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Abstract. In this paper, we prove existence and uniqueness results for the ground states

of the coupled Gross-Pitaevskii equations for describing two-component Bose-Einstein

condensates with an internal atomic Josephson junction, and obtain the limiting be-

havior of the ground states with large parameters. Efficient and accurate numerical

methods based on continuous normalized gradient flow and gradient flow with discrete

normalization are presented, for computing the ground states numerically. A modified

backward Euler finite difference scheme is proposed to discretize the gradient flows.

Numerical results are reported, to demonstrate the efficiency and accuracy of the nu-

merical methods and show the rich phenomena of the ground sates in the problem.
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1. Introduction

Since the first realization of Bose-Einstein condensates (BEC) in a dilute bosonic gas in

1995 [1,8,15], theoretical studies and numerical methods have been extensively developed

for the single-component BEC [4,5,23,29]. Recently, BEC with multiple species have been

realized in experiments [17, 18, 25, 26, 28, 32, 34] and some interesting phenomenona

absent in single-component BEC were observed in experiments and studied in theory [2,

6,7,9,16,20,24]. The simplest multi-component BEC is the binary mixture, which can be

used as a model for producing coherent atomic beams (also called atomic laser) [30, 31].

The first experiment for two-component BEC was performed in JILA with |F = 2, m f = 2〉
∗Corresponding author. Email addresses: bao�math.nus.edu.sg (W. Bao), 
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and |1,−1〉 spin states of 87Rb [28]. Since then, extensive experimental and theoretical

studies of two-component BEC have been carried out in the last several years [3,10,19,27,

35,38].

At temperature T much smaller than the critical temperature Tc and after proper nondi-

mensionalization and dimension reduction [29, 38], a two-component BEC with an inter-

nal atomic Josephson junction (or an external driving field) can be well described by the

following coupled Gross-Pitaevskii equations (CGPEs) in dimensionless form [29,37,38]:

i∂tψ1 =

�
−1

2
∇2 + V (x) + δ+ (β11|ψ1|2 + β12|ψ2|2)

�
ψ1 +λψ2,

i∂tψ2 =

�
−1

2
∇2 + V (x) + (β12|ψ1|2 + β22|ψ2|2)

�
ψ2 +λψ1, x ∈ Rd .

(1.1)

Here, t is time, x ∈ Rd (d = 1,2,3) is the Cartesian coordinate vector, Ψ(x, t) := (ψ1(x, t),

ψ2(x, t))T is the complex-valued macroscopic wave function, V (x) is the real-valued ex-

ternal trapping potential, λ is the effective Rabi frequency to realize the internal atomic

Josephson junction (JJ) by a Raman transition, δ is the detuning constant for the Raman

transition, and β jl = βl j =
4πN a j l

a0
( j, l = 1,2) are interaction constants with N being the

total number of particles in the two-component BEC, a0 being the dimensionless spatial

unit and a jl = al j ( j, l = 1,2) being the s-wave scattering lengths between the jth and lth

component (positive for repulsive interaction and negative for attractive interaction). It is

necessary to ensure that the wave function is properly normalized - specifically, we require

‖Ψ‖2 := ‖Ψ‖22 =
∫

R
d

�
|ψ1(x, t)|2 + |ψ2(x, t)|2

�
dx= 1. (1.2)

The dimensionless CGPEs (1.1) conserve the total mass or normalization, i.e.

N(t) := ‖Ψ(·, t)‖2 = N1(t) + N2(t) ≡ ‖Ψ(·, 0)‖2 = 1, t ≥ 0, (1.3)

with

N j(t) = ‖ψ j(x, t)‖2 := ‖ψ j(x, t)‖22 =
∫

R
d

|ψ j(x, t)|2 dx, t ≥ 0, j = 1,2, (1.4)

and the energy

E(Ψ) = E0(Ψ)+ 2λ

∫

R
d

Re(ψ1ψ̄2) dx, (1.5)

with f̄ and Re( f ) denoting the conjugate and real part of a function f , respectively, and

E0(Ψ) =

∫

R
d

�
1

2

�
|∇ψ1|2 + |∇ψ2|2

�
+ V (x)(|ψ1|2+ |ψ2|2) + δ|ψ1|2 +

1

2
β11|ψ1|4

+
1

2
β22|ψ2|4 + β12|ψ1|2|ψ2|2

�
dx. (1.6)
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In addition, if there is no internal atomic Josephson junction in (1.1), i.e. λ = 0, the mass

of each component is also conserved - i.e.

N1(t) ≡
∫

R
d

|ψ1(x, 0)|2 dx := α, N2(t) ≡
∫

R
d

|ψ2(x, 0)|2 dx := 1−α, t ≥ 0, (1.7)

with 0≤ α ≤ 1 a given constant.

The ground state Φg(x) = (φ
g

1 (x),φ
g

2 (x))
T of the two-component BEC with an internal

atomic Josephson junction (1.1) is defined as the minimizer of the following nonconvex

minimization problem:

Find
�
Φg ∈ S

�
, such that

Eg := E
�
Φg

�
=min
Φ∈S

E (Φ) , (1.8)

where S is a nonconvex set defined as

S :=

¨
Φ = (φ1,φ2)

T | ‖Φ‖2 =
∫

R
d

�
|φ1(x)|2+ |φ2(x)|2

�
dx= 1, E(Φ)<∞

«
. (1.9)

It is easy to see that the ground state Φg satisfies the following Euler-Lagrange equations

µφ1 =

�
−1

2
∇2+ V (x) + δ+ (β11|φ1|2+ β12|φ2|2)

�
φ1 +λφ2,

µφ2 =

�
−1

2
∇2+ V (x) + (β12|φ1|2+ β22|φ2|2)

�
φ2 +λφ1, x ∈ Rd ,

(1.10)

under the constraint

‖Φ‖2 := ‖Φ‖22 =
∫

R
d

�
|φ1(x)|2+ |φ2(x)|2

�
dx= 1, (1.11)

with the eigenvalue µ being the Lagrange multiplier or chemical potential corresponding

to the constraint (1.11), which can be computed as

µ = µ(Φ) = E0(Φ)+

∫

R
d

�
β11

2
|φ1|4++

β22

2
|φ2|4+ β12|φ1|2|φ2|2+ 2λ ·Re(φ1φ̄2)

�
dx.

In fact, the above time-independent CGPEs (1.10) can also be obtained from the CGPEs

(1.1) by substituting the ansatz

ψ1(x, t) = e−iµtφ1(x), ψ2(x, t) = e−iµtφ2(x). (1.12)

The eigenfunctions of the nonlinear eigenvalue problem (1.10) under the normalization

(1.11) are usually called stationary states of the two-component BEC (1.1). Among them,

the eigenfunction with minimum energy is the ground state, and those whose energy larger

than the ground state are usually called as excited states.

If there is no internal atomic Josephson junction in (1.1), i.e. λ = 0, for any given

α ∈ [0,1] another type ground state Φαg(x) = (φ
α
1 (x),φ

α
2 (x))

T of the two-component BEC

is defined as the minimizer of the following nonconvex minimization problem:
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Find
�
Φαg ∈ Sα

�
, such that

Eαg := E0

�
Φαg

�
= min
Φ∈Sα

E0 (Φ) , (1.13)

where Sα is a nonconvex set defined as

Sα :=
¦
Φ = (φ1,φ2)

T | ‖φ1‖2 = α, ‖φ2‖2 = 1−α, E0(Φ)<∞
©

. (1.14)

Again, it is easy to see that the ground state Φαg satisfies the Euler-Lagrange equations

µ1φ1 =

�
−1

2
∇2+ V (x) + δ+ (β11|φ1|2+ β12|φ2|2)

�
φ1,

µ2φ2 =

�
−1

2
∇2+ V (x) + (β12|φ1|2+ β22|φ2|2)

�
φ2, x ∈ Rd ,

(1.15)

under the two constraints

‖φ1‖2 :=

∫

R
d

|φ1(x)|2 dx= α, ‖φ2‖2 :=

∫

R
d

|φ2(x)|2 dx= 1−α, (1.16)

with µ1 and µ2 being the Lagrange multipliers or chemical potentials corresponding to

the two constraints (1.16). Again, the above time-independent CGPEs (1.15) can also be

obtained from the CGPEs (1.1) with λ = 0 by substituting the ansatz

ψ1(x, t) = e−iµ1 tφ1(x), ψ2(x, t) = e−iµ2 tφ2(x). (1.17)

It is easy to see that the ground state Φg defined in (1.8) is equivalent to

Find
�
Φg ∈ S

�
, such that

E
�
Φg

�
=min
Φ∈S

E (Φ) = min
α∈[0,1]

E(α), E(α) = min
Φ∈Sα

E(Φ). (1.18)

There are some analytical and numerical studies for the ground states of two-component

BEC without the internal atomic Josephson junction, i.e. based on the definition of (1.13)

- cf. [2,12,13,24]. To our knowledge, there are no analytical and numerical results for the

ground states of two-component BEC with an internal atomic Josephson junction, i.e. based

on the definition of (1.8). The main aim of this paper is to establish existence and unique-

ness results for the ground states of two-component BEC with an internal atomic Joseph-

son junction, and to propose efficient and accurate numerical methods for computing these

ground states.

