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Abstract. In this paper, new finite difference methods based on the augmented im-

mersed interface method (IIM) are proposed for simulating an inextensible moving

interface in an incompressible two-dimensional flow. The mathematical models arise

from studying the deformation of red blood cells in mathematical biology. The govern-

ing equations are incompressible Stokes or Navier-Stokes equations with an unknown

surface tension, which should be determined in such a way that the surface divergence

of the velocity is zero along the interface. Thus, the area enclosed by the interface

and the total length of the interface should be conserved during the evolution process.

Because of the nonlinear and coupling nature of the problem, direct discretization by

applying the immersed boundary or immersed interface method yields complex nonlin-

ear systems to be solved. In our new methods, we treat the unknown surface tension

as an augmented variable so that the augmented IIM can be applied. Since finding the

unknown surface tension is essentially an inverse problem that is sensitive to perturba-

tions, our regularization strategy is to introduce a controlled tangential force along the

interface, which leads to a least squares problem. For Stokes equations, the forward

solver at one time level involves solving three Poisson equations with an interface. For

Navier-Stokes equations, we propose a modified projection method that can enforce the

pressure jump condition corresponding directly to the unknown surface tension. Sev-

eral numerical experiments show good agreement with other results in the literature

and reveal some interesting phenomena.
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1. Introduction

In this paper, we develop some new finite difference methods based on the augmented

immersed interface method (cf. for example [2, 7, 10, 12]) for simulating an inextensible

moving interface in an incompressible shear flow. The problem involves finding an un-

known surface tension σ(s, t) such that the surface divergence of the velocity is zero along

the interface. Since the fluid is incompressible and the interface is inextensible, both the

area enclosed by the interface and the total length of the interface should be conserved.

The mathematical model has been used to describe the deformation of erythrocytes, also

called red blood cells in the field of bio-rheology (cf. [4,13–19] and the references therein

for the bio-mathematical applications and other related information).

Ω

Γ

Figure 1: A diagram of an inextensible interfa
e in a shear �ow.
The fluid equations can be formulated by either the Stokes equations (the inertial term

is neglected)

∇p = µ∆u+ F(x, t), x ∈ Ω, (1.1)

or the Navier-Stokes equations

∂ u

∂ t
+u · ∇u+∇p = µ∆u+ F(x, t), x ∈ Ω, (1.2)

with the fluid incompressibility constraint

∇ · u= 0. (1.3)

Here, we assume that the interface motion is under a shear flow u = γ̇ y e1 along the

boundary of a finite domain Ω as illustrated in Fig. 1, where γ̇ is the shear rate (a fixed

number). The force term F(x, t) has the form

F(x, t) =

∫

Γ(t)

�

∂

∂ s

�

σ(s, t)τ(s, t)

�

+ fb n+ g(s, t)τ(s, t)

�

δ(x−X(s, t)) ds, (1.4)

where X(s, t) is a parametric representation of the moving interface Γ, and {n,τ} are the

unit normal and tangential directions of the moving interface, respectively. The bending
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force fb acting along the normal direction can be described as

fb = −cb

�

κss +
κ3

2

�

, (1.5)

where cb is a bending coefficient, and κ is the interface curvature. The detailed derivation

of the above bending force can be found in [18]. However, unlike the previous literature in

which a filter is used [3,18], we add a tangential regularization force g(s, t) to the original

problem such that we actually solve a modified perturbed problem. This technique is quite

common for inverse problems.

The surface tension σ(s, t) on the interface is part of the unknown solutions and should

be determined so that the inextensibility of the interface

�∇s · u
�

Γ =
∂ u

∂ τ
·τ
�

�

�

�

Γ

= 0 (1.6)

is satisfied. Further, note that we can get

∂

∂ s
σ(s, t)τ(s, t) =

∂

∂ s
σ(s, t)τ+σκn, (1.7)

which means that the tension force affects both tangential and normal directions.

