
East Asian Journal on Applied Mathematics Vol. 1, No. 2, pp. 132-154

doi: 10.4208/eajam.080310.200910a May 2011

Construction of Probabilistic Boolean Networks from

a Prescribed Transition Probability Matrix: A

Maximum Entropy Rate Approach

Xi Chen1, Wai-Ki Ching∗,1, Xiao-Shan Chen2, Yang Cong1 and

Nam-Kiu Tsing1

1 Advanced Modeling and Applied Computing Laboratory, Department of

Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong.
2 School of Mathematical Sciences, South China Normal University, Guangzhou,

China.

Received 8 March 2010; Accepted (in revised version) 20 September 2010

Available online 7 April 2011

Abstract. Modeling genetic regulatory networks is an important problem in genomic

research. Boolean Networks (BNs) and their extensions Probabilistic Boolean Networks

(PBNs) have been proposed for modeling genetic regulatory interactions. In a PBN, its

steady-state distribution gives very important information about the long-run behavior

of the whole network. However, one is also interested in system synthesis which requires

the construction of networks. The inverse problem is ill-posed and challenging, as there

may be many networks or no network having the given properties, and the size of the

problem is huge. The construction of PBNs from a given transition-probability matrix

and a given set of BNs is an inverse problem of huge size. We propose a maximum

entropy approach for the above problem. Newton’s method in conjunction with the

Conjugate Gradient (CG) method is then applied to solving the inverse problem. We

investigate the convergence rate of the proposed method. Numerical examples are also

given to demonstrate the effectiveness of our proposed method.

Key words: Boolean networks, conjugate gradient method, genetic regulatory networks, inverse

problem, Markov chains, Newton’s method, probabilistic Boolean networks, transition-probability

matrix.

1. Introduction

Building mathematical models and developing efficient numerical algorithms for study-

ing regulatory interactions among DNA, RNA, proteins, and small molecules are important

research issues in computational systems biology [7, 26]. In fact, many formalisms and
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mathematical models have been proposed in the literature to study genetic regulatory

networks such as Bayesian networks [25], Boolean Networks (BNs) [21, 22], multivari-

ate Markov chain models [9], regression models [45], Probabilistic Boolean Networks

(PBNs) [32–35], and a review on other mathematical models can also be found in [16,36].

Among these models, BNs and their extensions PBNs have received much attention as they

are able to capture the switching behavior of biological processes [26].

Boolean logic owes its name to George Boole who devised a mathematical framework

for logical reasoning [4, 5]. BN models were first introduced by Kauffman [21–24]. Re-

views of BN models can be found in [26, 37]. In a BN, the gene expression states are

quantized to only two levels: on and off (represented as 1 and 0). The target gene is

determined by several genes called its input genes via a Boolean function. When the input

genes and the Boolean functions are given, then we say that a BN is defined. We remark

that a BN is a deterministic model and the only randomness comes from its initial state.

Given an initial state, the BN will eventually enter into a cycle of states called its attrac-

tor cycle. Since genetic regulation processes exhibit uncertainty and microarray data sets

used to infer the model have errors due to experimental noise in the complex measure-

ment processes, it is more realistic to consider stochastic models. The idea of extending

the concept of a BN (a deterministic model) to a PBN (a probabilistic model) is as follows.

For each gene, there can be more than one Boolean function and corresponding selection

probabilities are assigned to the Boolean functions. The dynamics (transitions) of a PBN

can be studied using Markov chain theory [10,32,35].

Given a PBN, the network behavior is characterized by its steady-state probability dis-

tribution which gives the first-order statistical information of a PBN. One can understand a

genetic regulatory network and identify the influence of different genes via such a network.

In [44], an efficient method has been used to construct the transition probability matrix

and the standard iterative power method for computing the resulting steady-state proba-

bility distribution. Later, also a matrix approximation method has been proposed in [11] to

get an approximation of the steady-state probability distribution efficiently. Furthermore,

it is possible to control some genes in a network so as to drive the whole network into a

desirable state or a steady-state probability distribution (a mixture of states). Therapeutic

gene intervention or gene control policy [12, 15, 33, 35] can therefore be developed and

studied.

Here we study the problem of constructing a PBN based on a given transition-probability

matrix and a set of BNs. This is an inverse problem of huge size. The inverse problem is

ill-posed, meaning that there can be many networks or no network having the desirable

properties. Pal et al. [29] have presented two algorithms to solve the inverse problem of

finding attractors constituting a BN. Network inference from steady-state data is a very im-

portant problem as most microarray data sets are assumed to be obtained from sampling

the steady-state. In fact, the inverse problem can be split into two different tasks. The first

task is to construct a sparse transition-probability matrix from a given network steady-state

probability distribution. A maximum entropy rate approach has been proposed for this pur-

pose [13]. The second task is to construct a PBN (the BNs and the selection probabilities)

from a given steady-state probability distribution. Here, we propose to apply Newton’s
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method together with the conjugate gradient method to solving the inverse problem.

