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Abstract. The Conjugate Orthogonal Conjugate Residual (COCR) method [T. Sogabe

and S.-L. Zhang, JCAM, 199 (2007), pp. 297-303.] has recently been proposed for

solving complex symmetric linear systems. In the present paper, we develop a variant

of the COCR method that allows the efficient solution of complex symmetric shifted

linear systems. Some numerical examples arising from large-scale electronic structure

calculations are presented to illustrate the performance of the variant.
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1. Introduction

We consider the solution of shifted linear systems of the form:

A(σk)x
(k) = b for all k ∈ S := {1,2, · · · , m}, (1.1)

where A(σk) := A+σk I ∈ CN×N is not Hermitian but a complex symmetric sparse matrix,

i.e. A(σk) = A(σk)
T 6= Ā(σk)

T , with a scalar shift σk ∈ C, and x (k), b are complex vectors

of length N . The shifted linear systems arise in large-scale electronic structure calculations

[15] and there is a strong need for a fast solution method.

For solving (1.1), Krylov subspace methods are very attractive, since the coefficient

matrices are sparse. Moreover, in this case we can use the well-known shift-invariance

property of Krylov subspaces:

Kn(A(σi), b) = Kn(A(σ j), b), 1≤ i, j ≤ m, (1.2)
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where Kn(A, b) := span{b,Ab, · · · ,An−1b}. The latter property means that only one Krylov

subspace for solving m linear systems must be generated. So, when one finds approximate

solutions over Krylov subspaces, one can save the costs of generating m − 1 Krylov sub-

spaces. This approach was shown to be highly effective: cf. [1, 6] for Hermitian positive

definite case; [4, 5] for non-Hermitian case; and [3, 13, 15] for complex symmetric case

(1.1).

For solving (1.1), the shifted COCG method [15] and the shifted QMR-type methods

[3, 13] are powerful solvers. They are based on the shift invariance property (1.2) and

basic solvers for complex symmetric linear systems, i.e. the COCG method [16] and the

QMR method [3]. Although these methods are powerful, they fall into one group that uses

the complex symmetric Lanczos process - e.g. see, [2, Algorithm 2.1]. This means that if

the shifted QMR-type methods fail, the shifted COCG method may also fail, and vice versa.

So, it is still worth finding an algorithm that is based on a different principle, in order to

reduce the risk of facing such a situation in practice. The purpose of this paper is to find

an algorithm using a different principle from the complex symmetric Lanczos process, as

efficient as the shifted COCG method and the shifted QMR-type methods. In this paper, we

consider the COCR method [12] that is based on A-conjugate orthogonalization process

for solving complex symmetric linear systems, and then we develop the COCR method in

order to solve the shifted linear systems (1.1).

The rest of this paper is organized as follows: in the next section, we review the algo-

rithm of COCR and its main property. In Section 3, we develop a numerical method named

Shifted COCR, in order to solve complex symmetric shifted linear systems, and describe

the algorithm in a complete form. In Section 4, we report the results of some numerical

examples. Finally, we make some concluding remarks in Section 5.

2. The COCR Method

In this Section, we briefly review the COCR method [12]. The COCR method is a Krylov

subspace method for solving complex symmetric linear systems, and it is derived from

a A-conjugate orthogonalization process (that is a special case of A-biorthogonalization

process [11]) of Krylov subspace. Here we describe below the algorithm of COCR when

applied to the system Ax = b with a complex symmetric matrix A.

Observing Algorithm 1, the nth residual vector can be written as

r n := b− Ax n = Rn(A)r 0 , (2.1)

where the polynomial Rn(λ) with a scalar λ is written by the following coupled two-term

recurrence relation:

R0(λ) =1, P0(λ) = 1,

Rn(λ) =Rn−1(λ)−αn−1λPn−1(λ),

Pn(λ) =Rn(λ)+ βn−1Pn−1(λ), n= 1,2, · · · ,
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Algorithm 1. COCR

Set x0 is an initial guess,

Set r 0 = b− Ax 0, p−1 = 0, β−1 = 0,

for n= 0,1, · · · , until ‖r n‖2 ≤ ε1‖b‖2 do:

pn = r n + βn−1pn−1,

(Apn = Ar n+ βn−1Apn−1, )

αn =
(r̄ n,Ar n)