The difficulties in solving the above interfacial problem include (1) both the area and

total length of the interface should be conserved simultaneously, (2) the problem is known

to be very stiff, which may require small time steps for numerical methods, and (3) the

problem may have no solution, as for example when the initial shape is a circle. In previous

literature, most related work is based on boundary integral methods – cf. for example

[13, 16, 18, 19]. However, boundary integral methods generally assume infinite domains,

and cannot be generalized to full Navier-Stokes equations since there is no corresponding

Green function. Until recently, Kim and Lai [3] have applied a penalty immersed boundary

method to simulate the dynamics of inextensible vesicles. By introducing two different kind

of Lagrangian markers, the authors are able to decouple the fluid and vesicle dynamics

so that the computation can be performed more efficiently. One potential difficulty of

this approach is that the time step depends on the penalty number and must be chosen

smaller as the penalty number becomes larger. There is no such dependency in the methods

proposed in this paper, since no penalty numbers are involved.

Using the idea of the augmented immersed interface method, it is natural to set the

surface tension σ(s, t) as an augmented variable. Once we know the surface tension, we

know all the jump conditions related to the velocity and the pressure. The flow can be

solved easily, as with our previously developed solver in [11]. The augmented equation is

the surface divergence free condition (1.6) along the interface. We obtain usual discretized

Stokes or Navier-Stokes equations with corrections near or on the interface, plus a much

smaller system of equations for the augmented variable. This technique can be applied to

full Navier-Stokes equations in both 2D and 3D. The difference is the size of the discrete

system.
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The rest of the paper is organized as follows. In the next section, we describe our

method (three Poisson equations approach) for the model of Stokes equations. A regular-

ization technique is introduced to control the magnitude of the artificial tangential force

g, and the augmented approach is explained. In Section 3, we propose our modified pro-

jection method so that the pressure jump condition proportional to the unknown surface

tension can be implemented. In Section 4, we show some numerical simulations and com-

pare our results with others obtained in the literature. Some conclusions are made in the

last section.

2. The Numerical Method for the Stokes Equations Model

We assume that the domain Ω is a rectangle [a, b]× [c, d]. The spatial increment is

chosen as hx = (b− a)/M , hy = (d − c)/N , where M and N are the number of grid points

in the x and y directions, respectively. We use a standard uniform Cartesian grid and

the cubic spline package [8] to represent the moving interface. In this representation, the

interface Γ is represented as a periodic cubic spline (X (s), Y (s)) in terms of the arc-length

parameter s. We denote the number of control points for the cubic spline by Nb.

In the following, we introduce the three Poisson equations approach for solving the

Stokes equations. By applying the divergence operator to the momentum equation (1.1)

and reformulating the singular force by the jump conditions [5], we obtain the pressure

equations

∆p = 0, x ∈ Ω \ Γ,
∂ p

∂ n

�

�

�

�

∂Ω

= 0,

[p]
�

�

Γ
= σκ+ fb,

�

∂ p

∂ n

�

Γ

=
∂ g

∂ s
. (2.1)

Notice that we use the zero Neumann boundary condition ∂ p/∂ n|∂Ω = 0 for simplicity,

even though the Stokes equations do not impose the pressure boundary condition explicitly.

Once the pressure is computed, we can apply the momentum equation (1.1) to obtain

the velocity by solving the equations

µ∆u=∇p, [u]|Γ = 0,

�

µ
∂ u

∂ n

�

Γ

= −
�

∂ σ

∂ s
+ g

�

τ. (2.2)

See for example [5], for a discussion of the jump conditions; and we note that the pres-

sure equation (2.1) and the velocity equation (2.2) are coupled via the unknown surface

tension σ(s, t), which should be determined by the inextensibility constraint (1.6). Since

the system of equations consisting of (2.1)-(2.2) and (1.6) is complete, we can discretize

those equations directly by the immersed interface method as follows.

Before proceeding, let U be the column vector whose components are Ui j and Pi j, the

approximate velocity and the pressure on a Cartesian grid at one particular time step. Let

Q be the vector of the discrete unknown surface tension σ at some control points on the
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interface. The IIM discretization gives the matrix-vector equation

A11U + A12Q+ A13G = F1, (2.3)

for some vector F1 and sparse matrices A11, A12, and A13. It requires solving three Poisson

equations with different jump conditions to get U . Note that the cost of solving A11U =

F1 is about the cost of calling a fast Poisson solver three times [1,6].

Along the interface, the inextensible condition (1.6) is discretized by a least squares

interpolation scheme

A21U + A22Q+ A23G = F2, (2.4)

where A21, A21, and A23 are some sparse matrices, and F2 is a vector (cf. [2] for more

details).