The remainder of the paper is structured as follows. Section 2 gives a brief review on

BNs and PBNs. In Section 3, we present the inverse problem. Some interesting properties

of the model are also discussed. In Section 4, we consider a maximum entropy approach for

the inverse problem. Section 5 presents numerical examples to demonstrate our proposed

algorithm. Finally, concluding remarks are given in Section 6.

2. A Review on Boolean Networks and Probabilistic Boolean Networks

The BN model is a particular case of discrete dynamical systems [2]. In this section,

we first define a dynamical system (M , D). Then, we will present the definition of the BN

model based on (M , D). Let (M , D) be a discrete dynamical system consisting a set M and

a map D : M → M , where M is a product of sets M1, M2, · · · , Mn. Then, the map D can be

specified in terms of its components [27]:

Di : M1 ×M2 × · · · ×Mn→ Mi .

Here if we define mi (mi ∈ Mi) to be the state (0 or 1) of gene i, then the map D will

represent the set of rules of the regulatory interactions among the genes (set of Boolean

functions):

D(m) = (D1(m), D2(m), · · · , Dn(m))
T

where m= (m1, m2, · · · , mn)
T and Di : {0,1}n→ {0,1}.

Now, we are ready to give the definition of a BN having n genes. A Boolean Network

(BN) G(V, F) consists of a set of vertices:

V = {v1, v2, · · · , vn}
and a list of Boolean functions:

F = { f1, f2, · · · , fn}
( fi : {0,1}n → {0,1}). We define vi(t) to be the state (0 or 1) of the vertex vi at time t.

Boolean functions are used to represent the rules of the regulatory interactions among the

genes:

vi(t + 1) = fi(v(t)), i = 1, · · · , n,

where

v(t) = (v1(t), v2(t), · · · , vn(t))
T

is called the Gene Activity Profile (GAP). The GAP can take any possible form (state) from

the set:

S = {(v1, v2, . . . , vn)
T : vi ∈ {0,1}} (2.1)

and thus totally there are 2n possible states.

Considering the inherent deterministic directionality in BNs as well as the fact that it

can assume only a finite number of states, it is easy to see that some states will be re-visited
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State v1(t) v2(t) f (1) f (2)

1 0 0 0 0

2 0 1 0 0

3 1 0 1 1

4 1 1 1 0

infinitely often, depending on the initial starting state. Such states are called attractors and

the states leading to comprise their basins of attraction. The number of transitions needed

to return to a given state in an attractor is called the cycle length [1, 21, 22]. It is also

well-known that eventually a BN will enter into an attractor cycle and stay there forever.

The cycles can have biological significance [19] such as states of cell proliferation or cell

apoptosis. For more details we refer interested readers to [24].

Here we give an example of a BN having two genes with the truth table given in Table

1. From the truth table, there are four states and they are (0,0), (0,1), (1,0) and (1,1). Let

us label them by 1,2,3 and 4 respectively. We note that if the current state of the network is

1, the network will stay with State 1 in the next step (with probability one). If the current

state is 2, the network will go to State 1 in the next step (with probability one). Similarly,

if the current state is 3, the network will go to State 4 in the next step (with probability

one). Finally, if the current network state is 4, the network will go to State 3 in next step

(with probability one). The transition-probability matrix (Boolean network matrix) of the

2-gene BN is then given by

B =











1 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0











. (2.2)

The truth table provides the one-step transition probability (0 or 1 in the case of BN)

between any two states. Let column vectors a and b be any two states in the set S. By

letting a and b take all the possible states in S, one can get the transition-probability

matrix of the 2-gene BN. Since the network is deterministic, each column in B (the Boolean

network matrix) has only one non-zero element and the column sum is one. We observe

that there are two cycles and they are given as follows: (i) (0,0)↔ (0,0), and (ii) (1,0)↔
(1,1). Thus State 1 is an attractor cycle of period (length) one and States 3 and 4 form an

attractor cycle of period two. We remark that there is a one-to-one relation between a BN

and its corresponding BN matrix.

Since BN is a deterministic model, the following are some reasons why this is not favor-

able. First, the biological system has its stochastic nature. Second, the microarray data sets

used to infer the network structure are usually not accurate because of the experimental

noise in the complex measurement process. To overcome the deterministic rigidity, exten-

sion to a probabilistic model is natural. To extend the concept of a BN to a stochastic model,

for each vertex vi in a PBN, instead of having only one Boolean function (as in the case of
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a BN) there are a number of Boolean functions (predictor functions) f
(i)

j
( j = 1, · · · , l(i))

to be chosen for determining the state of gene vi. The probability of choosing f
(i)

j
as the

predictor function is c
(i)

j
, where

0≤ c
(i)

j
≤ 1 and

l(i)
∑

j=1

c
(i)

j
= 1 for i = 1, · · · , n.

The probability c
(i)

j
can be estimated by using the statistical method Coefficient of Deter-

mination (COD) [18] with real gene expression data sets.

