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Abstract. We present a technique to find threshold values that allows the user to sepa-

rate signal from noise in fluorescence grey-level images. It can be classified as a purely

comparative method based upon the amount of “Mutual Information” between two or

more florescence images, and we apply it to stacks of such images produced using

the newly-developed MELK technology. Our results are compared to results obtained

by another research group using a quite different (completely independent and more

technology-based) approach; and also to results obtained using Otsu’s Thresholding

Method, yet another completely distinct approach invented to separate foreground and

background in a grey-level image, based on minimising “intra-class variance” [9, 10].

The remarkably good agreement found suggests that our proposed comparative infor-

mation based method not only accounts for the biological mechanisms governing cellu-

lar protein networks very well, but also (and probably much more importantly) shows

that cells actually organise the spatial structure of their protein networks in a highly

non-random fashion as might be expected – and thereby try to optimise their “mutual

information content”, and thus most probably their efficiency.

Key words: MELK technology, Kullback-Leibler distance, threshold values, numerical optimization.

1. Introduction

Given a finite collection C of observations, each observation c ∈ C being represented

by a vector ϕ(c) = (c1, · · · , cn) ∈ R
n, there are many areas – from sensing, security, and

data mining to biology and medicine – where a pre-processing step assigning a 0,1-vector

∗Corresponding author. Email addresses: aboris�pi
b.a
.
n (A. Barysenka), andreas�pi
b.a
.
n
(A. W. M. Dress), walter.s
hubert�med.ovgu.de (W. Schubert)

http://www.global-sci.org/eajam 35 c©2011 Global-Science Press



36 A. Barysenka, A. W. M. Dress and W. Schubert

χ(c) = c̄ = (c̄1, · · · , c̄n) to each observation c ∈ C can be a great advantage. Clearly, it is

appropriate that this assignment be monotone (i.e. c, d ∈ C , i ∈ {1, · · · , n}), that ci ≤ di

should always imply c̄i ≤ d̄i, and that it should maximise the “surprise” (or the “mutual

information content”) that can be found in the data, following the “surprisology" paradigm

proposed in [14].

The monotonicity requirement is easily met, by choosing a threshold or ‘cut-off’ vector

t= (t1, · · · , tn) ∈ R
n that allows us to define a monotone map

ψt : Rn→ {0,1}n : (x1, · · · , xn) 7→ ( x̄1, · · · , x̄n)

by putting

x̄ i :=

(

1 if x i ≥ t i ,

0 otherwise

for all i = 1, · · · , n. When composed with ϕ, this yields the required {0,1} vector c̄ =

ψt(c1, · · · , cn) =ψt

�

ϕ(c)
�

for each observation c ∈ C .

We follow the basic exposition already outlined in [2], by assuming that the mutual

independence of the observed values ci , i ∈ {1, · · · , n} of any observation c ∈ C (i.e. over

all observations in C ) would not yield a surprise. Then one can measure the ‘amount

of surprise’ encountered when associating a {0,1} vector χ(c) =
�

χ1(c), · · · ,χn(c)
�

to

each c ∈ C , by comparing the observed probability distribution pχ defined for each ǫ =

(ǫ1, · · · ,ǫn) ∈ {0,1}n by

pχ(ǫ) :=
#{c ∈ C |χ(c) = ǫ}

#C
(1.1)

with the expected probability distribution qχ defined by

qχ(ǫ) :=

n
∏

i=1

#{c ∈ C |χi(c) = ǫi}

#C
. (1.2)

Given the independence of the coordinates, note that qχ would essentially coincide with

pχ . Consequently, noting that ǫ ∈ {0,1}n and qχ(ǫ) = 0 always implies pχ(ǫ) = 0, the

well-known Kullback-Leibler Divergence or Mutual-Information Function

M I(qχ → pχ) :=
∑

ǫ∈{0,1}n
pχ(ǫ) log

�

pχ(ǫ)

qχ(ǫ)

�

(1.3)