The paper is organized as follows. In Section 2, we prove existence and uniqueness

results for the ground states. In Section 3, some limiting behavior of the ground states

are established when the parameters λ or δ (or both) go to infinity. Efficient and accurate

numerical methods for computing the ground states are proposed and analyzed in Section

4, and numerical results are reported in Section 5. Finally, some concluding remarks are

drawn in Section 6. Throughout this paper, the C denotes a generic constant and we adopt

the standard notation of Sobolev spaces.
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2. Existence and Uniqueness Results for the Ground States

In this Section, we will establish existence and uniqueness results for the ground states

of two-component BEC with and without an internal atomic Josephson junction, i.e., the

nonconvex minimization problems (1.8) and (1.13), respectively. Let

B =

�
β11 β12

β12 β22

�
; (2.1)

we say B is positive semi-definite iff β11 ≥ 0 and β11β22−β2
12 ≥ 0, and B is nonnegative iff

β11 ≥ 0, β12 ≥ 0 and β22 ≥ 0. Without loss of generality, throughout the paper we assume

β11 ≥ β22. In two dimensions (2D), i.e., d = 2, let Cb be the best constant in the inequality

‖ f ‖4
L4(R2)

≤ 1

Cb

‖∇ f ‖2
L2(R2)
‖ f ‖2

L2(R2)
, ∀ f ∈ H1(R2). (2.2)

The best constant Cb can be attained at some H1 function [36], and it is crucial in consid-

ering the existence of ground states in 2D.

2.1. The case with an internal atomic Josephson junction

On denoting

D =
¦
Φ = (φ1,φ2)

T |V |φ j|2 ∈ L1(Rd), φ j ∈ H1(Rd)∩ L4(Rd), j = 1,2
©

, (2.3)

then the ground state Φg of (1.8) is also given by:

Find
�
Φg ∈ D1

�
, such that

Eg := E
�
Φg

�
= min
Φ∈D1

E (Φ) , (2.4)

where

D1 = D ∩
¨
Φ = (φ1,φ2)

T | ‖Φ‖2 =
∫

R
d

(|φ1(x)|2+ |φ2(x)|2) dx= 1

«
. (2.5)

In addition, we introduce the auxiliary energy functional

eE(Φ) = E0(Φ)− 2|λ|
∫

R
d

|φ1| · |φ2| dx, (2.6)

and the auxiliary nonconvex minimization problem:

Find
�
Φg ∈ D1

�
, such that

eE
�
Φg

�
= min
Φ∈D1

eE (Φ) . (2.7)

For Φ = (φ1,φ2)
T , we write E(φ1,φ2) = E(Φ) and eE(φ1,φ2) = eE(Φ). Then we have

the following lemmas:
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Lemma 2.1. For the minimizers Φg(x) = (φ
g

1 (x),φ
g

2 (x))
T of the nonconvex minimization

problems (2.4) and (2.7), we have

i). If Φg is a minimizer of (2.4), then φ
g

1 (x) = eiθ1 |φg

1 (x)| and φ
g

2 (x) = eiθ2 |φg

2 (x)|
with θ1 and θ2 two constants satisfying θ1 = θ2 if λ < 0; and θ1 = θ2 ± π if λ > 0. In

addition, eΦg =
�

eiθ3φ
g

1 , eiθ4φ
g

2

�T
with θ3 and θ4 two constants satisfying θ3 = θ4 if λ < 0;

and θ3 = θ4 ±π if λ > 0 is also a minimizer of (2.4).

ii). If Φg is a minimizer of (2.7), then φ
g

1 (x) = eiθ1 |φg

1 (x)| and φ
g

2 (x) = eiθ2 |φg

2 (x)| with

θ1 and θ2 two constants. In addition, eΦg =
�

eiθ3φ
g

1
, eiθ4φ

g

2

�T
with θ3 and θ4 two constants

is also a minimizer of (2.7).

iii). If Φg is a minimizer of (2.4), then Φg is also a minimizer of (2.7).

iv). If Φg is a minimizer of (2.7), then eΦg =
�
|φg

1 |,−sign(λ)|φg

2 |
�T

is a minimizer of

(2.4).

Proof. For any Φ(x) = (φ1(x),φ2(x))
T ∈ D1, we write it as

φ1(x) = eiθ1(x)|φ1(x)|, φ2(x) = eiθ2(x)|φ2(x)|, x ∈ Rd . (2.8)

Then we have

∇φ1(x) = eiθ1(x)
�∇|φ1(x)|+ i|φ1(x)|∇θ1(x)

�
,

∇φ2(x) = eiθ2(x)
�∇|φ2(x)|+ i|φ2(x)|∇θ2(x)

�
.

(2.9)

Substituting (2.9) into (1.5) with Ψ = Φ and (2.6), we obtain

E(φ1,φ2) = E(|φ1|,−sign(λ)|φ2|)+
∫

R
d

1

2

h
|φ1|2|∇θ1|2+ |φ2|2|∇θ2|2

+4|λ|�1+ sign(λ) cos(θ1 − θ2)
� |φ1||φ2|

i
dx, (2.10)

eE(φ1,φ2) = eE(|φ1|, |φ2|) +
∫

R
d

1

2

h
|φ1|2|∇θ1|2 + |φ2|2|∇θ2|2

i
dx, (2.11)

E(|φ1|,−sign(λ)|φ2|) = eE(|φ1|, |φ2|)≤ eE(φ1,φ2), (2.12)

eE(φ1,φ2)≤ E(φ1,φ2), Φ ∈ D1. (2.13)

i). If Φg is a minimizer of (2.4), then we have

E(φ
g

1 ,φ
g

2 )≤ E(|φg

1 |,−sign(λ)|φg

2 |). (2.14)

Substituting (2.14) into (2.10) with Φ = Φg , we get

∫

R
d

1

2

h
|φg

1 |2|∇θ g

1 |2+ |φg

2 |2|∇θ g

2 |2 + 4|λ|
�

1+ sign(λ) cos(θ
g

1 − θ g

2 )
�
|φg

1 ||φg

2 |
i

dx= 0.

This immediately implies that

∇θ g

1 = 0, ∇θ g

2 = 0, 1+ sign(λ) cos(θ
g

1 − θ g

2 ) = 0, (2.15)
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and thus

θ
g

1 (x)≡ θ1, θ
g

2 (x)≡ θ2, θ1 =

¨
θ2 λ < 0,

θ2 ±π λ > 0.
(2.16)

In addition, we have

E(Φg) = E(|φg

1 |,−sign(λ)|φg

2 |) = E(eΦg), (2.17)

which immediately implies that eΦg is also a minimizer of (2.4).

ii). The proof is similar to part i), so we omit it.

iii). If Φg is a minimizer of (2.4), noticing (2.10)-(2.12) we have

eE(φg

1 ,φ
g

2 ) =
eE(|φg

1 |, |φg

2 |) = E(|φg

1 |,−sign(λ)|φg

2 |) = E(φ
g

1 ,φ
g

2 )

≤ E(|φ1|,−sign(λ)|φ2|)≤ eE(φ1,φ2) = eE(Φ), Φ ∈ D1, (2.18)

which immediately implies that Φg is a minimizer of (2.7).

iv). If Φg is a minimizer of (2.7), noticing (2.11) and (2.13) we have

E(eΦg) = E(|φg

1 |,−sign(λ)|φg

2 |) = eE(|φg

1 |, |φg

2 |) = eE(φg

1 ,φ
g

2 )

≤ eE(φ1,φ2)≤ E(φ1,φ2) = E(Φ), Φ ∈ D1, (2.19)

which immediately implies that eΦg is a minimizer of (2.4).

Lemma 2.2. (strict convexity of eE). Assume that the matrix B is positive semi-definite and at

least one of the parameters λ, γ1 := β11 − β22 and γ2 := β11 − β12 is nonzero, for (ρ1,ρ2)
T

with ρ1,ρ2 ≥ 0,
p
ρ1,
p
ρ2 ∈ D1, then eE[pρ1,

p
ρ2] is strictly convex in (ρ1,ρ2).

Proof. Similar to [23] for single-component BEC, the first term in eE is convex. The

second and third terms in eE are linear and quadratic forms respectively. since we assume

that B is positive semi-definite, thus these two terms are convex. Now we just need to verify

the convexity of the last term. Let Φ1 = (
p
ρ1,
p
ρ2)

T ∈ D1 and Φ2 = (
p
ρ′1,
p
ρ′2)

T ∈ D1,

for α ∈ (0,1), then Φ = ([αρ1+(1−α)ρ′1]1/2, [αρ2+(1−α)ρ′2]1/2)T ∈ D1. By the Cauchy

inequality, we have

α
p
ρ1

p
ρ2+ (1−α)

p
ρ′1
p
ρ′2 ≤

p
αρ1+ (1−α)ρ′1 ×

p
αρ2+ (1−α)ρ′2 . (2.20)

Thus the last term is also convex.