Let f j be the jth possible realization,

f j =
�

f
(1)

j1
, f
(2)

j2
, · · · , f

(n)

jn

�

, 1≤ ji ≤ l(i), i = 1, · · · , n,

where l(i) ≤ 22n

is the total number of possible Boolean functions of gene i. Then in an

independent PBN (the selection of the Boolean function for each gene is assumed to be

independent), the probability of choosing the corresponding BN is given by

q j =

n
∏

i=1

c
(i)

ji
, j = 1, · · · , N .

There are at most

N =

n
∏

i=1

l(i)

different possible realizations of BNs. We note that the transitions among the states in the

set S is a Markov chain process [10]. Let a and b be any two column vectors in the set S.

Then the transition probability

Prob
n

v(t + 1) = a | v(t) = b
o

=

N
∑

j=1

Prob
n

v(t + 1) = a | v(t) = b, the jth network is selected
o

· q j.

The transition probability matrix A of a PBN (Markov chain) can then be obtained by

computing the above probabilities for all the possible states in the set S in (2.1). In fact,

it can be shown that the transition probability matrix A can be written as the sum of the

Boolean network matrices Ai ([11]):

A=

N
∑

i=1

qiAi, (2.3)

where qi is the probability of choosing the BN with the BN matrix Ai. Here we will focus

on estimating qi when A and Ai are given.
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3. The Inverse Problem

In this section, we propose the inverse problem of constructing a PBN from a given

transition-probability matrix A and a set of Boolean networks {Ai}. Suppose that the pos-

sible BNs constituting the PBN are known and their BN matrices are denoted by {A1, · · · ,
AN}. Moreover, the transition-probability matrix A is observed and its relation to Ai is given

in (2.3). We are interested in the estimation of the parameters qi, i = 1, · · · , N when A is

given. Since the problem size is huge and A is usually very sparse, here we assume that

each column of A has m non-zero entries. In this case, we have N = m2n

and we can order

A1, · · · ,Am2n systematically. We note that qi and Ai are non-negative and there are only

m · 2n non-zero entries in A. Thus we have m · 2n equations for m2n

unknowns.

To reconstruct the PBN, one possible way to get qi is to consider the following mini-

mization problem:

min
q



















A−
m2n

∑

i=1

qiAi



















2

F

(3.1)

subject to

0≤ qi ≤ 1 and

m2n

∑

i=1

qi = 1.

Here ‖ · ‖F is the Frobenius norm of a matrix. Let us define a mapping F from the set of

l × l square matrices to the set of l2 × 1 vectors by

F

















a11 · · · a1l
...

...
...

al1 · · · al l

















= (a11, . . . , al1, a12, . . . , al2, . . . , . . . , a1l , . . . , al l)
T .

If we let

U = [F(A1), F(A2), · · · , F(Am2n )] and p= F(A), (3.2)

then (3.1) becomes

min
q
‖Uq− p‖22 (3.3)

subject to

0≤ qi ≤ 1 and

m2n

∑

i=1

qi = 1.

We note that in practice the matrix U is very large, so it is not possible to store the

whole matrix and therefore we seek iterative methods for solving the above minimization

problem. One possibility is the Conjugate Gradient (CG) method [3]. Since

||Uq− p||22 = qT U T Uq− 2qT U T p+ pT p,
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the minimization problem (3.3) without the constraints is then equivalent to

min
q
{qT U T Uq− 2qT U T p}.

If U is a full column rank matrix then U T U is a symmetric positive definite matrix. The

minimization problem without constraints is equivalent to solving U T Uq = U T p with the

CG method. We note that if there is a vector q satisfying the equation Uq= p with 1T q = 1

and 0 ≤ q ≤ 1, then the CG method can yield the solution. Thus to ensure that 1T q = 1,

we add a row of (1,1, · · · , 1) to the bottom of the matrix U and form a new matrix Ū . At

the same time, we add an entry 1 at the end of the vector p to get a new vector p̄. We then

consider the revised system of linear equations

Ū T Ūq= Ū T p̄ .

However, the CG algorithm has to be modified to ensure the second constraint 0 ≤ q ≤ 1.

This method can give a solution of the inverse problem. However, usually there are too

many solutions – so extra criterion has to be introduced in order to narrow down the set

of solutions, or to obtain a unique solution.

One possible and reasonable approach is to consider the solution which gives the

largest entropy, as q itself can be considered to be a probability distribution. This means

we are to find a distribution vector q that maximizes

−
m2n

∑

i=1

qi log(qi).

Entropy is a measure of the uncertainty associated with a random variable [31]. It mea-

sures, in the sense of an expected value, the information contained in a message. Entropy

can also be regarded as a measure of the multiplicity associated with the state of the ob-

jects. A state which can be accomplished in many ways is more probable than one that

can be accomplished in fewer ways. The entropy method was adopted by Wilson for traffic

demand estimation in transportation networks [41] – cf. also [8, 39, 42, 43]. Before ad-

dressing our application in the next section, we present some interesting properties of the

matrices UU T and Ū Ū T that will be useful in the convergence analysis later.