(with pχ(ǫ) ln(pχ(ǫ)/qχ(ǫ)) := 0 for pχ(ǫ) = 0) appears to be a good measure of that

‘amount of surprise’ encountered by the map χ :C → {0,1}n (see e.g., [11], for its various

virtues) . Thus to each cut-off vector t ∈ Rn one can associate its surprise value surp(t) =

surp(C ,ϕ)(t) defined by

surp(t) := M I(qψt◦ϕ → pψt◦ϕ), (1.4)

and declare a cut-off vector t to be (C ,ϕ)-optimal if

surp(t)≥ surp(t′)
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holds for all t′ ∈ Rn, and to be locally (C ,ϕ)-optimal if the above inequality holds for all

t′ ∈ Rn in some sufficiently large neighbourhood N(t) of t.

We have designed and implemented a simple “greedy" algorithm that can quickly find

locally (C ,ϕ)-optimal cut-off vectors t for n up to 10 or 12 and up to a million obser-

vations (the cardinality of C ). Many applications can be envisaged in other areas such

as sensing and security, but here we apply our software to analyse multi-image data pre-

viously obtained using the Multi-Epitope Fluorescence Microscopy technology MELK dis-

cussed in [14] – cf. also [5, 12, 13]. Some details of this technology and tasks associated

with the data so obtained are discussed in 2.1 below – cf. also [15,16].

This particular application puts our procedure to a rather stringent test. Using their

specific technology-based knowledge, scientists working with MELK have designed a com-

pletely different technology-specific approach to define a cut-off vector t for their multi-

image data – and we find that both approaches yield essentially the same cut-off param-

eters, as discussed in detail in 2.3. Moreover, this is further evidence that the spatial

distribution of protein co-localization patterns observed via MELK technology is highly

non-random, which (whether explicitly already identified or not) must provide some quite

significant information.

In the next section, we present the principal example for which our method was origi-

nally developed and the results that were obtained in this way, and then discuss some more

general relevant aspects in the concluding section that follows.

2. Medical Image Segmentation

We first show that our approach can be used successfully to determine threshold values

for separating the presence or absence of proteins in a stack of fluorescence images de-

scribing a spatial distribution of proteins across a biological object – e.g. a slice of nervous

tissue or a sample of blood cells. More specifically, we apply our method to stacks of fluo-

rescence images, and find threshold values that are almost identical to those found using

completely independent methods based on technological and biological aspects of those

images.

2.1. The basis of MELK technology

One of the most important aspects of cellular protein networks is the spatial distribution

of the proteins across cell compartments (membranes, nuclei, mitochondria, organelles,

etc.). Consequently, for some cellular function (e.g cell migration) to occur, a cell not only

has to synthesise the necessary amounts of specific proteins but also distribute them inter-

nally and in its environment in a specific way required for that cell function. Conventional

proteomics-profiling tools based on homogenising cell samples do not (almost by definition)

provide any information on this important aspect of the molecular processes taking place

in a cell — an aspect that is now well understood to be closely related to both the normal

and the abnormal functioning of the cell. To provide such information, the new multi-
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Figure 1: Two �uores
en
e images showing two views of the same spe
imen (a sli
e of nervous tissue),where ea
h image displays the spatial distribution of one of two di�erent proteins.
parameter fluorescence-microscopy technique called MELK† was developed by one of us,

with coworkers at Magdeburg University [7, 12–14, 20]. This technique produces a stack

of intensity images of a particular biological object such as a slice of nervous tissue, where

each image in the stack corresponds to a particular extracellular or intracellular protein

(or some other biologically relevant molecule of interest). Two typical grey-level images

are shown in Fig. 1, and further biological applications of this technique are discussed

elsewhere [3,17–19,21].