When G = 0 the system of equations (2.3)-(2.4) is complete, since the number of

equations and the number of unknowns are the same with A13 = 0 and A23 = 0. The

system has a unique solution for both U and Q. However, the condition number of the

Schur complement for Q is quite large, reflecting that the problem is nearly ill-posed. The

error would accumulate and affects the accuracy of the computed area eventually, due to

the fact that the inextensible condition is enforced at the interface and the incompressible

condition is enforced at the grid points simultaneously. Our regularization strategy is to

introduce a tangential force g, or G in the discrete case, which will not alter the interface

motion much – and at the same time we can control the magnitude of G to be as small as

possible.

Assume that the dimension of the vector Q is Nb, so the dimension of G is also Nb, and

we have an additional Nb degrees of the freedom. Since the area enclosed by the interface

Γ must be conserved, we enforce the condition

∫

Γ

(u · n ) ds = 0, or

Nb
∑

k=1

�

Uk ·nk

�

∆sk = 0, (2.5)

in the discrete case. Again, the velocity on the interface is interpolated from a least squares

interpolation scheme using the velocity at the grid points, hence the discrete analogue of

above equation (2.5) can be written as

A31U + A32Q+ A33G = F3, (2.6)

where A31,A32,A33 are row vectors and F3 is a number.

The Schur complement for [ Q G ]T is

B





Q

G



 =





F2

F3



−




A21

A31



A−1
11 F1 =





F̄2

F̄3



 , (2.7)

where

B =

�

A22 A23

A32 A33

�

−




A21

A21



A−1
11

�

A12 A13

�

. (2.8)
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Note that [ Q G ]T has dimension of 2Nb, so we still have Nb−1 degrees of the freedom.

Meanwhile, we do want to control the magnitude of the regularized tangential force term

G, so we put

E G = 0 (2.9)

where E is a regularization parameter, which should be chosen large enough. However,

by adding the above equation (2.9), the system of equations (2.3), (2.4), and (2.9) is now

over-determined, for the total number of equations is one more than the total number of

unknowns. Thus we seek the least squares solution of (2.7) and (2.9), which is equivalent

to solving the following normal equations (Tickhonov regularization):

�

BT B+ E2I
�





Q

G



= BT





F̄2

F̄3



 . (2.10)

We can choose the regularization parameter E to control the magnitude of G. In fact, the

larger E is, the smaller is ‖G‖.
In the linear system of equations (2.3) and (2.7), we solve (2.7) first since it is O(Nb)

dimensional lower than that ofU . Once we have Q and G, we can getU by applying the

one-step Stokes solver once. There are other components of the augmented method, such

as how to obtain the matrix-vector multiplication for the Schur complement – cf. [2,9].

3. The Numerical Method for the Navier-Stokes Equation Model

Numerical simulations of an inextensible interface in an incompressible flow have been

reported in [15,16,19], using the boundary integral method for Stokes equations in which

the Green function is available. Another novelty of this paper is the development of the

finite difference method for the Navier-Stokes equation model that may be more realis-

tic, since the inertial effect is taken into account. In addition to the difficulties that we

mentioned for the Stokes model, another difficulty is how to enforce the pressure jump

condition in the projection method. This turns out to be a crucial step in our numerical

method. Here, we propose a modified projection method to enforce the pressure jump

condition. Similar to the three Poisson equations approach for Stokes equations, we apply

the divergence operator to the momentum equation (1.2) and reformulate the singular

force term by the jump conditions to obtain

∆p = −∇ · (u · ∇u) ,
∂ p

∂ n

�

�

�

�

∂Ω

= 0, (3.1)

[p]
�

�

Γ
= σκ+ fb,

�

∂ p

∂ n

�

Γ

=
∂ g

∂ s
. (3.2)
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Thus, our modified projection method from time tk to tk+1 can be written as


















∆p̃k+1 = −∇ · (u · ∇u)k ,
∂ p̃k+1

∂ n

�

�

�

�

�

∂Ω

= 0,

�

p̃k+1
�

Γk = σ
k+1κ+ f k

b

�

∂ p̃k+1

∂ n

�

Γk

=
∂ gk+1

∂ s
,

(3.3)











u∗ − uk

∆t
+ (u · ∇u)k +∇ p̃k+1 = µ∆u∗,

[u∗]Γk = 0,

�

µ
∂ u∗

∂ n

�

Γk

= −
�

∂ σk+1

∂ s
+ gk+1(s)