Theorem 2.1. (Existence and uniqueness of (2.7)). Suppose V (x) ≥ 0 satisfies lim
|x|→∞

V (x) =

∞. Then there exists a minimizer Φ∞ = (φ∞1 ,φ∞2 )
T ∈ D1 of (2.7) if one of the following

conditions holds:

(i) d = 1;

(ii) d = 2 and β11 ≥ −Cb,β22 ≥ −Cb, β12 ≥ −Cb −
p

Cb + β11

p
Cb + β22;

(iii) d = 3 and B is either positive semi-definite or nonnegative.
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In addition, if the matrix B is positive semi-definite and at least one of the parameters δ, λ,

γ1 and γ2 is nonzero, then the minimizer (|φ∞1 |, |φ∞2 |)T is unique.

Proof. First, we claim that eE is bounded below under the assumption. Case (iii) is clear.

For case (i), using the constraint ‖Φ‖22 = 1 and Sobolev inequality, for any ǫ > 0 there

exists Cǫ > 0 such that

‖φ j‖44 ≤ ‖φ j‖2∞‖φ j‖22 ≤ ‖φ j‖2∞ ≤ ‖∇φ j‖2‖φ j‖2 ≤ ǫ‖∇φ j‖22 + Cǫ, j = 1,2,

which yields the claim. For case (ii), using the Cauchy inequality and Gagliardo-Nirenberg

inequalities we have

∫

R
2

�
β11|φ1|4+ β22|φ2|4+ 2β12|φ1|2|φ2|2

�
dx≥ −Cb

∫

R
2

�p
|φ1|2+ |φ2|2

�4

dx

≥ −
∫

R
2

�p
|φ1|2 + |φ2|2

�2

dx

∫

R
2

�
∇
p
|φ1|2+ |φ2|2

�2

dx

≥ −
∫

R
2

�
|∇φ1|2 + |∇φ2|2

�
d x ,

which also leads to the claim. Thus, in all the cases we can take a minimizing sequence

Φn = (φn
1 ,φn

2 )
T ∈ D1. Then there exists a constant C such that ‖∇φn

1‖ + ‖∇φn
2‖ < C ,

‖φn
1‖4 + ‖φn

2‖4 < C and
∫
R

d V (x)(|φn
1(x)|2 + |φn

2 (x)|2)dx < C for all n ≥ 0. Therefore

φn
1 and φn

2 belong to a weakly compact set in L4, H1 = {φ | ‖φ‖2 + ‖∇φ‖2 < ∞},
and L2

V = {φ |
∫
R

d V (x)|φ(x)|2 dx < ∞} with a weighted L2-norm given by ‖φ‖V =
[
∫
R

d |φ(x)|2V (x)dx]1/2. Thus there exists a Φ∞ = (φ∞1 ,φ∞2 )
T ∈ D and a subsequence

(which we denote as the original sequence for simplicity) such that

φn
1 +φ

∞
1 , φn

2 +φ
∞
2 , in L2 ∩ L4 ∩ L2

V ,

∇φn
1 +∇φ∞1 , ∇φn

2 +∇φ∞2 , in L2.
(2.21)

Also, we can suppose that φn
1 and φn

2 are nonnegative, since we can replace them with

|φn
1 | and |φn

2 |, which also minimize the functional eE. To show that eE attains its minimal at

Φ∞, we recall the constraint ‖Φn‖2 = 1; then the functional eE can be re-written as

eE(φn
1 ,φn

2 ) = E0(φ
n
1 ,φn

2 ) + |λ|
∫

R
d

|φn
1 −φn

2 |2 dx− |λ|. (2.22)

First we show that, for any given ǫ > 0,

∫

R
d

β12 |ψ∞1 |2|ψ∞2 |2dx≤ lim inf
n→∞

∫

R
d

β12 |ψn
1|2|ψn

2|2dx+ ǫ. (2.23)

When β12 ≥ 0, this is obviously true. For general β12, we decompose Rd into two parts, a

bounded region BR = {|x| ≤ R} and Bc
R := Rd\B, such that V (x)≥ 1/η on Bc

R where η > 0 is
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sufficiently small, using the assumption lim
|x|→∞

V (x) =∞. Then
∫

Bc
R

(|φn
1 |2+ |φn

2 |2)dx≤ Cη.

In Bc
R, using the Sobolev-Gagliardo inequality, for d = 3 and 2∗ = 6, we have

∫

Bc
R

|φn
1 |4dx≤ ‖φn

1‖12
2∗

 ∫

Bc
R

|φn
1 |2dx

!2

≤ MCη2‖∇φn
1‖12

2 ≤ MC13η2, (2.24)

where M is a constant. Thus, by choosing R sufficiently large, we have

∫

Bc
R

|φn
1 |4dx≤ ǫ

2(1+ |β12|)
, for all n. (2.25)

In the case of d = 1, using the Sobolev inequality

‖ f ‖∞ ≤ ‖ f ′‖2 ‖ f ‖2, for all f ∈ H1(R1), (2.26)

and in the case of d = 2, using the Sobolev type inequality

‖ f ‖26 ≤ C(‖∇ f ‖22 + ‖ f ‖22), for all f ∈ H1(R2), (2.27)

we can get the same result.

The same conclusion holds for φn
2 . Notice that for φ∞1 and φ∞2 , by the weak lower

semicontinuous property of the L4(Rd)-norm, H1(Rd)-norm and L2
V (R

d)-norm, we can

have ‖∇φ∞1 ‖+ ‖∇φ∞2 ‖ < C , ‖φ∞1 ‖4 + ‖φ∞2 ‖4 < C and
∫
R

d V (x)(|φ∞1 |2 + |φ∞2 |2)dx < C .

Following the above arguments, the same conclusion holds for φ∞1 and φ∞2 , i.e. we have

∫

Bc
R

|φn
j |4 dx≤ ǫ

2(1+ |β12|)
,

∫

Bc
R

|φ∞j |4 dx≤ ǫ

2(1+ |β12|)
, j = 1,2, n≥ 0. (2.28)

Then, by the Cauchy-Schwartz inequality, we have

�����

∫

Bc
R

β12|φn
1 |2|φn

2 |2 dx

�����≤ |β12|
 ∫

Bc
R

|φn
1 |4 dx

!1/2 ∫

Bc
R

|φn
2 |4 dx

!1/2

≤ ǫ
2

, n≥ 0, (2.29)

and �����

∫

Bc
R

β12 |φ∞1 |2 |φ∞2 |2 dx

�����≤
ǫ

2
. (2.30)

Next, in the ball BR, applying the Sobolev embedding theorem, the strong convergence

holds:

φn
1 −→ φ∞1 , φn

2 −→ φ∞2 , in L2(BR)∩ L4(BR). (2.31)
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By writing

�����

∫

BR

β12|φn
1 |2|φn

2 |2 dx−
∫

BR

β12|φ∞1 |2|φ∞2 |2 dx

�����

≤ |β12|


�����

∫

BR

�
|φn

1 |2 − |φ∞1 |2
�
|φn

2 |2 dx

�����+
�����

∫

BR

�
|φn

2 |2− |φ∞2 |2
�
|φ∞1 |2 dx

�����




≤ C
�
‖φn

1 −φ∞1 ‖L4(BR)
+ ‖φn

2 −φ∞2 ‖L4(BR)

�
, (2.32)

we have ∫

BR

β12 |φ∞1 (x)|2 |φ∞2 (x)|2 dx= lim
n→∞

∫

BR

β12|φn
1 (x)|2|φn

2(x)|2 dx. (2.33)

Hence the inequality (2.23) holds, by combining the above results.

By a similar argument, we can prove that

lim sup
n→∞

�����

∫

R
d

(|φn
1 |2+ |φn

2 |2)dx−
∫

R
d

(|φ∞1 |2+ |φ∞2 |2)dx

�����≤ ǫ. (2.34)

Since the L4(Rd)-norm, H1(Rd)-norm and L2
V (R

d)-norm are all weakly lower semicontin-

uous, we have
eE(φ∞1 ,φ∞2 )≤ lim inf

n→∞
eE(φn

1 ,φn
2 )+ ǫ, ǫ > 0, (2.35)

which immediately implies that eE(Φ∞) ≤ lim inf
n→∞

eE(Φn). Moreover, Φ∞ ∈ D1 by (2.34),

which implies the existence of minimizer of the problem (2.7).

If the matrix B is positive semi-definite and at least one of the parameters λ, γ1 and γ2

is nonzero, the uniqueness of (|φ∞1 |, |φ∞2 |)T follows from the strict convexity of eE. For the

case δ 6= 0 and λ= γ1 = γ2 = 0, the uniqueness is easy to derive.

Combining the results in Lemma 2.1 and Theorem 2.1, we immediately have the fol-

lowing existence and uniqueness results for the ground states of (1.8):

Theorem 2.2. (Existence and uniqueness of (1.8)) Suppose V (x)≥ 0 satisfying lim
|x|→∞

V (x) =

∞ and at least one of the following conditions holds,

(i) d = 1;

(ii) d = 2 and β11 ≥ −Cb, β22 ≥ −Cb, and β12 ≥ −Cb −
p

Cb + β11

p
Cb + β22;

(iii) d = 3 and B is either positive semi-definite or nonnegative,

there exists a ground state Φg = (φ
g

1 ,φ
g

2 )
T of (1.8). In addition, eΦg := (eiθ1 |φg

1 |, eiθ2 |φg

2 |)
is also a ground state of (1.8) with θ1 and θ2 two constants satisfying θ1 − θ2 = ±π when

λ > 0 and θ1 − θ2 = 0 when λ < 0, respectively. Furthermore, if the matrix B is positive

semi-definite and at least one of the parameters δ, λ, γ1 and γ2 are nonzero, then the ground

state (|φg

1 |,−sign(λ)|φg

2 |)T is unique. In contrast, if one of the following conditions holds,
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(i) d = 2 and β11 < −Cb or β22 < −Cb or β12 < −Cb −
p

Cb + β11

p
Cb + β22 ;

(ii) d = 3 and β11 < 0 or β22 < 0 or β12 < 0 with β2
12 > β11β22.

there exists no ground states of (1.8).