(Āp̄n,Apn)
,

x n+1 = x n+αnpn,

r n+1 = r n −αnApn,

βn =
(r̄ n+1,Ar n+1)

(r̄ n,Ar n)
.

end

Eliminating Pn(λ) in the above recurrences relation, we readily obtain the following three-

term recurrences relation:

R0(λ) =1, (2.2)

R1(λ) =(1−α0λ)R0(λ), (2.3)

Rn(λ) =

�

1+
βn−2

αn−2

αn−1 −αn−1λ

�

Rn−1(λ)−
βn−2

αn−2

αn−1Rn−2(λ), n= 2,3, · · · (2.4)

The above recurrences (2.2)-(2.4) which play an important role in deriving a variant of

COCR for solving complex symmetric shifted linear systems in the next section. It is shown

in [12] that if breakdown does not occur, then the nth residual vector of COCR satisfies

r n ⊥ ĀKn(Ā, r̄ 0),

which leads to A-conjugate orthogonality (r̄ i,Ar j) = 0 for i 6= j. The COCR method

corresponds to the Conjugate Residual (CR) method [14, 9 p. 194], when the coefficient

matrix is real symmetric.

3. A Shifted COCR Method

In this Section, we describe a way to solve shifted linear systems using the information

sent from the COCR method, when applied to a linear system Ax = b (so called seed

system). For simplicity, we consider here solving two linear systems, i.e. the seed system

Ax = b and the shifted system (A+ σ1I)x (1) = b. We can see from the residual vector
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(2.1) that r n with the initial guess x 0 = 0 belongs to the subspace Kn+1(A, b). Moreover,

we observe that

span{r 0, · · · , r n} = Kn+1(A, b) = Kn+1(A+σ1 I , b).

Hence, we consider reusing the information of residual vectors r 0, r 1, · · · , r n to solve (A+

σ1 I)x (1) = b. To be specific, for solving the shifted system (A+σ1 I)x (1) = b, we take the

following collinear residual approach:

r n = π
(1)
n r (1)n , π(1)n ∈ C. (3.1)

Here we note that this approach is successfully used in the algorithm of restarted shifted

GMRES [5]. Now we give a computational formula for updating r
(1)
n+1 by using the infor-

mation of r n+1. From (2.1) and the recurrence relation (2.4) it follows that

r n+1 =

�

1+
βn−1

αn−1

αn−αnA

�

r n−
βn−1

αn−1

αnr n−1. (3.2)

Similarly, we consider updating the residual vector r
(1)
n+1 with the following recurrence

relation:

r
(1)
n+1 =

�

1+
β
(1)
n−1

α
(1)
n−1

α(1)n −α
(1)
n (A+σ1 I)

�

r (1)n −
β
(1)
n−1

α
(1)
n−1

α(1)n r
(1)
n−1. (3.3)

Substituting (3.1) into (3.3) we have

r n+1 =

�

1+
β
(1)
n−1

α
(1)

n−1

α(1)n −α
(1)
n (A+σ1I)

�

π
(1)
n+1

π
(1)
n

r n−
β
(1)
n−1α

(1)
n π

(1)
n+1

α
(1)

n−1
π
(1)

n−1

r n−1. (3.4)

To obtain the computational formula for r
(1)
n+1, three parameters α(1)n , β

(1)
n−1, and π

(1)
n+1 are

essentially required. Hence, here we give computational formulas for the three parameters.

First, comparing the coefficients of Ar n in (3.2) and (3.4) yields

α(1)n =
�

π(1)n /π
(1)
n+1

�

αn. (3.5)

Second, comparing the coefficients of r n−1 leads to
βn−1

αn−1
αn =

β
(1)
n−1α

(1)
n π

(1)
n+1

α
(1)
n−1π

(1)
n−1

. Substituting the

result of (3.5) into the previous equation yields

β
(1)
n−1 =
�

π
(1)
n−1/π

(1)
n

�2

βn−1. (3.6)

Finally, comparing the coefficients of r n leads to (1+
β
(1)
n−1

α
(1)
n−1

α(1)n −α
(1)
n σ1)

π
(1)
n+1

π
(1)
n

= 1+
βn−1

αn−1
αn.

