first computed. The shifts are the m eigenvalues of the m x m trailing principal subma-
trix of A,. After that, A, is computed in the following step

(Ag —oI)(Ay —o11) — Q¢Ry,
Apry < QFAIQy,
< 2.1

(A€+m—2 - GmI)(A€+m—2 - Gm—ll) - Q€+m—2R€+m—2a

Appm < Quim—2 Arsm—2Quim—2

where Q,,; is the unitary matrix and R, ; is the upper triangular matrix, produced by the
QR factorization of (A, ; — 0, 12)(Ayy; —0;41I) (i=0,2,...,m—2). When the number
of shifts m = 2 in Eq. (2.1), the above step is equivalent to the one step of the double-shift
QR algorithm [10].

Figure 1: The operation pattern of the multishift QR algorithm. The blocks (a), (b) and (c) in this
figure are modified at Steps (a), (b) and (c) in bulge-chasing, respectively. Steps (b) and (c) can be
executed by matrix-matrix multiplications.
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In a practical implementation of the double-shift QR algorithm, the effect of shifts is
implicitly introduced. The operation pattern of one step of the algorithm is so called bulge-
chasing, which moves a bulge from the upper left corner to the bottom of a matrix [10].
In a similar way, the multishift QR algorithm, using m shifts, performs m/2 sets of bulge-
chasing operations at once. In the multishift QR algorithm, m/2 bulges are chased down
by k rows at a time, where k is some positive integer. This is done in the following three

steps [3].

Step (a): Chase each of the m/2 bulges by k rows sequentially within the diagonal block
(a) in Fig. 1. At the same time, accumulate the Householder transformations,
used to move bulges at this step, into a unitary matrix U (the size of U is
(Bm/2+k)).

Step (b): Multiply the off-diagonal block (b) in Fig. 1 by U from left.
Step (¢): Multiply the off-diagonal block (c) in Fig. 1 by U* from right.

By repeating these steps, all the bulges are moved from the upper left corner to the bottom
of the matrix. Among these steps, matrix-matrix multiplications at Steps (b) and (c) are
dominant. This is the reason why the multishift QR algorithm can exploit the potential of
modern processors.

In the multishift QR algorithm, there are two parameters m and k, which affect the
performance of the algorithm. It is shown that k = 3m/2 is optimal to minimize the
computational work [3]. We adopt this choice of k in the following. In this case, the size
of the unitary matrix U is 3m and all that left is to optimize m. For this parameter, the
performance model was constructed to predict the effect of m on the performance [17].
By experimental results, it was shown that the model can be used to find nearly optimal
value of m to minimize the computational time of the algorithm for a given matrix and a
computational environment.

2.2. The recursive multishift QR algorithm for coprocessors

As shown in Section 2.1, most of the computation in the multishift QR algorithm is
performed by matrix-matrix multiplications, which are Steps (b) and (c) in Fig. 1. It is
well known that a matrix-matrix multiplication with m x m matrices can perform O(m?)
computations while requiring O(m?) data-transfer, i.e., this operation can reuse the trans-
fered data. In view of this, we can say that the multishift QR algorithm is suitable not
only for modern processors but also for recent coprocessors such as the CSX600 [4]. This
is because, to use coprocessors, we need to transfer some data between memory and co-
processors, see Fig. 2. The speed of data-transfer is often relatively slower than that of
operation by coprocessors, e.g., the ClearSpeed Advance board [4] contains 2 chips of the
CSX600 coprocessor (48 GFlops at most) and is connected to a computer by PCI-X Bus (1.0
GB / sec.). In [18], the CSX600 coprocessor was used for matrix-matrix multiplications in
the multishift QR algorithm, which is computationally dominant part. Note that, for other
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computational parts, the coprocessor was not used because it is difficult to compensate for
the data-transfer cost.

(1)
CPU | ====> | Coprocessor @
Memory | <=2 | (e.g., CSX600)
(3)

Figure 2. How to use a coprocessor. (1) Transfer data from memory to a coprocessor (2) Compute
matrix-matrix multiplications (3) Transfer computational results to memory.