One of the most basic questions arising in this context is how the various observed

fluorescence signals relate to the presence or absence of the corresponding proteins. It is

clear that high intensity values of a fluorescence signal at a particular spot suggest a high

protein concentration there (the corresponding protein is clearly present), whereas low

intensity values indicate low or no such protein concentration — since due to ‘noise’, some

non-zero intensity will be measured even where that concentration is zero (so some low

intensity values should be interpreted as that protein being absent). However, to decide

exactly what ‘high’ and ‘low’ should mean in this context, one needs to invoke a threshold

that separates ‘high’ intensities from ‘low’ values, individually for each image in the given

stack. In the next subsection, we describe a method for determining suitably optimal

threshold values.

2.2. The multi-information function

Let us assume we have a stack of n fluorescence images of size N , where the term size

refers to the number of pixels in the images under consideration. (In a typical image, we

have N = 512× 512 pixels.) Each image shows the spatial distribution of one of n distinct

fluorescent markers on the given tissue sample (see Fig. 1). These data can be regarded as

a stack of arrays of integers (intensity values), lying in the interval {0, · · · , 255}.
For i = 1, · · · , N , let I j(i) denote the intensity value at the pixel i in the j-th image, and

I(i) :=
�

I j(i)
�

j=1,··· ,n the corresponding n-dimensional integer vector of intensities; and for

each t = 0, · · · , 255, let N j(t) denote the number of pixels within the j-th image having

†Multi-Epitop Liganden Kartographie
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Figure 2: Histogram of a �uores
en
e image (left) and the 
orresponding rank fun
tion rank(I) (right).
the intensity value t. Further, let

rank j(t) := #{i|I j(i) < t)} = N j(0)+ · · ·+N j(t − 1) (2.1)

denote the number of pixels in the j-th image with intensities less than t (see Fig. 2).

If the fluorescence intensities of different fluorescent markers were independent of

each other, for any given family

t := (t1, · · · , tn)

of numbers in {0, · · · , 255} one may expect the proportion of pixels with intensity values

below t j for all j = 1, · · · , n should coincide with the product
∏

j=1,··· ,n rank j(t j)/N over all

j of the corresponding proportions rank j(t j)/N of pixels with intensity values below t j (for

each individual image j). More generally, given any sign vector ǫ = (ǫ j) j=1,··· ,n ∈ {±1}n,

total independence would imply that the proportion p(t,ǫ) of pixels with intensities

• below t j for all j = 1, · · · , n with ǫ j = −1 and

• equal to or above t j for all other j

should coincide with the product

q(t,ǫ) :=
∏

ǫ j=−1

rank j(t j)

N

∏

ǫ j=1

N − rank j(t j)

N
=
∏

j=1,··· ,n

ǫ j+1

2
N − ǫ jrank j(t j)

N
,

over all j, where the corresponding proportions of pixels of rank j(t j)/N or (N − rank j(t j))/N

are respectively with intensity values below t j for each j with ǫ j = −1 and equal to or

above t j for each j with ǫ j = 1. Thus each t defines two discrete probability distributions

p = pt := (p(t,ǫ) : ǫ ∈ {±1}n)

and

q = qt := (q(t,ǫ) : ǫ ∈ {±1}n)
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on the set {±1}n of sign vectors. The distribution q corresponds to total independence of

the fluorescence signals in the different images – whereas p describes the actual data-point

distribution among the various ‘cells’ defined by t and parametrised by the sign vectors ǫ

in {±1}n, in the space {0, · · · , 255}n ⊆ Rn of all potential intensity vectors. If p and q were

to coincide for all t, studying the n signals simultaneously would not be of much interest.

Consequently, by using the vector t as a vector of potential threshold values to decide on

the presence or absence of proteins in the n images, one would maximise the information

provided by the stack of images if t is chosen to maximise the distance between pt and qt

measured, following the standard traditional Kullback-Leibler Distance [4,6]

M I(t) := M I(p(t),q(t) :=
∑

ǫ
p(t,ǫ) ln

p(t,ǫ)

q(t,ǫ)
(2.2)

between p(t) and q(t), also called the Multi-Information Function [22, 23]. Maximising

M I(t) with respect to t provides our thresholds for deciding on the presence or absence

of proteins in the n images - i.e. by maximising the ‘mutual information content’ that can

be extracted from these images, using a threshold-based presence/no-presence decision

process.