Proof. The first part of the theorem follows from the Theorem 2.1. We are going to

prove the nonexistence results.

In the two dimensions (2D) case, i.e. d = 2, let ϕ(x) ∈ H1(R2) such that ‖ϕ‖2 = 1

and Cb = ‖∇ϕ‖22/‖ϕ‖44 [36]. Consider Φǫ = (φǫ1 ,φǫ2)
T , where φǫ1(x) =

p
θǫ−1ϕ(x/ǫ),

φǫ2(x) =
p

1− θǫ−1ϕ(x/ǫ), θ ∈ [0,1], ǫ > 0. When β11 < −Cb, choose θ = 1; we have

E(Φǫ) =
1

2ǫ2
‖∇ϕ‖22 +

β11

2ǫ2
‖ϕ‖44 +O(1) =

1+
β11

Cb

2ǫ2
‖∇ϕ‖22 +O(1), ǫ→ 0+,

thus lim
ǫ→0+

E(Φǫ) = −∞. When β22 < −Cb, choose θ = 0, so similarly we can draw the

same conclusion. When β11 ≥ −Cb, β22 ≥ −Cb and β12 < −Cb −
p

Cb + β11

p
Cb + β22,

choose θ =
β22−β12

β11+β22−2β12
; then

βθ := θ2β11 + 2β12θ(1− θ) + β22(1− θ)2 =
β11β22 − β2

12

β11 + β22 − 2β12

< −Cb,

and

E(Φǫ) =
1+

βθ
Cb

2ǫ2
‖∇ϕ‖22 +O(1), ǫ→ 0+,

so lim
ǫ→0

E(Φǫ) = −∞. Thus there exists no ground state in these cases.

In the three dimensions (3D) case, i.e. d = 3, choose Φǫ = (φǫ1 ,φǫ2)
T , where φǫ1(x) =p

θ

(ǫπ)3/4
exp(−|x|2/2ǫ), φǫ2(x) =

p
1−θ

(ǫπ)3/4
exp(−|x|2/2ǫ), θ ∈ [0,1], ǫ > 0. When β11 < 0,

choosing θ = 1 we obtain

E(Φǫ) = C1ǫ
−1+

β11

2
(2πǫ)−3/2+O(1), ǫ→ 0+,

which shows lim
ǫ→0+

E(Φǫ) = −∞. When β22 < 0, choose θ = 0, so the same conclusion

holds. When β11 ≥ 0, β22 ≥ 0, β12 < 0 and β2
12 > β11β22, choose θ =

β22−β12

β11+β22−2β12
∈ (0,1),

so

βθ := θ2β11 + 2β12θ(1− θ) + β22(1− θ)2 =
β11β22 − β2

12

β11 + β22 − 2β12

< 0,

and

E(Φǫ) = C1ǫ
−1 +

βθ

2
(2πǫ)−3/2 +O(1), ǫ→ 0+,

thus lim
ǫ→0+

E(Φǫ) = −∞. The above results imply that there exists no ground state in such

cases.
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When B is nonnegative, we have the following uniqueness results for the ground states

of (1.8):

Theorem 2.3. Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞, the matrix B is nonnegative

satisfying β11 = β22 ≥ 0, at least one of the parameters δ, λ, γ1 and γ2 are nonzero, and

δ 6= 0 if β12 −β11 > 0, then the ground state Φg = (|φg

1 |,−sign(λ)|φg

2 |)T of (1.8) is unique.

Proof. If B is nonnegative and β11 = β22 ≥ β12 ≥ 0, this immediately implies that B

is positive semi-definite, since at least one of the parameters δ, λ, γ1 and γ2 are nonzero;

the uniqueness of the ground state Φg follows immediately from Theorem 2.1.

If β12 > β11 = β22 ≥ 0, for any Φ = (φ1,φ2)
T ∈ D1, let

ϕ1 =
1p
2
(φ1 +φ2), ϕ2 =

1p
2
(φ1 −φ2). (2.36)

Suppose that Φg = (φ
g

1
,φ

g

2
)T is a nonnegative minimizer of (2.7). Then the corresponding

(ϕ
g

1 ,ϕ
g

2 )
T is a minimizer of the following energy functional

bE(ϕ1,ϕ2) =

∫

R
d

�
1

2

�
|∇ϕ1|2+ |∇ϕ2|2

�
+ V (x)

�
|ϕ1|2 + |ϕ2|2

�
+ δRe (ϕ1 · ϕ̄2)

− 2|λ| |ϕ1|2+
β11 + β12

2

�
|ϕ1|4+ |ϕ2|4

�
+ (3β11− β12)|ϕ1|2|ϕ2|2

�
dx,

under the constraint
∫
R

d (|ϕ1(x)|2+ |ϕ2(x)|2) dx= 1.

Noticing that the matrix

�
β11 +β12 3β11 − β12

3β11 − β12 β11 +β12

�
is positive semi-definite in this

case and δ is nonzero, using the results in the Theorem 2.1 we can obtain the uniqueness

of the ground state (ϕ
g

1
,ϕ

g

2
)T to the problem (2.37) with ϕ

g

1
≥ 0. Thus the uniqueness of

the ground state Φg = (|φg

1 |,−sign(λ)|φg

2 |)T of (1.8) follows immediately.

Theorem 2.4. Suppose V (x)≥ 0 satisfying lim
|x|→∞

V (x) =∞ and λ = 0.

(i) If δ ≥ 0, β12 ≥ β22 and β11 > β22 ≥ 0, then the ground state Φg = (φ
g

1
,φ

g

2
)T of (1.8)

must satisfy φ
g

1
= 0 and |φg

2
| is unique.

(ii) If δ ≤ 0, β12 ≥ β11 and β22 > β11 ≥ 0, then the ground state Φg = (φ
g

1 ,φ
g

2 )
T of

(1.8) must satisfy φ
g

2 = 0 and |φg

1 | is unique.

Proof. (i) Suppose Φg = (φ
g

1 ,φ
g

2 )
T is a nonnegative minimizer of (1.8). Consider

φ1(x) = 0, φ2(x) =
Æ
|φg

1 (x)|2+ |φg

2 (x)|2, x ∈ Rd . (2.37)
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Then Φ = (φ1,φ2)
T ∈ D1 and satisfies

∫

R
d

|∇φ2(x)|2dx≤
∫

R
d

�
|∇φg

1 (x)|2+ |∇φg

2 (x)|2
�

dx,

∫

R
d

V (x)
�
|φ1(x)|2+ |φ2(x)|2

�
dx=

∫

R
d

V (x)
�
|φg

1 (x)|2 + |φg

2 (x)|2
�

dx,

∫

R
d

β22

2
|φ2(x)|4dx≤

∫

R
d

1

2

�
β11|φg

1
|4+ β22|φg

2
|4 + 2β12|φg

1
|2|φg

2
|2
�

dx.

(2.38)

Thus

E(Φ) = E(φ1,φ2)≤ E(φ
g

1 ,φ
g

2 ) = E(Φg)≤ E(Φ), (2.39)

so the above inequalities must be equalities, which leads to our conclusion. The uniqueness

of |φg

2 | is also easy to see.

(ii) The proof is similar to that of part (i), so the details are omitted.

Lastly, we stress that, if B is not positive semi-definite, the uniqueness of the ground

state of (1.8) may not hold. Actually, we have the following result in contrast with Theorem

2.3.

Theorem 2.5. Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞, δ = 0 and β12 > β11 =

β22 ≥ 0, then there exists a constant Λ0 > 0 such that, for λ ∈ (−Λ0,Λ0) the ground state

Φg = (|φg

1 |,−sign(λ)|φg

2 |)T of (1.8) is not unique.

Proof. LetΦ1 = (φ
g ,φg)T be the nonnegative minimizer of (2.6) in the set

¦
Φ = (φ1,φ2)

T

∈ D1,φ1 = φ2

	
and Φ2 = (0,φ)T be the nonnegative minimizer of (2.6) in the set {Φ =

(φ1,φ2)
T ∈ D1,φ1 = 0

©
; then we know

eE(Φ1) = min
Φ=(φ1,φ1)

T∈D1

eE(Φ) (2.40)

= min
‖φ‖2=1

∫

R
d

�
1

2
|∇φ|2 + V (x)|φ|2 + β11 + β12

4
|φ|4

�
dx− |λ|,

and

eE(Φ2) = min
‖φ‖2=1

∫

R
d

�
1

2
|∇φ|2 + V (x)|φ|2 + β11

2
|φ|4

�
dx. (2.41)

Since β12 > β11, we have

Λ0 = min
‖φ‖2=1

∫

R
d

�
1

2
|∇φ|2+ V (x)|φ|2 + β11 + β12

4
|φ|4

�
dx

− min
‖φ‖2=1

∫

R
d

�
1

2
|∇φ|2+ V (x)|φ|2 + β11

2
|φ|4

�
dx

> 0.
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Thus for λ ∈ (−Λ0,Λ0), eE(Φ1)> eE(Φ2), which implies that for ground state Φg =(φ
g

1 ,φ
g

2 )
T

of (1.8), |φg

1 | 6= |φg

2 |. But under the assumption we can see that, if Φg = (φ
g

1 ,φ
g

2 )
T is a

ground state of (1.8), then (φ
g

2 ,φ
g

1 )
T is also a ground state. So, the minimizer Φg =

(|φg

1 |,−sign(λ)|φg

2 |)T of (1.8) cannot be unique.