The effect of the CSX600 coprocessor on the multishift QR algorithm (k = 3m/2)
is shown in Fig. 3. Comparing the left result with the middle result in Fig. 3, we can
see that the coprocessor accelerates matrix-matrix multiplications at Steps (b) and (c) in
bulge-chasing operations. Comparing the middle result with the right result in Fig. 3, we
can also see the effect of the parameter m. For larger value of m, the execution time of
matrix-matrix multiplications is decreased. However, the time for other computations is
increased. These reasons are described as follows. For larger value of m, as shown in
Section 2.1, matrix-matrix multiplications at Steps (b) and (c) are performed with larger-
sizes of matrices. This will give more chance to reuse the data transfered from memory to
the coprocessor and can exploit the potential of the coprocessor. However, as m increases,
the computational work at Step (a) increases. This part can not be executed by matrix-
matrix multiplications and thus become a bottleneck.
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Figure 3: The execution time of the multishift QR algorithm for all the eigenvalues of a complex
Hessenberg matrix (n = 6000). “MM" shows matrix-matrix multiplications at Steps (b) and (c) in bulge-
chasing operations. “NonMM" shows other operations such as Step (a) in bulge-chasing operations.
Details of the computational environment are described in Section 4.
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To overcome this difficulty, the computational work at Step (a) was reformulated. As
described above, the operation by matrix-matrix multiplications plays a key role in high
performance computing. One way to accelerate the operation at Step (a) is to transform it
to matrix-matrix multiplications. This can be done as follows. Let g be a common divisor
of m and k. Then, the bulge-chasing operation at Step (a) is divided into g sets and each
set is composed of the following three steps.

Step (a’): Chase each of the m/2q bulges by k/q rows sequentially within the diagonal
block (a’) in Fig. 4. At the same time, accumulate the Householder transforma-
tions, used to move bulges at this step, into a unitary matrix U’ (the size of U’
is (3m/2q+k/q)).

Step (b’): Multiply the small off-diagonal block (b’) in Fig. 4 by U’ from left.
Step (¢’): Multiply the small off-diagonal block (¢”) in Fig. 4 by U” from right.

These three steps are exactly the same as that in the original algorithm except the sizes of
matrices in matrix-matrix multiplications, see Fig. 4. In a similar fashion, Step (a’) can be
recursively divided into another three steps. As a result, more parts can be performed by
matrix-matrix multiplications, which can be executed faster. Such a recursive implemen-
tation of the multishift QR algorithm was proposed and showed up to 1.4 times speedup
than the original algorithm [18].

Figure 4: The operation pattern of the recursive multishift QR algorithm. The operation at Step (a),
which updates the block (a) in this figure, is divided into q sets. Each set is composed of Steps (a'),
(b") and (c') updating the blocks (a"), (b’) and (c') in this figure, respectively. Steps (b’), (¢’), (b) and
(c) can be executed by matrix-matrix multiplications.

In addition to m and k, two more parameters are introduced in the recursive multi-
shift QR algorithm, which are g and the level of recursion (Fig. 4 shows the level one).
The execution time of the algorithm depends on the setting of these parameters, e.g., the
performance of the CSX600 coprocessor for matrix-matrix multiplications depends on the
parameter m, see Fig. 3. It is desirable to find an optimal setting of the parameters which
minimizes the execution time of the algorithm before running the algorithm. Note that the
optimal setting depends on a given size n of a Hessenberg matrix and a given computa-
tional environment. We will pursue this possibility in the following section.
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3. Performance Modeling of the Recursive Multishift QR Algorithm

In this section, we construct a performance model of the recursive multishift QR al-
gorithm for coprocessors. The model provides the prediction of the execution time of the
algorithm for input parameters. Before running the algorithm, we check the predicted time
for several sets of parameters and predict an optimal setting of parameters to minimize the
computational time. Note that the construction of the model is needed only once for a
given computational environment and it can be used for many sizes of matrices. We opti-
mize two parameters in the recursive multishift QR algorithm. One is m (the number of
shifts), the other is g (the number of divisions). For the other parameters, k (the row of
moving bulges) is set to be k = 3m/2 [3], and the level of recursion is fixed to one [18]
(see Fig. 4).

Our approach is based on the hierarchical modeling approach [5-7]. The approach
has been used for optimizing several algorithms and turned out to be a promising one for
practical use [6,7,16,17]. In this approach, we first construct the models for basic routines
which compose the whole algorithm. These models provide the prediction of the execution
time of each routine for input parameters, e.g., the model of matrix-matrix multiplications
provides us the predicted value of its execution time for given sizes of two matrices. After

that, all the predicted time of basic routines is summed up and the total time is given as
the predicted time of the whole algorithm.

Execution time (sec.)
Execution time (sec.)

Figure 5: The execution time of matrix-matrix multiplications on the CSX600 coprocessor. The left
figure shows the time for multiplying a M x N real matrix by a M x M real matrix from left. The right
figure shows the time for multiplying a N x M real matrix by a M x M real matrix from right. The

execution time roughly changes especially with respect to M even though the computational work is
proportional to M2N in both cases.