The numerical maximisation of M I(t) was performed using a “greedy" approach. We

first choose an initial threshold vector tstar t randomly and then, starting with the axis

j = 1, try to ‘move’ t j until a local maximum of the function M I(t) is reached along this

particular axis. We then take the next axis j = 2 and perform the same search along it.

After doing so for each of n axes, we start again with j = 1 and repeat these steps, until

we find a vector tend such that there is no remaining index j ∈ {1, · · · , n} where a variation

could lead to further improvement, given the other coordinate values. On completing the

above procedure, we reach a relative local maximum of the cost function M I(t). Obviously,

this sub-optimal threshold vector tend may not provide the global maximum of the function

M I(t). We therefore repeated the algorithm several times with different starting vectors

tstar t (typically from 20 to 50), before choosing the tend vector that gave the highest value

of M I(t).

To examine the presence of local maxima more carefully, we ran our algorithm 100

times – each time starting from a randomly chosen starting vector tstar t – and counted the

number of different local maxima and the corresponding “hits" (i.e. the number of runs

our algorithm ended at a particular relative local maximum). The result of our simulation

for the stack sb is shown in Fig. 3. The values of the cost function M I(t) at the various

relative local maxima are shown on the horizontal axis and the “hit" numbers for each

on the vertical axis, and it appears that the largest of those relative local maxima has

the largest “hit" number – which is in fact most likely the global maximum. (There also

appear to be a number of other local maxima that are much less likely to be found.) We

believe that the chance of finding the global optimum in this iterative way is high, given

the almost convex shape of the scoring function implied by Fig. 5, which illustrates the

M I(t) for real fluorescence data corresponding to just two fluorescence images. However,

a suitable theoretical analysis of the procedure and its expected success rate has not yet

been carried out.
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Another rather important practical issue is the running time of our algorithm. To es-

timate this, we have run the algorithm on various substack sizes from the stack sc, with

results as shown in Fig. 4. The running time seems to depend quadratically upon the

substack size – cf. the fitted red curve. As might be expected, more time is necessary to

complete the search for larger stacks (where the search space is so much larger).

In order to obtain the optimal threshold value for a given fixed protein i, hitherto

we have proceeded to analyse whole image stacks. However, we could analyse some (or



42 A. Barysenka, A. W. M. Dress and W. SchubertTable 1: Threshold values found by analysing di�erent pairs of images from the sta
k sa. The �all-in-one-go" thresholds are shown in bold.
(j,i) 1 2 3 4 5 6 7 8 9 10 11

1 87 87 87 87 85 88 86 90 93 90 81

2 67 67 66 69 68 67 68 66 80 79 86

3 101 100 100 99 98 101 100 101 109 107 92

4 96 98 96 97 97 97 97 95 107 107 116

5 55 60 56 60 59 58 56 59 79 73 92

6 92 91 91 92 91 91 91 96 106 99 76

7 59 62 60 61 59 61 60 61 71 64 79

8 63 62 62 62 62 63 62 62 63 63 59

9 11 12 11 12 12 11 11 11 12 12 62

10 61 66 63 66 64 62 60 60 67 60 72

11 78 56 77 54 57 85 54 61 56 54 59

even all) substacks S j := {i j

1, i
j

2, · · · , j, · · · i j

k
} containing the j−th image to find the optimal

threshold values TS j
( j) corresponding to those substacks and image j, but obviously these

values do not have to coincide. It therefore seemed of interest to investigate how the

choice of a particular substack S j affects the optimal threshold for the j−th image, but we

found the variability of the resulting TS j
( j) to be rather small – cf. Table 1, showing the

optimal thresholds for each of the 11 images and each substack of size 2 for the stack sa.