Substituting (3.5) and (3.6) into the previous equation, we obtain

π
(1)
n+1 =

�

1+
βn−1

αn−1

αn +αnσ1

�

π(1)n −
βn−1

αn−1

αnπ
(1)
n−1 = Rn+1(−σ1). (3.7)



An extension of the COCR method 101Table 1: Summary of operations per iteration step, where AXPY: ax+ y , IP: number of inner produ
ts,MV: number of matrix-ve
tor multipli
ations, m: number of linear systems to be solved.
Solver IP AXPY MV

COCR 2m 4m m

Shifted COCR 2 2(m+ 1) 1

From (3.1), (3.3), (3.5), (3.6), and (3.7) we can update the residual vector r
(1)
n+1. Next,

we derive a computational formula for updating the approximate solution x
(1)

n+1
from the

recurrence relation (3.3). It follows from (3.3) and using p
(1)
n−1 := (A+ σ1I)−1(r

(1)
n−1 −

r (1)n )/α
(1)
n−1

that we readily have

p(1)n = r (1)n + β
(1)
n−1p

(1)
n−1, (3.8)

r
(1)
n+1 = r (1)n −α

(1)
n (A+σ1I)p (1)n . (3.9)

Hence, substituting r (1)n = b− (A+σ1 I)x (1)n into (3.9) we obtain

x
(1)
n+1
= x (1)n +α

(1)
n p(1)n . (3.10)

Notice that from (3.1) the search directions are updated by

p(1)n =
1

π
(1)
n

r n+ β
(1)
n−1p

(1)
n−1. (3.11)

Then, approximate solutions are updated without using the recurrence relation (3.9).

From Algorithm 1, (3.1), and (3.5)-(3.7), (3.10), (3.11) we can obtain the approx-

imate solutions for the system (A+ σ1I)x (1) = b without matrix-vector multiplications.

Additionally, for the evaluation of ‖r (1)n ‖2 we do not need to compute the inner prod-

uct of r (1)n since we can implicitly obtain the residual 2-norm from the relation (3.1), i.e.

‖r (1)n ‖2 = ‖r n‖2/|π
(1)
n |.

The above derivation is based on the assumption that the seed and shifted systems are

Ax = b and (A+σ1I)x (1) = b respectively. Similarly, it can be readily generalized to solve

m− 1 shifted linear systems (A+σk I)x (k) = b using the seed system (A+σs I)x = b. The

resulting algorithm is given in Algorithm 2.

Here we note that Algorithm 2 chooses a seed system from given systems, but the

choice of the seed systems is not restricted to a set of systems to be solved, i.e. we can

choose another system - e.g., Ax = b as a seed system to solve A(σk)x
(k) = b for all k ∈ S.

In any case, the optimal choice of a seed system is an open problem.

The rest of this Section shows the summary of computational costs per iteration step

for the COCR method and the shifted COCR method in Table 1, where the number of AXPY

for the shifted COCR is 2(m+1) since it is a summation of 4 for a seed system and 2(m−1)

for shifted systems.
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Algorithm 2. Shifted COCR

Choose a seed system s ∈ S = {1,2, · · · , m},

Set r
(s)
0 = b, β

(s)
−1 = 0,

Set x
(k)
0 = p

(k)
−1 = 0, k = 1,2, · · · , m,

Set π
(k)
0
= π

(k)
−1
= 1, k = 1,2, · · · , m,

for n= 0,1, · · · , until ‖r (s)n ‖2 ≤ ε1‖b‖2 do:

p (s)n = r (s)n + β
(s)
n−1p

(s)
n−1,

(A(σs)p
(s)
n = A(σs)r

(s)
n + β

(s)
n−1A(σs)p

(s)
n−1, )

α(s)n =
(r̄ (s)n ,A(σs)r

(s)
n )

(Ā(σs)p̄
(s)
n ,A(σs)p

(s)
n )

,

x
(s)
n+1 = x (s)n +α

(s)
n p(s)n ,

{Begin shifted system}

for k( 6= s) = 1,2, · · · , m do:

if ‖r (k)n ‖2(= ‖r n‖2/|π
(k)
n |)> ε2‖b‖2 then

π
(k)
n+1 = Rn+1(σs −σk),⇐ (3.7)