In [17], the performance model of the multishift QR algorithm was constructed. We
modify this model for the recursive multishift QR algorithm. To be more precise, we mod-
ify the modeling of two basic routines in the original algorithm. One is the routine for
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bulge-chasing operations at Step (a’) because the parameter q is added in the recursive
algorithm. The other is the routine for matrix-matrix multiplications, which is allocated to
a coprocessor such as the CSX600 in the recursive algorithm. In [17], the execution time
of this routine is approximated by polynomial interpolation. However, this approach is not
promising for the CSX600 coprocessor because the execution time of this routine roughly
changes, see Fig. 5.

From the above remarks, we use bilinear interpolation for these basic routines. Let a
and 8 be the parameters of a routine, and denote by f(a,3) the execution time of the
routine as a function of the parameters. We first measure function values on several grid
points in (a, 8) plane. After that, to predict a function value between grid points, we
use linear interpolation for each grid point. To be more precise, by using measured val-
ues f(a;, i), f(aiy1, i), f(ap Biv1), f(@ita,Biv1), we approximate the function value
f(8,B) (a; S @< a1, B; <P <Pi)as follows

fl@,p) =(1-7vy) (T —vf(ap, B) +rvif (a1, By)
+ 72 (T =r)f (@, Biv1) + v1f (@ig1, Bis1)) »

St TS ol
! ai+1—ai’ 2 Bis1 — Bi

3.1)

In Eq. (3.1), two parameters (a, 8) are (m,q) for the routine of bulge-chasing operations
at Step (a"). For the routine of matrix-matrix multiplications, two parameters are the sizes
of a square matrix and a rectangular matrix, used at Steps (b”), (¢’), (b) and (c¢) in bulge-
chasing operations.

The performance models of other routines are constructed in the same way as in [17],
e.g., the execution time of the routine for computing m shifts is approximated as a cubic
function in m. After that, the performance model of the whole algorithm is constructed by
combining the performance models of all the basic routines. At that time, we assume that
m X m trailing principal submatrix becomes isolated after four iterations of the algorithm.
Such an assumption is based on the observation [12] and is adopted in [17].

4. Experimental Results

In this section, we evaluate the performance model constructed in Section 3. Our
computational environment consists of Xeon (3.2 GHz) and Memory (8.0 GB). We have
carried out the following experiments by Fortran 77 with double precision arithmetic. Qur
codes were compiled by Intel Fortran Compiler (ver. 9.1) with Intel Math Kernel Library
(ver. 8.1). For matrix-matrix multiplications, we used the ClearSpeed Advance Board with
two CSX600 chips and CSXL Library (ver. 2.51) [4]. Test matrices are complex Hessenberg
matrices whose elements are given by random numbers in real and imaginary parts. The
sizes of the matrices are n = 3000,6000. We compare the predicted execution time by our
model with the actual execution time of the recursive multishift QR algorithm. The results
for two matrices are similar, so we show the results for n = 6000 in Fig. 6.
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Figure 6: Effect of the two parameters m and g on the execution time of the recursive multishift QR
algorithm. The (left / right) figure shows the relative (predicted / actual) time which is normalized by
the minimal (predicted / actual) time.

As shown in Fig. 6, the actual execution time of the recursive algorithm changes twice
at most by the choice of parameters. Such a difference is due to two changes. One is
a change of the coprocessor’s performance by the parameter m, the other is a change
of operation by introducing matrix-matrix multiplications at Step (a) with the parameter
g, see Section 2.2. The dominant part of the algorithm is matrix-matrix multiplications.
Availability of the model for the algorithm therefore depends on the model for matrix-
matrix multiplications on the CSX600 coprocessor and it does not reproduce the actual
time so well for some parts. This is due to the rough change of the computational time as
shown in Fig. 5. As a result, the trend of the predicted time of the algorithm is different
from the actual time when m = 120. However, viewed as a whole, our model reproduces
the behavior of the actual time and, thus, can be used for the prediction of the optimal
setting of the parameters. Note that we need only a few seconds for the prediction whereas
the execution time of the algorithm is thousands seconds per one setting.

5. Conclusion

In this paper, we constructed the performance model of the recursive multishift QR
algorithm for coprocessors. Our model is based on the hierarchical modeling approach
and is composed of the models of the basic routines, e.g., the bulge-chasing operation and
matrix-matrix multiplications. We adopted the CSX600 coprocessor for the recursive al-
gorithm and computed all the eigenvalues of a complex Hessenberg matrix. Experimental
results showed that our model reproduced the actual execution time of the recursive al-
gorithm well. Thus, it can be used to find the optimal setting of the parameters which
minimizes the execution time of the algorithm.



196

T. Miyata, Y. Yamamoto, T. Uneyama, Y. Nakamura and S.-L. Zhang

Our future plan includes the optimization of other parameters, such as the number of
rows k in bulge-chasing operation and the level of the recursion. We also plan to implement
the recursive multishift QR algorithm on GPU.
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