Remark 2.1. (i) In the above theorem, for ground state Φg = (φ
g

1
,φ

g

2
)T , we have (|φg

1
|, |φg

2
|)

is unique under the permutation of sub-index.

(ii) When δ = λ= 0 and β11 = β12 = β22 ≥ 0, the nonnegative ground state Φg of (1.8)

is not unique.

(iii) Similar to the results in [9, 10, 16], for any fixed β11 ≥ 0 and β22 ≥ 0 the phase of

two components of the ground state Φg = (φ
g

1 ,φ
g

2 )
T will be segregated when β12 →∞, i.e.,

Φg will converge to a state such that φ
g

1 ·φg

2 = 0.

(iv) If the potential V (x) in the two equations in (1.1) is chosen differently in different

equations, i.e., Vj(x) in the jth ( j = 1,2) equation, if they satisfy Vj(x)≥ 0, lim
|x|→∞

Vj(x) =∞
( j = 1,2) then the conclusions in the above Lemmas and Theorem 2.1-2.2 are still valid under

similar conditions.

2.2. The case without an internal atomic Josephson junction

If α = 0 or 1 in the nonconvex minimization problem (1.13), it reduces to a single

component problem and the results were established in [23]. Thus here we assume α ∈
(0,1). Denote

β ′11 := αβ11, β ′22 = (1−α)β22, β ′12 =
p
α(1−α)β12, α′ = α(1−α).

Then the following conclusions can be drawn.

Theorem 2.6. (Existence and uniqueness of (1.13)) Suppose V (x)≥ 0 satisfying lim
|x|→∞

V (x) =

∞ and at least one of the following conditions holds:

(i) d = 1;

(ii) d = 2 and β ′11 ≥ −Cb, β ′22 ≥ −Cb, and β ′12 ≥ −
p
(Cb + β

′
11
)(Cb + β

′
22
);

(iii) d = 3 and B is either positive semi-definite or nonnegative,

then there exists a ground state Φg = (φ
g

1
,φ

g

2
)T of (1.13). In addition, eΦg :=(eiθ1 |φg

1
|, eiθ2 |φg

2
|)

is also a ground state of (1.13) with two constants θ1 and θ2. Furthermore, if the matrix B is

positive semi-definite, the ground state (|φg

1 |, |φg

2 |)T of (1.13) is unique. In contrast, if one of

the following conditions holds:

(i) d = 2 and β ′11 < −Cb or β ′22 < −Cb or β ′12 < − 1

2
p
α′
�
αβ ′11 + (1−α)β ′22 + Cb

�
;

(ii) d = 3 and β11 < 0 or β22 < 0 or β12 < − 1

2α′ (α
2β11 + (1−α)2β22).

there exists no ground states of (1.13).

Proof. The proof is similar to those of Theorems 2.1 and 2.2 and it is omitted here for

brevity.
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3. Properties of the Ground States

In this Section, we will show some properties of the stationary states and find the

limiting behavior of the ground states when either |λ| →∞ or |δ| →∞.

Theorem 3.1. Suppose that V (x) ≥ 0 and β11 = β12 = β22 = 0. For the stationary states of

(1.10) under the constraint (1.11), we have:

(i) The ground state Φg = (φ
g

1 ,φ
g

2 )
T is the global minimizer of E(Φ) over the unit sphere

S.

(ii) Any excited state Φ j = (φ
j

1
,φ

j

2
)T ( j = 1,2, . . .) is a saddle point of E(Φ) over the unit

sphere S.

Proof. Let Φe = (φ
e
1,φe

2)
T be the solution of (1.10) under the constraint (1.11) with

β11 = β12 = β22 = 0 and µe be the corresponding eigenvalue. Obviously, ‖Φe‖2 = 1 and

µe = E(Φe). For any function Φ = (φ1,φ2)
T with E(Φ)<∞ and ‖Φe +Φ‖2 = 1, we have

‖Φ‖22 = ‖(Φe +Φ)−Φe‖22 = ‖(φe
1 +φ1)−φe

1‖22 + ‖(φe
2 +φ2)−φe

2‖22

= ‖Φe +Φ‖22 −‖Φe‖22 −
∫

R
d

�
φe

1φ̄1 + φ̄
e
1φ1 +φ

e
2φ̄2 + φ̄

e
2φ2

�
dx

= −
∫

R
d

�
φe

1φ̄1 + φ̄
e
1φ1 +φ

e
2φ̄2 + φ̄

e
2φ2

�
dx. (3.1)

From (1.5) with Ψ = Φe+Φ, noticing (1.10) and (3.1) and integration by parts we get

E(Φe +Φ) = E(Φe) + E(Φ)+ 2 Re

∫

R
d

�
−1

2
∇2φe

1 + (V (x) + δ)φ
e
1+λφ

e
2

�
φ̄1 dx

+ 2 Re

∫

R
d

�
−1

2
∇2φe

2 + V (x)φe
2 +λφ

e
1

�
φ̄2 dx

= E(Φe) + E(Φ)+µe

∫

R
d

�
φe

1φ̄1 + φ̄
e
1φ1 +φ

e
2φ̄2 + φ̄

e
2φ2

�
dx

= E(Φe) + E(Φ)−µe‖Φ‖22
= E(Φe) +

�
E(Φ/‖Φ‖2)−µe

�‖Φ‖22. (3.2)

(i) Taking Φe = Φg and µe = µg in (3.2) and noticing E(Φ/‖Φ‖2) ≥ µg for any Φ 6= 0,

we get immediately that Φg is a global minimizer of E(Φ) over S.

(ii) Taking Φe = Φ j and µe = µ j in (3.2), since E(Φg) < E(Φ j) and it is easy to find an

eigenfunction Φ of (1.10) satisfying ‖Φ‖ = 1 such that E(Φ) > E(Φ j), we get immediately

that Φ j is a saddle point of the energy functional E(Φ) over S.

When |λ| → ∞ or |δ| → ∞, we have the following limiting behavior of the ground

states of (1.8).
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Theorem 3.2. Suppose V (x) ≥ 0 satisfying lim
|x|→∞

V (x) = ∞ and B is either positive semi-

definite or nonnegative. For fixed V (x), B and δ, let Φλ = (φλ1 ,φλ2 )
T be a ground state of

(1.8) with respect to λ. Then when |λ| →∞ we have

‖ |φλj | −φg‖2→ 0, j = 1,2, E(Φλ)≈ 2E1(φ
g)− |λ|, (3.3)

where φg is the unique positive minimizer [23] of

E1(φ) =

∫

R
d

�
1

2
|∇φ|2+ V1(x)|φ|2 +

β

2
|φ|4

�
dx (3.4)

under the constraint

‖φ‖2 = ‖φ‖22 =
∫

R
d

|φ(x)|2 dx=
1

2
, (3.5)

with

V1(x) = V (x) +
δ

2
, β =

β11 + β22 + 2β12

2
. (3.6)

Proof. Without loss of generality, we assume λ < 0 and the ground state Φλ satisfying

φλj ≥ 0 ( j = 1,2). Since (φg ,φg)T ∈ D1, we have

eE(|φλ1 |, |φλ2 |)≤ eE(φg ,φg). (3.7)

Noticing

eE(Φ) = E0(Φ)+ |λ|
∫

R
d

|φ1−φ2|2 dx− |λ|, Φ ∈ D1, (3.8)

we have
eE(φg ,φg) = 2E1(φ

g)− |λ|. (3.9)

Subsitituting (3.9) into (3.7) and noticing (3.8), there exists a constant C > 0 such that

‖φλ1 ‖H1 + ‖φλ2 ‖H1 ≤ C , ‖φλ1 −φλ2 ‖2 ≤
C

|λ| , |λ|> 0, (3.10)

this immediately implies

φλ1 −φλ2 −→ 0 in L2, as |λ| →∞. (3.11)

Using the similar arguments as in the proof of Theorem 2.1, we can see that there exists

Φ∞ = (φ∞1 ,φ∞2 )
T ∈ D1 such that

φλ1 +φ
∞
1 , φλ2 +φ

∞
2 , in L2 ∩ L4 ∩ L2

V ,

∇φλ1 +∇φ∞1 , ∇φλ2 +∇φ∞2 , in L2,
(3.12)
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and
eE(φ∞1 ,φ∞2 )≤ lim inf

|λ|→∞
eE(φλ1 ,φλ2 ). (3.13)

These together with (3.11) imply that

φ∞1 = φ
∞
2 := φ∞. (3.14)

Substituting (3.14) into (2.6), we obtain

eE(φ∞,φ∞) = 2E1(φ
∞)− |λ| ≤ lim inf

|λ|→∞
eE(φλ1 ,φλ2 )≤ lim sup

|λ|→∞
eE(φλ1 ,φλ2 )

≤ 2E1(φ
g)− |λ|, (3.15)

and

E1(φ
∞)≤ E1(φ

g). (3.16)

Since φλ1 and φλ2 are nonnegative and φλ1 converges weakly to φ∞ in H1, there exists

a subsequence such that φ
λn

1 converges to φ∞ a.e. in any compact subset, which shows

φ∞ is nonnegative. Recalling that ‖φ∞‖2 = ‖Φλ‖2/2 = 1/2 and φg is the unique positive

minimizer of (3.4) under the constraint (3.5), we conclude that φ∞ must be equal to φg .