3.1. Eigenvalues of the Matrices UU T and Ū Ū T

We analyze the eigenvalues of the matrices UU T and Ū Ū T . We note that when the zero

rows of U and Ū are removed, it will not affect the nonzero eigenvalues of UU T and Ū Ū T ,

so we assume that U and Ū do not contain any zero row. We observe that U has m · 2n

nonzero rows, and it is straightforward to check that

UU T = m2n−1 Im·2n +m2n−2T, (3.4)
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where

T =

















0m Em · · · Em Em

Em 0m · · · Em Em
...

...
...

...

Em Em · · · 0m Em

Em Em · · · Em 0m

















, (3.5)

0m is an m×m zero matrix and Em is an m×m matrix with all entries being equal to 1.

The matrix T can be written as follows:

T = E − F, (3.6)

where E is an m · 2n×m · 2n matrix with all entries being equal to 1 and

F = diag
�

Em, Em, · · · , Em

�

. (3.7)

The eigenvalues of Em are m and 0, with multiplicity 1 and m− 1 respectively. Thus the

eigenvalues of the matrix F are m and 0, with multiplicity 2n and (m− 1) · 2n respectively.

The eigenvalues of E are m · 2n with multiplicity 1 and 0 with multiplicity m · 2n − 1. It

is easy to see that m · (2n− 1) is an eigenvalue of T . We note that E and F commute.

Therefore the eigenvalues of the matrix T are m · (2n− 1) with multiplicity 1, as well as

−m and 0 with multiplicity 2n− 1 and (m− 1)2n, respectively. In fact, from (3.4)-(3.7) it

is straightforward to obtain the following theorem related to the eigenvalues of the matrix

UU T .

Theorem 3.1. The eigenvalues of the matrix UU T are 2n ·m2n−1 with multiplicity 1, m2n−1

with multiplicity (m− 1) · 2n and 0 with multiplicity 2n− 1.

For eigenvalues of the matrix Ū Ū T , we have the following result and the proof can be

found in the Appendix.

Theorem 3.2. Let s = rank(Ū). Then we have

(a) s = rank(U) = (m− 1) · 2n+ 1;

(b) The matrix Ū Ū T has at most four different eigenvalues. The largest eigenvalue lies in an

interval
�

2n ·m2n−1,

�p

2n ·m2n−1 +

p

m2n

�2
�

,

the second largest one lies in an interval
�

m2n−1, 2n ·m2n−1
�

; other eigenvalues are m2n−1

and 0.

(c)

2n ≤ λ1(Ū Ū T )

λs(Ū Ū T )
≤
�p

2n+
p

m
�2

,

where λi(H) is the i-th largest eigenvalue of a positive semi-definite matrix H.
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4. The Inverse Problem and Its Dual Problem

In this section, we first propose the inverse problem for the construction of a PBN with

the entropy maximization approach. We then apply Newton’s method with the CG method

to solving the inverse problem.

4.1. The Inverse Problem

For the inverse problem, we have m · 2n equations for m2n

unknowns. Thus one may

have infinitely many solutions. Since q can be viewed as a probability distribution, one

possible way to get a better choice of qi is to consider maximizing the entropy of q subject

to the given constraints – i.e. consider the following maximization problem:

max
q

m2n

∑

i=1

(−qi log qi) (4.1)

subject to

Ūq= p̄ and 0≤ qi i = 1, · · · , m2n

.

We remark that the constraint qi ≤ 1 can be discarded as we require that

m2n

∑

i=1

qi = 1 and 0≤ qi i = 1, · · · , m2n

.

As in [8], the dual problem of (4.1) is therefore of the type

min
y

max
q

L(q,y) (4.2)

where y is the multiplier and L(·, ·) is the Lagrangian function

L(q,y) =

m2n

∑

i=1

(−qi logqi) + yT (p̄− Ūq). (4.3)

The optimal solution q∗(y) of the inner maximization problem of (4.2) solves the equations

∇qi
L(q,y) = − log qi − 1− yT Ū·i = 0, i = 1, · · · , m2n

and is thus of the form

q∗i (y) = e−1−yT Ū·i , i = 1, · · · , m2n

(4.4)

where Ū·i is the ith column of the matrix Ū . After substituting q∗(y) back into (4.3) the

dual problem (4.2) can be simplified to

min
y







m2n

∑

i=1

e−1−yT Ū·i + yT p̄







. (4.5)
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The solution of the primal problem (4.1) can be obtained from the solution of the dual

problem (4.5) through (4.4). Thus we have transformed a constrained maximization prob-

lem with m2n

variables into an unconstrained minimization problem of m ·2n+1 variables.

4.2. Newton’s Method for the Dual Problem

A variety of numerical methods are available for solving problem (4.5). In the follow-

ing, we will explain how Newton’s method in conjunction with the CG method can be used,

and give a theoretical justification for the efficiency of the CG method in this setting. To

this end we denote

f (y) =

m2n

∑

i=1

e−1−yT Ū·i + yT p̄

as the function to be minimized. The gradient and the Hessian of f are respectively

∇ f (y) =−Ūq∗(y)+ p̄ (4.6)

and

∇2 f (y) = Ū · diag(q∗(y)) · Ū T (4.7)

where q∗(y) is as defined in (4.4) and diag(q∗(y)) is the diagonal matrix with diagonal

entries (q∗(y)).