β
(k)
n−1 =

�

π
(k)
n−1

π
(k)
n

�2

βn−1,

α(k)n =
π(k)n

π
(k)
n+1

αn,

p(k)n =
1

π
(k)
n

r n + β
(k)
n−1p

(k)
n−1,

x
(k)
n+1 = x (k)n +α

(k)
n p(k)n ,

end if

end

{End shifted system}

r
(s)
n+1 = r (s)n −α

(s)
n A(σs)p

(s)
n ,

β (s)n =
(r̄
(s)
n+1,A(σs)r

(s)
n+1)

(r̄
(s)
n ,A(σs)r

(s)
n )

.

end

From Table 1, we can say that the computational cost per iteration step for the shifted

COCR method is much less than that for the COCR method when matrix-vector multipli-
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cations are the most time-consuming part.

4. Numerical Examples

In this Section, we report the results of two numerical examples with the COCR method,

the preconditioned COCR method, and the shifted COCR method. Here we note that the

COCR method was chosen as representative, since it is known from [12] that the COCR

method is competitive with other successful Krylov subspace methods such as the COCG

method [16] and the QMR method [2]. In the numerical examples, we evaluate the meth-

ods in terms of the number of total matrix-vector multiplications and the computation

time. We will also give the computation time of the shifted COCG method [15] for each

example. All tests were performed on a workstation with a 2.6GHz AMD Opteron proces-

sor 252 using double precision arithmetic. Codes were written in Fortran 77 and compiled

with g77 -O3. In all cases, the iteration was started with x 0 = 0 for the COCR method

and x
(k)
0 = 0, k = 1,2, · · · , m, for the shifted COCR method, and the stopping criterion

was ε1 = ε2 = 10−12. The preconditioners used in the experiments were the IC(0) pre-

conditioner [7] and a complex symmetric version of the D-ILU preconditioner [8] (for

simplicity we call it D-ILU hereafter). For the complex symmetric structure of A, IC(0)

and D-ILU generate matrices of the form LDLT . If the diagonal matrix D and the lower

triangular matrix L are nonsingular, then the preconditioned matrix D−1/2 L−1AL−T D−1/2

is also a nonsingular complex symmetric matrix. Thus in this case we can use LDLT as a

preconditioner.

We now make a brief explanation of the D-ILU preconditioner. The D-ILU uses L =

LA, U = UA, where LA is the strictly lower triangular part of A, and UA strictly upper tri-

angular part of A. Namely, the D-ILU only generates a diagonal matrix D. The cost of

constructing the D-ILU preconditioning matrix is therefore much cheaper than that of the

IC(0), while in our numerical examples the performance in terms of number of iterations

tends to be worse than that of the IC(0). If the cost of constructing of the IC(0) becomes a

bottleneck in terms of total CPU time as in Example 2, then the D-ILU will be an alternative.

The convergence plots show log10 of the relative residual 2-norm, log10 ‖r n‖2/‖b‖2,

(on the vertical axis) versus the number of iteration steps (on the horizontal axis).

4.1. Example 1

The first problem comes from a Si(001) surface reconstruction simulation with 1024

atoms in [15] and is written as follows:

(σk I −H)x (k) = e1, k = 1,2, · · · , m,

where σk = (k− 1+ i)/1000, H ∈ R2048×2048 is a symmetric matrix with 139264 entries,

e1 = (1,0, · · · , 0)T , and m = 501.

The numerical results are shown in Table 2. Here, “COCR” denotes that each system

was solved by the COCR method, and “P1COCR” denotes that each system was solved
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Figure 1: The 
onvergen
e histories for Example 1 (k = 401).Table 2: Numeri
al results for Example 1, where MV: total number of matrix-ve
tor multipli
ations,Pre
 Sol: total number of solutions for systems with pre
onditioning matri
es, Its Time: total time foriterations, Pre
 Time: total time for obtaining pre
onditioning matri
es.
Solver MV Prec Sol Its Time [s] Prec Time [s]

COCR 13656 - 18.98 -

P1COCR 3604 3604 13.09 173.73

P2COCR 4997 4997 16.87 1.03

Shifted COCR 51 - 0.97 -

by the COCR method with the IC(0) preconditioner [7]. “P1COCR” needs to generate m

preconditioning matrices, which may lead to large computational cost. Since in this exam-

ple the step size is not so large, i.e. 0.001, we can consider reusing the preconditioning

matrices. Based on this idea “P2COCR” denotes that the first 300 systems were solved by

the COCR method with a preconditioning matrix for k = 151; the second 150 systems for

k = 351; the last 51 systems for k = 451. “Shifted COCR”denotes that all systems were

solved by the shifted COCR method with the seed system s = 501.