Therefore, all inequalities above must hold as equalities. Thus from (3.11) we can obtain

the norm convergence

‖φλ1 ‖2→ ‖φg‖2, ‖φλ2 ‖2→ ‖φg‖2,

‖∇φλ1 ‖2→ ‖∇φg‖2, ‖∇φλ2 ‖2→ ‖∇φg‖2. (3.17)

Now, the weak convergence and the norm convergence would imply the conclusion since

H1 is a Hilbert space.

Theorem 3.3. Suppose V (x) ≥ 0 satisfies lim
|x|→∞

V (x) = ∞ and B is either positive semi-

definite or nonnegative. For fixed V (x), B and λ, let Φδ = (φδ1 ,φδ2 )
T be a ground state of

(1.8) with respect to δ. Then when δ→+∞ we have

‖φδ1 ‖2→ 0, ‖ |φδ2 | −φg‖2→ 0, E(Φδ) ≈ E2(φ
g), (3.18)

and when δ→−∞ we have

‖ |φδ1 | −φg‖2→ 0, ‖φδ2 ‖2→ 0, E(Φδ)≈ E2(φ
g) + δ, (3.19)

where φg is the unique positive minimizer [23] of

E2(φ) =

∫

R
d

�
1

2
|∇φ|2+ V (x)|φ|2+ β

2
|φ|4

�
dx (3.20)

under the constraint

‖φ‖2 = ‖φ‖22 =
∫

R
d

|φ|2 dx= 1, (3.21)

with β = β22 when δ > 0, and β = β11 when δ < 0.

Proof. Using the fact (0,φg)T ∈ D1 when δ > 0 and (φg , 0)T ∈ D1 when δ < 0, the

results can be established by a similar argument as in Theorem 3.2.
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4. Numerical Methods

In this Section, we propose and analyze efficient and accurate numerical methods for

computing the ground states of (1.8).

4.1. Continuous normalized gradient flow and its discretization

In order to compute the ground state of two-component BEC with an internal atomic

Josephson junction (1.8), we construct the following continuous normalized gradient flow

(CNGF):

∂ φ1(x, t)

∂ t
=

�
1

2
∇2− V (x)− δ− (β11|φ1|2+ β12|φ2|2)

�
φ1 −λφ2 +µΦ(t)φ1,

∂ φ2(x, t)

∂ t
=

�
1

2
∇2− V (x)− (β12|φ1|2+ β22|φ2|2)

�
φ2 −λφ1 +µΦ(t)φ2,

(4.1)

where Φ(x, t) = (φ1(x, t),φ2(x, t))T and µΦ(t) is chosen such that the above CNGF is mass

or normalization conservative and it is given as

µΦ(t) =
µ(Φ(·, t))

‖Φ(·, t)‖2 , t ≥ 0. (4.2)

For the above CNGF, we have:

Theorem 4.1. For any given initial data

Φ(x, 0) = (φ0
1(x),φ

0
2(x))

T := Φ(0)(x), x ∈ Rd , (4.3)

satisfying ‖Φ(0)‖2 = 1, the CNGF (4.1) is mass or normalization conservative and energy

diminishing, i.e.

‖Φ(·, t)‖2 ≡ ‖Φ(0)‖2 = 1, E(Φ(·, t)) ≤ E(Φ(·, s)), 0≤ s ≤ t. (4.4)

Proof. The proof is analogous to those in [4] for single-component BEC and [7] for

spin-1 BEC, so we omit the details here.

Using an argument similar to that in [33], when V (x)≥ 0 satisfies lim
|x|→∞

V (x) =∞, B is

either positive semi-definite or nonnegative, and ‖Φ(0)‖ = 1, as t →∞, Φ(x, t) approaches

to a steady state solution, which is a critical point of the energy functional E(Φ) over the

unit sphere S or an eigenfunction of the nonlinear eigenvalue problem (1.10) under the

constraint (1.11). In addition, when the initial data in (4.3) is chosen properly, e.g. its

energy is less than that of the first excited state, the ground state Φg can be obtained from

the steady state solution of (4.1), i.e.

Φg(x) = lim
t→∞Φ(x, t), x ∈ Rd . (4.5)
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For practical computation, here we also present a second-order full discretization in

both space and time for the above CNGF (4.1). For simplicity of notation, we introduce the

method for the case of one spatial dimension (1D) in a bounded domain Ω = (a, b) with

homogeneous Dirichlet boundary condition

Φ(a, t) = Φ(b, t) = 0, t ≥ 0. (4.6)

Generalizations to higher dimensions are straightforward for tensor product grids.

Choose time step k = ∆t > 0 and let time steps be tn = n k = n ∆t for n = 0,1,2, . . .;

and choose spatial mesh size h=∆x > 0 with h= (b− a)/M for M a positive integer and

let the grid points be x j = a+ j h, j = 0,1,2, . . . , M . Let Φn
j = (φ

n
1, j ,φ

n
2, j)

T be the numerical

approximation of Φ(x j, tn) and Φn be the solution vector with component Φn
j
. In addition,

denote Φ
n+1/2
j

= (φ
n+1/2
1, j

,φ
n+1/2
2, j

)T with

φ
n+1/2

l , j
=

1

2

�
φn+1

l , j
+φn

l , j

�
, j = 0,1,2, . . . , M , l = 1,2. (4.7)

Then a second-order full discretization for the CNGF (4.1) is given, for j = 1,2, . . . , M − 1

and n≥ 0, as

φn+1
1, j
−φn

1, j

k
=
φ

n+1/2
1, j+1
− 2φ

n+1/2
1, j

+φ
n+1/2
1, j−1

2h2
−
h

V (x j) + δ−µn+1/2

Φ,h

i
φ

n+1/2
1, j
−λφn+1/2

2, j

− 1

2

h
β11

�
|φn+1

1, j
|2+ |φn

1, j |2
�
+ β12

�
|φn+1

2, j
|2 + |φn

2, j|2
�i
φ

n+1/2
1, j

, (4.8)

φn+1
2, j
−φn

2, j

k
=
φ

n+1/2
2, j+1
− 2φ

n+1/2
2, j

+φ
n+1/2
2, j−1

2h2
−
h

V (x j)−µn+1/2

Φ,h

i
φ

n+1/2
2, j
−λφn+1/2

1, j

− 1

2

h
β12

�
|φn+1

1, j
|2+ |φn

1, j |2
�
+ β22

�
|φn+1

2, j
|2 + |φn

2, j|2
�i
φ

n+1/2
2, j

, (4.9)

where

µ
n+1/2

Φ,h
=

D
n+1/2

Φ,h

h
M−1∑
j=0

�
|φn+1/2

1, j
|2+ |φn+1/2

2, j
|2
� , n≥ 0, (4.10)

with

D
n+1/2

Φ,h
= h

M−1∑

j=0

� 2∑

l=1

�
1

2h2
|φn+1/2

l , j+1
−φn+1/2

l , j
|2+ V (x j)|φn+1/2

l , j
|2
�
+ δ|φn+1/2

1, j
|2

+
1

2
β11(|φn+1

1, j
|2|+ |φn

1, j|2)|φn+1/2
1, j
|2 + 1

2
β22(|φn+1

2, j
|2+ |φn

2, j|2)|φn+1/2
2, j
|2

+
1

2
β12

h
(|φn+1

2, j
|2 + |φn

2, j|2)|φn+1/2
1, j
|2+ (|φn+1

1, j
|2|+ |φn

1, j |2)|φn+1/2
2, j
|2
i

+ 2λ Re
�
φ

n+1/2
1, j

φ̄
n+1/2
2, j

��
. (4.11)
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The boundary condition (4.6) is discretized as

φn+1
1,0 = φ

n+1
1,M = φ

n+1
2,0 = φ

n+1
2,M = 0, n= 0,1,2, · · · . (4.12)

The initial data (4.3) is discretized as

φ0
1, j = φ

0
1(x j), φ0

2, j = φ
0
2(x j), j = 0,1, · · · , M . (4.13)

Similarly, for the above full discretization for the CNGF, we have:

Theorem 4.2. For any given time step k > 0 and mesh size h> 0 as well as initial data Φ(0)

in (4.3) satisfying ‖Φ0‖ = 1, the full discretization (4.8)-(4.13) for CNGF (4.1) is mass or

normalization conservative and energy diminishing, i.e.