Newton’s Method (see Nocedal and Wright [28]):

Choose a starting vector y0 ∈ Im(Ū) (Here Im(Ū) denotes the column space of matrix

Ū);

k = 1;

while ||∇ f (yk)||2 > tolerance

find pk with ∇2 f (yk−1)pk = −∇ f (yk−1);

set yk = yk−1+ pk;

k = k+ 1;

end.

From Eq. (4.7), we observe that f is strictly convex on the subspace Im(Ū). Newton’s

method will produce a sequence of points yk according to the iteration yk = yk−1 + pk,

where the Newton step pk is the solution of the Hessian matrix system

∇2 f (yk−1)pk = −∇ f (yk−1). (4.8)

We note that ∇2 f (yk−1) is a one-to-one mapping of the concerned subspace concerned

onto itself. Moreover, from (4.6) we have ∇ f (y) ∈ Im(Ū) as p̄ ∈ Im(Ū). Hence, Eq. (4.8)

has a unique solution and therefore Newton’s method for minimizing f is well defined. If

we start with y0 ∈ Im(Ū), the Newton’s sequence will remain in the subspace. Moreover,

it will converge locally at a quadratic rate. To enforce global convergence one may apply
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line search or trust region techniques [14,17]. However, we did not find this necessary in

our computational experiments.

In each iteration of the Newton’s method, one has to solve the linear system of the form

(4.8), which we propose to do by the Conjugate Gradient (CG) method. The convergence

rate of the CG method depends on the effective condition number

λ1(∇2 f (y))

λs(∇2 f (y))

of ∇2 f (y). The following theorem gives a theoretical estimate of this number and the

proof can be found in the Appendix.

Theorem 4.1. For the Hessian matrix ∇2 f (y),

2n · e−2(m·2n+1)·‖y‖∞ ≤ λ1(∇2 f (y))

λs(∇2 f (y))
≤
�p

2n+
p

m
�2 · e2(m·2n+1)·‖y‖∞ . (4.9)

Remark: The main computational cost in each Newton iteration comes from the cost of

solving the Hessian matrix system (4.8) by the CG method. In each CG iteration, the main

computational cost comes from the matrix-vector multiplication of size (m2n + 1) and the

complexity is therefore of O(m323n). Thus our algorithm is not computationally efficient

for large value of m – e.g. for context-sensitive PBNs or PBNs with gene perturbations [30].

This is because our method is not efficient for direct application to the dense transition

probability matrices in such PBNs.

5. Numerical Results

In this section, we first present some numerical examples of PBNs to demonstrate the

proposed method. We then discuss the application of our method to the case of a BN with

a small perturbation by a numerical example. Finally we consider a PBN of three genes

with small perturbations. Regarding the numerical methods, for Newton’s method we set

the tolerance to be 10−7 while the tolerance of the CG method is 10−10.

5.1. A Numerical Example of a PBN

In this subsection, we present an example to demonstrate the computational perfor-

mance of our proposed method. In particular, the example gives a detailed explanation of

our construction method.

Example: We consider the case n= 2 and m= 2 and suppose that the observed transition-

probability matrix of the PBN is

A2,2 =











0.1 0.3 0.5 0.6

0.0 0.7 0.0 0.0

0.0 0.0 0.5 0.0

0.9 0.0 0.0 0.4











.
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We would like to find the following decomposition

A2,2 =
∑

k∈S

qkAk where
∑

k∈S

qk = 1 and qk ≥ 0 (5.1)

for some Boolean network matrices Ak and some set S. From the structure of A2,2, it is

straightforward to check that there are at most 16 (i.e. |S|= 16) possible Boolean network

matrices for constituting the PBN, because the non-zero positions of a Boolean network

matrix constituting the given transition-probability matrix should match with A2,2. Thus

any Boolean network matrix other than those 16 Boolean network matrices above will

take no part in (5.1). Moreover, the transition-probability matrix A2,2 can be written as a

weighted sum of the 16 Boolean network matrices. In fact, there are many possible ways

to do so as the number of variables qi is more than the number of constraints (see Eq.

(5.2)). All 16 possible Boolean matrices are listed below:

A1 =











1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0











, A2 =











1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 1











, A3 =











1 1 0 1

0 0 0 0

0 0 1 0

0 0 0 0











, A4 =











1 1 0 0

0 0 0 0

0 0 1 0

0 0 0 1











,

A5 =











1 0 1 1

0 1 0 0

0 0 0 0

0 0 0 0











, A6 =











1 0 1 0

0 1 0 0

0 0 0 0

0 0 0 1











, A7 =











1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0











, A8 =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











,

A9 =











0 1 1 1

0 0 0 0

0 0 0 0

1 0 0 0











,A10 =











0 1 1 0

0 0 0 0

0 0 0 0

1 0 0 1











,A11 =











0 1 0 1

0 0 0 0

0 0 1 0

1 0 0 0











,A12 =











0 1 0 0

0 0 0 0

0 0 1 0

1 0 0 1











,

A13 =











0 0 1 1

0 1 0 0

0 0 0 0

1 0 0 0











,A14 =











0 0 1 0

0 1 0 0

0 0 0 0

1 0 0 1











,A15 =











0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0











,A16 =











0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1











.