The nondiagonal ( j, i)−th element in Table 1 gives the optimal threshold for the protein j

and substack {i, j}. Except for the last three columns that tend be persistently higher than

average, and the last row pertaining to Protein 11 that now seems to play a slightly erratic

role (still to be investigated more closely from a biological viewpoint), the values in each

row are quite close to each other and also to the value obtained from the whole stack –

cf. the diagonal elements of Table 1, and also Table 2.

Thus one may speed up the algorithm considerably by choosing one reference image

in a given stack and then determining the optimal threshold values for every other image

in the stack relative to that reference image – and if the threshold values obtained for the

reference image roughly coincide, one can safely take the obtained reference-image related

threshold values as a good approximation of the de facto optima for further steps in image

analysis. On the other hand, a clear disagreement could be a useful hint that there may be

some interesting relationships between the proteins or other bio-molecules involved.

From the identity

rank j(t) = #{i|I j(i)< t} = #{i|rank j

�

I j(i)
�

< rank j(t)}

it is notable that the value of M I(t) depends only on the rank vector

rank(t) :=
�

rank j(t j)
�

j=1,··· ,n

associated with t. This suggests normalising the map M I , say by introducing the associated

real-valued map from the unit hypercube [0,1]n into R defined by mapping each vector
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Figure 5: The fun
tion M I(t) for a 
ase with n= 2.
ρ = (ρ1, · · · ,ρn) ∈ [0,1]n onto the value that the map M I attains at the intensity vector

t = (t1, · · · , tn) = t(~ρ) for which

t j :=min(t ∈ Z : rank j(t) ≥ Nρ j)

holds.‡ At risk of abuse of notation, one may denote the resulting real-valued map defined

on [0,1]n also by M I , which are the functions (smoothed at their discontinuities) to which

the Figs. 5 and 7 below refer.

2.3. Results

Our method was applied to a data set consisting of 7 image stacks dubbed sa to sg, each

containing 11 fluorescence images (Fig. 1 shows two typical images from this data set). As

explained in 2.2, we determined optimal threshold values for each of the 7 stacks. Simul-

taneously, a group of scientists at Magdeburg University determined an alternative set of

threshold values using methods for estimating plausible thresholds based on technological

and biological considerations (cf. Tables 2 and 3).

It is notable that the sets of threshold values are quite similar, except for the 9th molec-

ular species where the threshold values differ substantially in all seven stacks, which can

be explained from the actual fluorescence images. In each data stack under investigation,

the image corresponding to the 9th molecular species differs significantly from most of the

images in the particular stack (cf. Fig. 6), being a rather ‘black-and-white’ than a grey-value

‡Clearly, this procedure is closely related to the copula construction discussed in [8] – cf. also [1] for further

applications of this concept in image analysis.
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ks sa � sd found by our M I-based method, followed by thosedetermined by te
hnology-based methods and by Otsu's method (su

essive data in parentheses).
Molecular Thresholds

species # sa sb sc sd

1 87 (88/86) 55 (59/55) 114 (112/124) 42 (44/69)

2 67 (64/68) 97 (99/96) 53 (58/53) 128 (141/130)

3 100 (98/98) 152 (157/151) 64 (75/64) 60 (61/61)

4 97 (96/102) 90 (93/92) 22 (25/22) 94 (94/94)

5 59 (55/68) 109 (114/111) 63 (68/64) 46 (48/48)

6 91 (83/87) 75 (78/76) 37 (37/38) 61 (63/63)

7 60 (62/59) 82 (86/83) 79 (86/79) 103 (111/104)

8 62 (66/61) 72 (76/72) 47 (50/47) 77 (72/77)

9 12 (50/54) 7 (57/51) 38 (37/62) 14 (55/81)

10 60 (61/57) 107 (107/110) 69 (77/69) 46 (51/45)