�

τ,

(3.4)















∆φk+1 =
∇ · u∗
∆t

,

∂ φk+1

∂ n

�

�

�

�

�

∂Ω

= 0,
�

φk+1
�

Γk = 0,

�

∂ φk+1

∂ n

�

Γk

= 0,

(3.5)

uk+1 = u∗ −∆t∇φk+1, (3.6)

pk+1 = p̃k+1 +φk+1. (3.7)

In addition, the inextensible condition (1.6) expressed as

�

∇s · uk+1
�

Γk =
∂ uk+1

∂ τ
·τ
�

�

�

�

�

Γk

= 0,

and the area conserving condition (2.5) expressed as
∫

Γk

�

uk+1 · n
�

ds = 0,

should be satisfied as well. The boundary condition for u∗ is the shear flow condition on

the rectangular domain. Once we have the velocity uk+1, we can move the control points of

the interface to new positions and form a new interface by our cubic spline representation.

The remaining discretization details are as in Section 2, except that A11 now corre-

sponds to the Navier-Stokes instead of the Stokes solver. It is worth mentioning that in our

simulations with the Navier-Stokes model we often obtain a better computed divergence-

free velocity, compared with that obtained from the Stokes equations, since the projection

step enforces the divergence free (or incompressible) condition at grid points.

4. Numerical Results

In this section, we present some simulations of the motion of an inextensible interface

in a shear flow. All the computations were performed at the North Carolina State University



162 Z. Li and M.-C. LaiTable 1: A grid re�nement analysis against the exa
t solution at time T = 0.5. ‖ Eu ‖∞ is the maxi-mal error in the velo
ity, and "order" is the approximated order of a

ura
y 
omputed from the two
onse
utive errors.
M = N , Nb ‖ Eu ‖∞ orderu ‖ Ep ‖∞ orderp

32, 32 1.2850 10−3 1.0643 10−2

64, 64 3.1483 10−3 2.0291 2.5466 10−3 2.0633

128, 128 6.7513 10−4 2.2213 9.2588 10−4 1.4596

256, 256 1.6127 10−5 2.0657 2.7097 10−4 1.7727

512, 512 4.1006 10−6 1.9756 7.0427 10−5 1.9440

using either notebook or desktop computers. We use the same notations as described at

the beginning of Section 2. We use the cubic spline package [8] to represent the moving

interface. In this representation, the interface is represented as a periodic cubic spline

(X (s), Y (s)) in terms of the arc-length parameter s, and Nb denotes the number of control

points for the cubic spline. In most simulations, the viscosity coefficient chosen is µ = 20.

4.1. Accuracy Check Against an Exact Solution

We first check our numerical algorithm and test the accuracy against an exact solution

with a stationary interface r = 0.5 in the domain [−1, 1] × [−1, 1]. The Dirichlet

boundary and initial conditions are from the following exact solution:

u(x , y, t) =







sin(t)

�

y

r
− 2y

�

, if r ≥ 1/2,

sin(t)

�

r2 − 1

4

�

y, otherwise,

(4.1)

v(x , y, t) =







sin(t)

�

− x

r
+ 2x

�

, if r ≥ 1/2,

− sin(t)

�

r2− 1

4

�

x , otherwise,

(4.2)

p(x , y, t) = C sin(t), (4.3)

where r =
p

x2+ y2 and C is a constant. The force term F is derived directly from the

exact solution.

In Table 1, we show a grid refinement analysis to check the order of accuracy for our

method. We set the following

‖ Eu ‖∞ =max
i j
{|U k

i j − u(x i, y j , T )|}+max
i j
{|V k

i j − v(x i, y j , T )|},

‖ Ep ‖∞ =max
i j
{|Pk

i j − p(x i , y j , T )|},
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Figure 2: The 
omputed surfa
e tension with di�erent mesh sizes and the number of 
ontrol points.We have observed that there are some sawtooth os
illations for the surfa
e tension when the interfa
eis in its quasi-equilibrium state. However, by re�ning the mesh, the magnitude of the os
illations 
anbe redu
ed signi�
antly. The results agree with the those in [19℄.
as the errors of the velocity and the pressure, respectively, at time T = 0.5. The number

order is the approximated order of accuracy from the two consecutive errors for the so-

lution. Second order accuracy is clearly seen for the velocity. The pressure seems to be

second order accurate because ∂ p/∂ n= 0 is satisfied exactly for the solution.