Now we have

A=

16
∑

i=1

qiAi

and the 8 equations governing qi (cf. (3.2)) are as follows:
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Figure 1: The Probability Distribution q for the Case of A2,2.
























































1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1















































































































q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16























































=

























































0.1

0.0

0.0

0.9

0.3

0.7

0.0

0.0

0.5

0.0

0.5

0.0

0.6

0.0

0.0

0.4

























































. (5.2)

Using our maximum entropy approach, we obtain the solution as shown in Fig. 1. From the

solution, we note that the re-constructed PBN is supposed to be dominated (over 78%) by

the 9th, the 11st and the last 4 BNs. From the dominant BNs, one can therefore construct

the underlying regulatory rules – i.e. their truth tables. Here we see that our method can

be used to identify the major components of the BNs constituting the PBN. From the truth

tables, we may infer that (i) (0,0)↔ (1,1) is an attractor cycle of period two. Moreover,

it is possible that (ii) (0,1)↔ (0,1) and (iii) (1,0)↔ (1,0) and (iv) (1,1)↔ (1,1) are

attractors of period one.

The steady-state probability distribution of A2,2 is (0.4000,0.0000,0.0000,0.6000)t. If

we approximate A2,2 by using the six major BNs A9, A11, A13, A14, A15 and A16 with a
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Number of BNs dropped ||p̃− p||22 p̃

0 7.9585× 10−10 (0.4000,0.0000,0.0000,0.6000)t

2 4.2487× 10−10 (0.4000,0.0000,0.0000,0.6000)t

4 0.0103 (0.3927,0.0000,0.0000,0.6073)t

6 0.0103 (0.3927,0.0000,0.0000,0.6073)t

8 0.0354 (0.3750,0.0000,0.0000,0.6250)t

10 0.0076 (0.4054,0.0000,0.0000,0.5946)t

12 1.2329 (0.0000,1.0000,0.0000,0.0000)t

normalization – i.e. we approximate A2,2 by

Ã2,2 =
1

0.78
(0.08A9+ 0.08A11+ 0.19A13+ 0.12A14+ 0.19A15+ 0.12A16).

Then the steady-state probability distribution of Ã2,2 is (0.4054,0.0000,0.0000,0.5946)t

with the initial probability distribution (0.25,0.25,0.25,0.25)t. This shows that our method

gives a good approximation of the PBN. Furthermore, in Table 2 we give the approxima-

tions of the steady-state probability distributions obtained when we drop a different num-

ber of BNs – viz. from the smallest selection probability to the highest selection probability.

Here we observe that the threshold of choosing the dropped BNs can directly influence the

sensitivity of the performance with respect to both steady-state probability distribution and

dominated BNs. To determine the dominant BNs, one can consider the value of
∑K

i=1 qi

when the K least important BNs are dropped. In our example, we can choose the threshold

to be 20%; and we see that even when we dropped the first ten least important BNs (22%),

the approximation obtained by our method is still reasonably good.Table 3: Number of Iterations.
n m Number of BNs Newton’s Iterations Average Number of CG Iterations

2 2 16 9 9

2 3 81 7 9

3 2 256 7 7

3 3 6561 11 13

Finally, we present the number of Newton’s iterations required for convergence and the

average number of CG iterations in each Newton’s iteration in Table 3.

5.2. BNs with Small Perturbations

Here we consider a special class of PBNs – viz. BNs with small perturbation [6]. Brun

et al. [6] have derived a relation between the steady-state probability distribution of a PBN

and the structure of attractors in a BN. Let u and w be states of a BN at time t and t + 1,
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respectively. Since in a BN the state at time t + 1 is given deterministically from the state

at time t, we can write Prob(v(t + 1) = w|v(t) = u) = 1. For any other state w′, one can

write Prob(v(t + 1) = w′|v(t) = u) = 0. The dynamics of the BN can be represented by a

2n × 2n matrix B. Here we construct a variant PBN by introducing slight perturbation to

this BN as follows. If state w is the next state to u in the above BN, we let

Prob(v(t + 1) =w|v(t) = u) = 1− 2n− 1

2n
ε.

For other w′, we let

Prob(v(t + 1) =w′|v(t) = u) =
ε

2n
,

where ε ∈ (0,1]. We consider the case when ε is positive but small. Let B(ε) be the 2n×2n

matrix corresponding to these transition probabilities. Then we have

B(ε) = (1− ε)B+ εu1t

where

u =
1

2n
(1,1, · · · , 1)t and 1t = (1,1, · · · , 1).