From Table 2, we can see that shifted COCR converged much faster than the other

methods, which mainly comes from the fact that shifted COCR only required 51 matrix-

vector multiplications.

The typical convergence histories for COCR, P1COCR, P2COCR and the shifted COCR

are shown in Fig. 1, where the histories were obtained from the results for the system

k = 401. From Fig. 1 we observe that, in terms of the number of steps, P1COCR and

P2COCR converged faster than COCR and the shifted COCR. Since P2COCR does not use

the preconditioning matrix obtained from the system k = 401, P2COCR required more

iteration steps than P1COCR. The convergence history for COCR was very similar to that

for the shifted COCR. We also used the shifted COCG method. The required CPU time was

0.99 sec., that was almost the same as that for the shifted COCR method.
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Figure 2: The 
onvergen
e histories for Example 2 (k = 51).Table 3: Numeri
al results for Example 2, where MV: total number of matrix-ve
tor multipli
ations,Pre
 Sol: total number of solutions for systems with pre
onditioning matri
es, Its Time: total time foriterations, Pre
 Time: total time for obtaining pre
onditioning matri
es.
Solver MV Prec Sol Its Time [s] Prec Time [s]

COCR 7467 - 251.42 -

P1COCR 3848 3848 265.19 58.44

P2COCR 3877 3877 274.45 1.15

Shifted COCR 159 - 9.38 -

4.2. Example 2

The second problem comes from the electronic structure calculation of bulk fcc Cu with

1568 atoms in [15] and is written as follows:

(σk I −H)x (k) = e1, k = 1,2, · · · , m,

where σk = −0.5+(k−1+ i)/1000, H ∈ R14112×14112 is a symmetric matrix with 3924704

entries, e1 = (1,0, · · · , 0)T , and m = 101.

The numerical results are shown in Table 3. Here, “P1COCR” denotes that each system

was solved by the COCR method with the D-ILU preconditioner [8] instead of the IC(0),

since in this example this preconditioner was more effective than the IC(0). “P2COCR”

denotes that the first 50 systems were solved by the COCR method with a preconditioning

matrix for k = 1; the last 51 systems for k = 51. For “Shifted COCR” we chose the seed

system as s = 101.

Table 3 gives similar results to those shown in Table 2. We can see from Table 3 that

shifted COCR was highly effective in solving shifted linear systems compared with other

methods.

The typical convergence histories for COCR, P1COCR, P2COCR, and shifted COCR are

shown in Fig. 2, where the histories were obtained from the results for the system k = 51.
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From Fig. 2 we observe that shifted COCR showed jagged convergence behavior in the

early stage of iteration steps, and then it converged with smooth behavior. We can see from

Table 3 and Fig. 2 that shifted COCR tends to require more iteration steps to converge than

COCR, although shifted COCR converged much faster than COCR. On the other hand, in

terms of the number of iteration steps P1COCR and P2COCR converged at about half the

number of iteration steps for COCR. We also used the shifted COCG method. The required

CPU time was 8.73 sec., so it was slightly faster than the shifted COCR method.

5. Concluding Remarks

In the present paper, to solve complex symmetric shifted linear systems we developed

a variant of the COCR method. From the numerical examples involving linear systems we

found that the variant, namely the shifted COCR method, is much more efficient than the

(preconditioned) COCR method. Furthermore, the shifted COCR method was found to be

competitive with the shifted COCG method. Since the shifted COCR method has a different

principle from that used in the shifted COCG method (and the shifted QMR-type methods),

the shifted COCR method may be a method of choice for the case where the shifted COCG

method (and the shifted QMR-type methods) fails.

Finally, we did not give convergence analysis of the shifted COCR method, since it is

known (e.g. see [2], p. 428) that any complex matrix is similar to a complex symmetric

matrix - and this implies that the convergence analysis is difficult in general, compared

with some special matrices such as the real symmetric or Hermitian case. Even for other

special matrices, e.g. complex symmetric circulant matrices or complex symmetric Toeplitz

matrices, a meaningful analysis is an open problem.
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