N n
Φ,h := h

M−1∑

j=0

2∑

l=1

|φn
l , j|2 ≡ N0

Φ,h := h

M−1∑

j=0

2∑

l=1

|φ0
l (x j)|2, n≥ 0, (4.14)

En
Φ,h
≤ En−1

Φ,h
≤ · · · ≤ E0

Φ,h
, n≥ 0, (4.15)

where the discretized energy En
Φ,h

is defined as

En
Φ,h = h

M−1∑

j=0

� 2∑

l=1

�
1

2h2
|φn

l , j+1−φn
l , j|2+ V (x j)|φn

l , j|2
�
+ δ|φn

1, j |2

+
1

2
β11|φn

1, j |4+
1

2
β22|φn

2, j |4+ β12|φn
1, j |2|φn

2, j |2+ 2λ Re
�
φn

1, jφ̄
n
2, j

��
. (4.16)

Proof. The proof is analogous to that in [7] for spin-1 BEC, so we omit the details here.

In the above full discretization, at every time step we need to solve a fully nonlinear

system, which is very tedious in practical computation. Below we present a more efficient

discretization for the CNGF (4.1) for computing the ground states.

4.2. Gradient flow with discrete normalization and its discretization

Another more efficient way to discretize the CNGF (4.1) is through the construction of

the following gradient flow with discrete normalization (GFDN):

∂ φ1

∂ t
=

�
1

2
∇2− V (x)− δ− (β11|φ1|2 + β12|φ2|2)

�
φ1 −λφ2,

∂ φ2

∂ t
=

�
1

2
∇2− V (x)− (β12|φ1|2 + β22|φ2|2)

�
φ2 −λφ1, tn ≤ t < tn+1,

(4.17)

followed by a projection step as

φl(x, tn+1) := φl(x, t+n+1) = σ
n+1
l

φl(x , t−n+1), l = 1,2, n≥ 0, (4.18)
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where φl(x, t±n+1) = lim
t→t±

n+1

φl(x, t) (l = 1,2) and σn+1
l

(l = 1,2) are chosen such that

‖Φ(x, tn+1)‖2 = ‖φ1(x, tn+1)‖2 + ‖φ2(x, tn+1)‖2 = 1, n≥ 0. (4.19)

The above GFDN (4.17)-(4.18) can be viewed as applying the first-order splitting method

to the CNGF (4.1), and the projection step (4.18) is equivalent to solving the ordinary

differential equations (ODEs)

∂ φ1(x, t)

∂ t
= µΦ(t)φ1,

∂ φ2(x, t)

∂ t
= µΦ(t)φ2, tn ≤ t ≤ tn+1, (4.20)

which immediately suggests that the projection constants in (4.18) are chosen as

σn+1
1 = σn+1

2 , n≥ 0. (4.21)

Substituting (4.21) and (4.18) into (4.19), we obtain

σn+1
1 = σn+1

2 =
1

‖Φ(·, t−n+1)‖
=

1
p
‖φ1(·, t−

n+1
)‖2 + ‖φ2(·, t−

n+1
)‖2

, n≥ 0. (4.22)

In fact, the gradient flow (4.17) can be viewed as applying the steepest decent method to

the energy functional E(Φ) in (1.8) without constraints, and (4.18) projects the solution

back to the unit sphere S. In addition, (4.17) can also be obtained from the CGPEs (1.1) by

the change of variable t → −i t, which is why this kind of algorithm is usually called the

imaginary time method in the physics literature [2,4,14,32]. From the numerical point of

view, the GFDN is much easier to discretize, since the gradient flow (4.17) can be solved

via traditional techniques and the normalization (4.19) is simply achieved by a projection

(4.18) at the end of each time step.

For the above DNGF, we have

Theorem 4.3. Suppose V (x)≥ 0 and β11 = β12 = β22 = 0; then for any time step k > 0 and

initial data Φ(0) in (4.3) satisfying ‖Φ(0)‖ = 1, the GFDN (4.17)-(4.18) is energy diminishing,

i.e.

E(Φ(·, tn+1))≤ E(Φ(·, tn)≤ · · · ≤ E(Φ(·, 0)) = E(Φ0), n= 0,1,2, · · · . (4.23)

Proof. The proof is analogous to that in [4] for single-component BEC, so we omit the

details here.

Again, for practical computation, here we also present a modified backward Euler finite

difference (MBEFD) discretization for the above GFDN (4.17)-(4.18) in a bounded domain
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Ω = (a, b) with homogeneous Dirichlet boundary condition (4.6):

φ∗1, j −φn
1, j

k
=

1

2h2

h
φ∗1, j+1 − 2φ∗1, j +φ

∗
1, j−1

i
−
�
(V (x j) + δ+α

�
φ∗1, j −λφ∗2, j

�
β11|φn

1, j |2+ β12|φn
2, j |2

�
φ∗1, j +αφ

n
1, j , 1≤ j ≤ M − 1,

φ∗2, j −φn
2, j

k
=

1

2h2

h
φ∗2, j+1 − 2φn

2, j +φ
∗
2, j−1

i
−
�

V (x j) +α
�
φ∗1, j −λφ∗1, j

−
�
β12|φn

1, j |2+ β22|φn
2, j |2

�
φ∗2, j +αφ

n
2, j , 1≤ j ≤ M − 1,

φn+1
l , j
=
φ∗

l , j

‖Φ∗‖h
, j = 0,1, · · · , M , n≥ 0, l = 1,2; (4.24)

where α ≥ 0 is a stabilization parameter chosen such that the time step k is independent

of the effective Rabi frequency λ and

‖Φ∗‖h :=

√√√√h

M−1∑

j=1

h
|φ∗

1, j
|2+ |φ∗

2, j
|2
i

. (4.25)

The initial and boundary conditions are discretized similarly as those for the CNGF.

For the above full discretization for the GFDN, we have:

Theorem 4.4. Suppose V (x) ≥ 0 and β11 = β12 = β22 = 0, if α ≥ |λ|+max(0,−δ); then

the MBEFD discretization (4.24) is energy diminishing for any time step k > 0 and initial

data Φ(0) satisfying ‖Φ(0)‖h = 1, i.e.

En+1
Φ,h
≤ En

Φ,h ≤ · · · ≤ E0
Φ,h = EΦ(0),h, n≥ 0, (4.26)

where the discretized energy En
Φ,h

is defined in (4.16) with β11 = β12 = β22 = 0.

Proof. Denote

Φn = (φn
1,1,φn

1,2, . . . ,φn
1,M−1,φn

2,1,φn
2,2, . . . ,φn

2,M−1)
T ,

F = diag(V (x1), V (x2), . . . , V (xM−1), V (x1), V (x2), . . . , V (xM−1)),

D =

 
G 0

0 G

!
, D1 =

�
δIM−1 λIM−1

λIM−1 0

�
, D2 =

�
(α+ δ)IM−1 λIM−1

λIM−1 αIM−1

�
,

where IM−1 is the (M−1)×(M−1) identity matrix and G is an (M−1)×(M−1) tridiagonal

matrix with 1/h2 at the diagonal entries and −1/2h2 at the off-diagonal entries. Let

T = D+ F + D2 = D+ F + D1+αI2M−2. (4.27)
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Figure 1: Ground states Φg = (φ1,φ2)
T in Example 1 when δ = 0 and λ= −1 for di�erent β .

When β11 = β12 = β22 = 0, the MBEFD discretization (4.24) reads

Φ∗ −Φn

k
= −(D+ F + D2)Φ

∗+αΦn = −TΦ∗ +αΦn,

Φn+1 =
Φ∗

‖Φ∗‖h
, n≥ 0, (4.28)

and the discretized energy En
Φ,h

in (4.16) with β11 = β12 = β22 = 0 can be written as

En
Φ,h
= h(Φn)T (D+ F + D1)Φ̄

n = h(Φn, TΦn)−α‖Φn‖2h, (4.29)

where (·, ·) is the standard inner product. From (4.28), we have

(I + k T )Φ∗ = (1+α k)Φn, n≥ 0. (4.30)

If α ≥ |λ| +max(0,−δ), then T is positive semi-definite. From (4.29) and (4.30), and

using Lemma 2.8 in [4], we get

En+1
Φ,h
−α‖Φn+1‖2h = h(Φn+1, TΦn+1) =

(Φ∗, TΦ∗)
(Φ∗,Φ∗)

≤ ((1+ kα)Φn, (1+ kα)TΦn)

((1+ kα)Φn, (1+ kα)Φn)

= h(Φn, TΦn) = En
Φ,h−α‖Φn‖2h, n≥ 0. (4.31)
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Figure 2: Ground states Φg = (φ1,φ2)
T in Example 1 when δ = 0 and β = 100 for di�erent λ.

Thus the conclusion follows immediately from the above inequality and ‖Φn‖h = ‖Φn+1‖h =
1.

In fact, when α = 0, the MBEFD discretization (4.24) collapses to the standard back-

ward Euler finite difference scheme [4]. In addition, from the proof in the above Theorem,

in practical computation we can choose α= |λ|+max(0,−δ).