Here we re-visit the example of a 2-gene PBN in Section 2. The transition-probability

matrix of the BN is given in (2.2). There are two attractors. One is {State 3, State 4} and

the other is State 1, with basin {State 1, State 2}. By introducing slight perturbation to

this BN, we can get a variant PBN. Note that the attractors in the PBN are the same as

those in the original BN. The transition-probability matrix of the PBN obtained by small

perturbation of the BN is

B(ε) =





















1− 3ε

4
1− 3ε

4

ε

4

ε

4
ε

4

ε

4

ε

4

ε

4
ε

4

ε

4

ε

4
1− 3ε

4
ε

4

ε

4
1− 3ε

4

ε

4





















.

We then apply our algorithm to this example. Since each column of the transition matrix

has one non-zero entry, a BN matrix can be represented by giving the position of the non-

zero entry. We then adopt this representation in Table 4. For ε = 0.01,0.02,0.03,0.04,

we apply our algorithm and get only one major BN (the original BN, the 6th BN in Ta-

ble 4) in the solution – the other BNs have probability less than 0.01. While for ε =

0.05,0.06,0.07, · · · , 0.20, apart from the original BN we find 12 other BNs in our solution

(see Table 4). The numerical results indicate that our proposed method can recover the

major BNs of a PBN when the perturbation is reasonably small in this example.
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BNs qi(ε= 0.01) qi(ε= 0.03) qi(ε= 0.05) qi(ε = 0.10) qi(ε = 0.20)

1 1 1 1 3 0.00 0.00 0.01 0.02 0.03

2 1 1 2 3 0.00 0.00 0.01 0.02 0.03

3 1 1 3 3 0.00 0.00 0.01 0.02 0.03

4 1 1 4 1 0.00 0.00 0.01 0.02 0.03

5 1 1 4 2 0.00 0.00 0.01 0.02 0.03

6 1 1 4 3 0.97 0.91 0.86 0.73 0.52

7 1 1 4 4 0.00 0.00 0.01 0.02 0.03

8 1 2 4 3 0.00 0.00 0.01 0.02 0.03

9 1 3 4 3 0.00 0.00 0.01 0.02 0.03

10 1 4 4 3 0.00 0.00 0.01 0.02 0.03

11 2 1 4 3 0.00 0.00 0.01 0.02 0.03

12 3 1 4 3 0.00 0.00 0.01 0.02 0.03

13 4 1 4 3 0.00 0.00 0.01 0.02 0.03Table 5: Truth Table (Taken from [32℄).
x1 x2 x3 f

(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

000 0 0 0 0 0

001 1 1 1 0 0

010 1 1 1 0 0

011 1 0 0 1 0

100 0 0 1 0 0

101 1 1 1 1 0

110 1 1 0 1 0

111 1 1 1 1 1

c
(i)

j
0.6 0.4 1 0.5 0.5

Table 6: The Four BNs.
BN1 1 7 7 6 3 8 6 8

BN2 1 7 7 5 3 7 5 8

BN3 1 7 7 2 3 8 6 8

BN4 1 7 7 1 3 7 5 8

5.3. A Three-gene Network with Small Perturbations

Shmulevich, et al. [32] proposed a PBN consisting of three genes V = (x1, x2, x3) and

the function set F = (F1, F2, F3), where

F1 =
n

f
(1)

1 , f
(1)

2

o

, F2 =
n

f
(2)

1

o

, and F3 =
n

f
(3)

1 , f
(3)

2

o

.

The functions are shown in Table 5, and the corresponding BNs are then given in Table 6.
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Figure 2: State Transition Diagram (taken from [32℄).
The transition-probability matrix is given by

A4,4 =

























1.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0

0.0 0.0 0.0 0.3 0.0 0.0 0.5 0.0

0.0 1.0 1.0 0.0 0.0 0.5 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0

























.

The state transition diagram corresponding to the transition-probability matrix A4,4 is

shown in Fig. 2.
We then consider adding some perturbations to the first two rows and the non-zeros

entries of the transition probability as follows:

A4,4 =

























1.0−δ δ δ 0.2+δ δ δ δ δ

δ δ δ 0.2+δ δ δ δ δ

0.0 0.0 0.0 0.0 1.0− 2δ 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.3−δ 0.0 0.0 0.5−δ 0.0

0.0 0.0 0.0 0.3−δ 0.0 0.0 0.5−δ 0.0

0.0 1.0− 2δ 1.0− 2δ 0.0 0.0 0.5− δ 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.5− δ 0.0 1.0− 2δ

























.
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qi qi qi qi

BNs (δ = 0.01) (δ = 0.02) (δ = 0.03) (δ = 0.04)