4.2. The Computed Surface Tension and the Tank-treading Motion

Next, we show a grid refinement analysis for the computed surface tension of an in-

extensible interface when it reaches the quasi-equilibrium state. In the quasi-equilibrium

state, there is only a tangential motion that behaves like tank-treading. Fig. 2 shows the

computed surface tension with different mesh sizes when the bending coefficient is zero, so

that we can compare with the results obtained in [16,19]. The initial interface is an ellipse

with major and minor axes being 0.5 and 0.3, respectively. In Fig. 2, we have observed

that there are some sawtooth oscillations in the computed surface tension. This oscillatory

behavior has also been found in the previous study [19], where a point-wise collocation
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(a) (b)Figure 3: (a) An initial interfa
e (red-
urve) and its quasi-equilibrium state (blue-
urve) at t = 6.1529.The errors of the total length and the area en
losed by the interfa
e are 1.1067×10−3 and 5.0365×10−3,respe
tively. (b) Plot of the velo
ity �eld near a portion of the interfa
e after it rea
hes the quasi-equilibrium state. The velo
ity is along the tangential dire
tion.
method is applied. In order to remove the oscillations, one might apply numerical smooth-

ing so that the high frequency modes can be eliminated. Here, however, these sawtooth

oscillations generally have low amplitudes as we refine the mesh, and the surface tension

remains with sufficient accuracy as long as the interface is smooth enough. The results

also agree well with those obtained in [16].

In Fig. 3 (a), we plot an interface (x/0.3)2 + (y/0.5)2 = 1 at initial time (t = 0), and

at time t = 6.1529 when the interface has reached its quasi-equilibrium state. The initial

length of the interface and the area enclosed by the interface can easily be calculated as

(2.5523,0.47124). The regularization parameter is chosen as E = 103 and the shear rate

is γ̇= 0.5. We also carry out the grid refinement analysis for the computed length and the

area at t = 2. The errors with M = N = 80, Nb = 80 are (−8.7566×10−4, 7.4570×10−4);

and (−2.1310× 10−4, 6.4505× 10−4) when M = N = 160, Nb = 160 is used. The results

show second order accuracy in both length and area for this case. In fact, the errors in the

length and area are within the discrete error of the cubic spline interpolation in discretizing

the interface.

In Fig. 3 (b), we plot the velocity field near some portion of the interface at t = 6.1529

after the interface reaches its quasi-equilibrium state. We can see that the direction of

the velocity is along the tangential direction of the interface, indicating that the interface

undergoes a tank-treading motion.

Note that when the initial shape is a circle, the coefficient matrix for the discrete surface

tension is singular. If there is no flow (i.e. the shear rate is zero), then there are infinite

solutions of the unknown surface tension. If the shear rate is non-zero, then no such

surface tension exists. Mathematically, we know that that a circle has largest area among
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(a) (b)Figure 4: Evolution of an inextensible interfa
e with relatively large 
ir
ularity, c = 1.7770. (a) Theresults obtained using the Stokes equations. (b) The results obtained using the Navier-Stokes equations.Compared with Fig. 3, Fig. 5 (
), (d), and Fig. 6, the interfa
e at the quasi-equilibrium state has abi
on
ave shape with a smaller in
lination angle.
all geometric objects with fixed circumference. This was confirmed in our numerical tests.

4.3. Effect of the Cell Circularity

It is stated in [16,19] that the final shape and the inclination angle (angle with x axis)

of an inextensible interface at the quasi-equilibrium depend on the circularity defined by

c =
L

2
p

Aπ
, (4.4)

where L and A are the length and area of the interface, respectively. Note that c = 1 for

a circle, and for smaller circularity the inclination angle at the quasi-equilibrium is larger.

If the circularity is large enough, then the interface at the quasi-equilibrium state has a

biconcave shape.