5. Numerical Results

In this Section, we report the ground states of (1.8) in 1D computed by our numerical

method MBEFD (4.24). In our computation, the ground state is reached when ‖Φn+1 −
Φn‖ ≤ ǫ := 10−7. In addition, for ground state of two-component BEC with an internal

atomic Josephson junction (1.8), we have λ↔ −λ ⇐⇒ φ
g

2
↔ −φg

2
, and thus we only

present results for λ≤ 0.

Example 1. Ground states of two-component BEC with an internal atomic Josephson

junction when B is positive definite, i.e. we take d = 1, V (x) = 1

2
x2 and β11 : β12 : β22 =

(1 : 0.94 : 0.97)β in (1.8) [2, 21, 22]. In this case, since λ ≤ 0 and B is positive definite

when β > 0, we know that the positive ground state Φg = (φ1,φ2)
T is unique. In our
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Figure 3: Mass of ea
h 
omponent N(φ j) = ‖φ j‖2 ( j = 1, 2), energy E := E(Φg) and 
hemi
al potential
µ := µ(Φg) of the ground states in Example 1 when δ = 0 for di�erent λ and β .
computations, we take the computational domain Ω = [−16,16] with mesh size h = 1

32
and time step k = 0.1. The initial data in (4.3) is chosen as

φ0
1(x) = φ

0
2(x) =

1

π1/4
p

2
e−x2/2, x ∈ R. (5.1)

In fact, we have checked with other types of initial data in (4.3) and the computed ground

state is the same.
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Figure 4: Mass of ea
h 
omponent N(φ j) = ‖φ j‖2 ( j = 1, 2), energy E := E(Φg) and 
hemi
al potential
µ := µ(Φg) of the ground states in Example 1 when β = 100 and δ = 0, 1 for di�erent λ.

Fig. 1 plots the ground states Φg when δ = 0 and λ = −1 for different β , and Fig. 2

depicts similar results when δ = 0 and β = 100 for different λ ≤ 0. Fig. 3 shows mass

of each component N(φ j) = ‖φ j‖2 ( j = 1,2), energy E := E(Φg) and chemical potential

µ := µ(Φg) of the ground states when δ = 0 for different λ and β . Fig. 4 shows similar

results when β = 100 and δ = 0,1 for different λ, and Fig. 5 for results when β = 100 and

λ= 0,−5 for different δ.

From Figs. 1-5 and additional numerical results not shown here for brevity, we can

draw the following conclusions for the ground states in this case: (i) the positive ground

state is unique when at least one of the parameters β , λ and δ are nonzero, confirming

the results in Theorem 2.1 (cf. Figs. 1 & 2); (ii) when β = 0 and δ = 0, φ1 = φ2 when

λ < 0, and φ1 = −φ2 when λ > 0 (cf. Fig. 1); (iii) for fixed β and δ, when λ → −∞,

φ1 −φ2 → 0 and when λ → +∞, φ1 +φ2 → 0 (cf. Fig. 2) which confirm the analytical

results in Theorem 3.2; (iv) when δ = 0, N(φ1) decreases and N(φ2) increases when

λ 6= 0 (cf. Fig. 3), due to β11 > β22; (v) for fixed δ and λ, when β ≫ 1, E = O(β1/3)

and µ = O(β1/3) which can be confirmed by a re-scaling x→ ǫ1/2x and Φ→ ǫ−d/4Φ with

ǫ = β−d/(d+2) in the energy functional E(Φ) in (1.5) and the chemical potential µ(Φ) in (1)

[3,38]; (vi) for fixed β > 0 and δ, when |λ| →∞, N(φ1)−N(φ2)→ 0, E ≈ −|λ|+C1 and
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h 
omponent N(φ j) = ‖φ j‖2 ( j = 1, 2), energy E := E(Φg) and 
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al potential
µ := µ(Φg) of the ground states in Example 1 when β = 100 and λ= 0,−5 for di�erent δ.
µ ≈ −|λ|+ C2 with C1 and C2 two constants independent of λ (cf. Fig. 4), confirming the

analytical results in Theorem 3.2; (vii) for fixed β > 0 and λ, when δ→ +∞, N(φ1)→ 0,

N(φ2) → 1, E ≈ C3 and µ ≈ C4 with C3 and C4 two constants independent of δ; and

when δ → −∞, N(φ1) → 1, N(φ2) → 0, E ≈ δ + C5 and µ ≈ δ + C6 with C5 and C6

two constants independent of δ (cf. Fig. 5), confirming the results in Theorem 3.3. In

addition, when δ = 0 and λ = 0, N(φ1) = 1/3 and N(φ2) = 2/3 which are independent

of β (cf. Fig. 3). In fact, in this case, the energy functional can be written

E(Φ) =

∫

Ω

�
1

2

�
|∇φ1|2 + |∇φ2|2

�
+ V (x)

�
|φ1|2+ |φ2|2

�

+
β

2

�
|φ1|4+ 0.97|φ2|4 + 2× 0.94|φ1|2|φ2|2

� �
dx. (5.2)

Denote ρ(x) =
p
|φ1(x)|2+ |φ2(x)|2; using the Cauchy inequality we have

E(Φ)≥
∫

Ω

�
1

2
|∇ρ|2+ V (x)|ρ|2+ 0.94β

2
|ρ|4+ β

2

�
0.06|φ1|4+ 0.03|φ2|4

��
dx
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Figure 6: Ground states Φg = (φ1,φ2)
T in Example 2 when δ = 0 and λ=−1 for di�erent β .

≥
∫

Ω

�
1

2
|∇ρ|2+ V (x)|ρ|2+ 0.94β

2
|ρ|4+ 0.02β

2
|ρ|4

�
dx,

and the above equality holds only if 2|φ1|2 = |φ2|2. Notice that the functional E2(ρ) =∫
Ω

�
1

2
|∇ρ|2+ V (x)|ρ|2+ 0.96β

2
|ρ|4

�
dx admits a unique positive minimizer ρg under con-

straint ‖ρ‖2 = 1 [23], so Φg = (
p

1/3ρg ,
p

2/3ρg)
T is a ground state of the original

problem, which justifies our numerical observation in Fig. 3.

Example 2. Ground states of two-component BEC with an internal atomic Josephson

junction when B is nonnegative, i.e. we take d = 1, V (x) = 1

2
x2 + 24 cos2(x) and β11 :

β12 : β22 = (1.03 : 1 : 0.97)β in (1.8) [2, 17, 18]. In our computations, we take the

computational domain Ω = [−16,16] with mesh size h= 1

32
and time step k = 0.1.

Fig. 6 plots the ground states Φg when δ = 0 and λ = −1 for different β , and Fig. 7

depicts similar results when δ = 0 and β = 100 for different λ. Fig. 8 shows mass of

each component N(φ j) = ‖φ j‖2 ( j = 1,2), energy E := E(Φg) and chemical potential

µ := µ(Φg) of the ground states when δ = 0 for different λ and β .

From Figs. 6-8 and additional numerical results not shown here for brevity, the same
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Figure 7: Ground states Φg = (φ1,φ2)
T in Example 2 when δ = 0 and β = 100 for di�erent λ.

conclusions as those in (ii)-(vii) in Example 1 can be drawn. Moreover, the numerical

results show that the positive ground state is unique in this case. Due to the appearance

of the optical lattice potential 24 cos2(x) in the trapping potential V (x), there are several

peaks in the ground state and the distance between two nearby peaks is roughly π, which

is the period of the optical lattice potential (cf. Fig. 6-7). In addition, when δ = 0, λ = 0,

N(φ1) = 0 and N(φ2) = 1 are independent of β (cf. Fig. 8), which can be explained by

Theorem 2.4.

6. Conclusions

We have studied the ground states of coupled Gross-Pitaevskii equations for two-com-

ponent Bose-Einstein condensates with an internal atomic Josephson junction, both ana-

lytically and numerically. On the analytic front, we proved the existence and uniqueness

results for the ground states of the problem when the interaction matrix B is either positive

semi-definite or nonnegative. Limiting behavior of the ground states was also found when

either |δ|→∞ or |λ|→∞. In addition, we also showed that the ground state is a global min-

imizer and all excited states are saddle points of the energy functional over the unit sphere
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h 
omponent N(φ j) = ‖φ j‖2 ( j = 1, 2), energy E := E(Φg) and 
hemi
al potential
µ := µ(Φg) of the ground states in Example 2 when δ = 0 for di�erent λ and β .
S when B=0. On the numerical front, we presented two efficient and accurate numerical

methods for computing the ground states. One was based on the continuous normalized

gradient flow, which is mass conservative and energy diminishing for any time step k>0

and initial data. The other one was based on gradient flow with discrete normalization,

which was discretized by the modified backward Euler finite difference (MBEFD) with a
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proper stabilization term and a proper choice of the projection constants. The former nu-

merical method was well-understood mathematically, but it is more tedious and expensive

in computation, whereas the latter numerical method was well-understood mathematically

in the linear case and it is more efficient in practical computation. In practice, we suggest

that the MBEFD be used to compute the ground state of two-component BEC with an in-

ternal atomic Josephson junction. Finally, the ground states and their energy and chemical

potential diagrams were reported for different parameters, to confirm our analytical results

and to demonstrate the efficiency and accuracy of our numerical methods.
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