1 1 7 7 1 3 7 5 8 0.047 0.045 0.042 0.040

2 1 7 7 1 3 7 6 8 0.047 0.045 0.042 0.040

3 1 7 7 1 3 8 5 8 0.047 0.045 0.042 0.040

4 1 7 7 1 3 8 6 8 0.047 0.045 0.042 0.040

5 1 7 7 2 3 7 5 8 0.047 0.045 0.042 0.040

6 1 7 7 2 3 7 6 8 0.047 0.045 0.042 0.040

7 1 7 7 2 3 8 5 8 0.047 0.045 0.042 0.040

8 1 7 7 2 3 8 6 8 0.047 0.045 0.042 0.040

9 1 7 7 5 3 7 5 8 0.071 0.067 0.063 0.059

10 1 7 7 5 3 7 6 8 0.071 0.067 0.063 0.059

11 1 7 7 5 3 8 5 8 0.071 0.067 0.063 0.059

12 1 7 7 5 3 8 6 8 0.071 0.067 0.063 0.059

13 1 7 7 6 3 7 5 8 0.071 0.067 0.063 0.059

14 1 7 7 6 3 7 6 8 0.071 0.067 0.063 0.059

15 1 7 7 6 3 8 5 8 0.071 0.067 0.063 0.059

16 1 7 7 6 3 8 6 8 0.071 0.067 0.063 0.059

For δ = 0.01,0.02,0.03 and 0.04, we apply our algorithm and obtain 16 major BNs (Table

7) and these BNs actually contribute around respectively 94%, 90%, 84% and 79% of the

network. We note that the 1st, 8th, 9th and the last major BNs match with the four BNs

(BN1, BN2, BN3, BN4) in Table 6.

6. Discussion

In this paper, we present the problem of constructing a PBN from a given transition-

probability matrix and a given set of BNs. It is an inverse problem of huge size. We propose

a maximum entropy approach for solving the problem. Newton’s method is then applied

in combination with the CG method, to solve the inverse problem involving the Hessian

matrix system. We also give a convergence rate analysis for the proposed method. Further

research on preconditioning the CG method to accelerate its convergence might be done,

or to apply the proposed method to more real genetic regulatory networks. Finally, one

can also extend the proposed model by using the relative entropy approach as discussed in

the following subsection.

6.1. Extension of the Model by Relative Entropy Approach

Our method may be extended if there is further known information. In particular, we

may have an initial guess of q denoted by q̃ and would like to improve this estimation.

One possible way is consider minimizing the relative entropy of q̃ from q [8, 39, 42, 43] –
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viz.

−
m2n

∑

i=1

qi log q̃i +

m2n

∑

i=1

qi log qi.

The problem can be formulated as a maximization problem – viz.

max
q







m2n

∑

i=1

qi log q̃i −
m2n

∑

i=1

qi logqi







subject to

Ūq = p̄ and 0≤ qi.

In steps similar to Section 4, one can solve this maximization problem via its dual problem

min
y







m2n

∑

i=1

elog q̃i−1−yT Ū·i + yT p̄







. (6.1)

Thus we can again transform a constrained maximization problem with m2n

variables into

an unconstrained minimization problem of m·2n+1 variables, and apply Newton’s method

together with the CG method to solve (6.1). Since the Hessian matrix in this case shares

the same structure as before, the convergence analysis in Section 4.2 can also be applied.

7. Appendix

7.1. Proof of Theorem 3.2

Let 1 be a m2n × 1 column vector where entries are 1. Then

Ū =

�

U

1T

�

.

From perturbation theory of singular values [38] and Theorem 3.1, we have

p

λ1(Ū Ū T )≤
p

λ1(UU T ) + ‖1‖2 =
p

2n ·m2n−1 +

p

m2n
.

In terms of the definitions of U and Ū , we know that

rank(U) = rank(Ū) = (m− 1) · 2n+ 1.

Since

Ū Ū T =

�

UU T U1

1T U T 1T 1

�

,
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applying the Interlace Theorem [20, p.184] to the above matrix we get the result (b) such

that

2n ·m2n−1

m2n−1
≤ λ1(Ū Ū T )

λs(Ū Ū T )
≤

�
p

2n ·m2n−1 +
p

m2n

�2

m2n−1
,

which yields (c) so the proof is complete.

7.2. Proof of Theorem 4.1

In view of (4.4) and the definition of Ū , we have

e−1−(m·2n+1)·‖y‖∞ · 1≤ q∗(y)≤ e−1+(m·2n+1)·‖y‖∞ · 1,

where 1 is again the vector with all entries 1, and hence

e−1−(m·2n+1)·‖y‖∞ Ū Ū T ≤ Ūdiag(q∗(y))Ū T ≤ e−1+(m·2n+1)·‖y‖∞ Ū Ū T .

By Theorem 3.2 and Corollary 4.3.3 in [20] we can get

λ1(∇2 f (y))

λs(∇2 f (y))
≤
λ1

�

Ū Ū T
�

λs

�

Ū Ū T
� · e2(m·2n+1)·‖y‖∞ ≤

�p
2n+
p

m
�2 · e2(m·2n+1)·‖y‖∞

and

λ1(∇2 f (y))

λs(∇2 f (y))
≥ e−1−(m·2n+1)·‖y‖∞ · 2n ·m2n−1

e−1+(m·2n+1)·‖y‖∞ ·m2n−1
= 2n · e−2(m·2n+1)·‖y‖∞ .

This yields (4.9) and the proof is complete.
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