In Fig. 4, we show the evolution of an inextensible interface with relatively large circu-

larity, c = 1.7770. The initial interface is an ellipse (x/0.1)2+(y/0.55)2 = 1. In Fig. 4 (a),

the results are obtained using the Stokes model; while in Fig. 4 (b), the results are obtained

using the Navier-Stokes model. Compared with Fig. 3 (a), Fig. 5 (c) and (d), and Fig. 6,

the quasi-equilibrium interface with a larger circularity is more likely to have a biconcave

shape and a smaller inclination angle. Note that, due to the large curvature near the tip

area, an extensive smoothing may cause the area loss.
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4.4. The Stokes Equations Model Versus the Navier-Stokes Model and the

Bending Effect

When the angle of the initial interface (an ellipse) with the x -axis is less than 90 de-

grees, the results for the interface quasi-equilibrium are almost the same for both the

Stokes and the Navier-Stokes models, and smooth in either case. However, if the angle of

the initial interface with the x -axis is larger than 90 degrees, we can see that some oscilla-

tions along the interface develop in the beginning and disappear after the angle becomes

less than 90 degrees – cf. Fig. 5. We also see stronger oscillations for the Navier-Stokes

equations with µ = 20, compared with that for the Stokes equations, due to the convec-

tion effect of the Navier-Stokes equations. In Fig. 5 (a) and (b), the initial interface is an

ellipse x2/0.12 + y2/0.552 = 1 with major axis rotated by 45 degrees counter-clockwise.

The circularity is c = 1.7770. The computations are performed using a 160× 160 grid

with Nb = 160. Both the area and length are almost constants after the inclination angle

becomes less than 90 degrees, and the errors in the length and the area are about 5%.

We observe the biconcave shape when the interface reaches its quasi-equilibrium state. In

Fig. 5 (c) and (d), the initial interface is an ellipse x2/0.32 + y2/0.52 = 1 with major axis

rotated by 45 degrees counter-clockwise, whose circularity is c = 1.0491 (smaller than the

previous one). Again, we observe some oscillations for the Navier-Stokes equations model

compared with almost no oscillations for the Stokes model.

We also test the effect of the bending force. In Fig. 6, we show two different bending

coefficients cb = 10−6 and 10−2 used in the Navier-Stokes model. We have observed

that the stronger the bending coefficient the smoother the interface, during the transition

process.

4.5. More General Initial Shapes

We show some simulations with more general initial configurations using the Navier-

Stokes model. The results are comparable with those presented in [16,19] using the Stokes

equations. In Fig. 7, we show the evolution process of an inextensible interface with the

initial configuration

(

X (θ) = α cos(θ) + β cos(3θ) cos(θ),

Y (θ) = α sin(θ) + β cos(3θ) sin(θ),
0≤ θ < 2π, (4.5)

where α= 0.2451 and β = 0.1473. The computational domain is [−1, 1]× [−1, 1].

In the next test, we show the results with an initial configuration from the equation

Y (x) = ±1

2

p

1− x2

�

α+ β x2+ γx4
�

, (4.6)

where α = 0.207161, β = 2.002558, and γ = −1.122762, see [19]. The initial config-

uration is biconcave like a dumbbell. As in [19], we put the interface in two different

orientations; one is in the flow direction (Fig. 8); and another is inclined parallel with

the x -axis (Fig. 9). In the first case, the interface stretches gradually until it reaches its
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(c) (d)Figure 5: The snap shots of an inextensible interfa
e in a shear �ow. (a) and (
): simulation resultsusing the Stokes equations; (b) and (d): simulation results using the Navier-Stokes equations.
quasi-equilibrium state. Again, we see the biconcave shape due to the large circularity.

In the second case, however, the interface rotates and stretches simultaneously. It rotates

immediately so that the interface is aligned in the direction of the flow before gradually

relaxing to the quasi-equilibrium state.

5. Conclusions

In this paper, we propose new finite difference methods for simulating the motion of

an inextensible interface in an incompressible flow using either the Stokes or the Navier-

Stokes equations. The unknown surface tension should be determined in such a way that

the surface divergence of the velocity must be zero along the interface. For the Stokes
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equations model, we use a three Poisson approach. For the Navier-Stokes model, we pro-

pose a modified projection method, which can enforce the pressure jump condition that

corresponds directly to the unknown surface tension. A regularization technique is useful

for the interfaces with large curvature, or when the orientation of the interface is at a large

angle with the flow direction.
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When the circularity and the Reynolds number are modest and the initial angle be-

tween the interface and the flow direction is less than 90 degrees, our numerical methods
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can preserve the area enclosed by the interface and the total length of the interface very

well, even if no regularization is used, (i.e. g = 0). We have analyzed the effects of the

circularity, flow directions, and different initial configurations on the motion of the inex-

tensible interface.
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