11 59 (66/79) 73 (73/78) 56 (66/75) 56 (54/67)Table 3: Values of thresholds for sta
ks se � sg, found by our M I-based method, together with thosedetermined by earlier te
hnology-based methods and by Otsu's method (su

essive data in parentheses).
Molecular Thresholds

species # se sf sg

1 110 (105/114) 48 (60/69) 108 (109/107)

2 71 (70/70) 62 (65/62) 59 (57/59)

3 81 (77/82) 41 (46/42) 105 (106/105)

4 61 (58/65) 89 (94/89) 140 (142/144)

5 122 (122/124) 67 (73/70) 117 (115/118)

6 51 (52/58) 43 (47/43) 109 (105/112)

7 75 (74/78) 61 (63/62) 158 (165/158)

8 37 (36/38) 74 (80/75) 85 (83/85)

9 39 (47/47) 15 (59/63) 33 (53/68)

10 129 (131/131) 37 (41/36) 136 (144/139)

11 83 (77/105) 41 (49/59) 119 (116/120)

image. As the optimal thresholds are obtained by maximising M I(t), it is helpful to look

at the function M I(t) (see Fig. 5), where for each i = 1, · · · , 11 we consider the i-section

of M I(t) through the maximum T ∗ = (t∗1, · · · , t∗11) of M I obtained using our algorithm -

i.e. the graph of the function fi : t 7→ M I(t∗1, · · · , t∗i−1, t, t∗i+1 , · · · , t∗11). Three such sections

for the sb stack are shown in Fig. 7. It can be seen immediately that the behaviour of M I(t)

along the 9-th axis is rather different from that along the other axes. Compared with other

sections, the 9-section is rather flat over a long interval including t∗9, corresponding to the

intensities of the 9th molecular species being either rather high or rather low. Thus many

threshold values lead to more or less the same decision regarding the presence or absence



A comparative method for analysing toponome image stacks 45

Figure 6: The �uores
en
e images 
orresponding to the mole
ular spe
ies 4 (left), 6, (
enter) and 9(right) from the sta
k sa, where ea
h image shows the same pie
e of nervous tissue.
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of that species, so it makes little difference whether the optimal threshold value t9 = 7 or

t9 = 57 (cf. Table 2) is chosen, whether for the ‘black-and-white’ image resulting from a

chosen threshold value (cf. Fig. 8) or for the map M I that is to be optimised. Actually, the

9th molecular species is not even a protein, but DNA - i.e. the 9th images indicate the pres-

ence or absence of mostly nuclear chromosomes (not a protein), so it is not surprising that

these images have a rather different character than the others. Moreover, it is somewhat

comforting to realise (and rather a corroboration than a refutation of our method) that the

distinction is detected by our M I-based method, resulting in a flat rather than a smoothly

curved shape.

For every image in the seven image stacks, our results are also compared in Tables 2 and

3 with those obtained by applying Otsu’s well known thresholding method [9,10], another

completely distinct approach that simply tries to separate “foreground” and “background”

in a gray-level image by minimizing “intra-class variance”. With the exception of the special

9-th species case, once again the results agree closely. Thus for the given data, a simple



46 A. Barysenka, A. W. M. Dress and W. SchubertTable 4: Time requirements for Otsu's algorithm, for di�erent sta
ks.
Stack sa sb sc sd se sf sg

Time (sec) 0.60 0.84 0.72 0.64 0.62 0.76 0.64

Figure 8: Binary images 
orresponding to the 9th mole
ular spe
ies from the sta
k sb, with thresholdvalue t9 = 7 (left) and t9 = 57 (right).
“background” and “foreground” separation apparently also identifies the fluorescent signal

quite well, producing image stacks with high mutual information content.

The running times for Otsu’s algorithm presented in Table 4 are much less than for our

approach, shown in Fig. 4. This is not surprising, since Otsu’s algorithm works with only

one image at a time whereas ours is designed to process whole stacks of images. (Even for

just 2 images, our search space is much larger than in Otsu’s case.) However, it seems to be

a biologically intriguing hint that both algorithms lead to roughly the same threshold values

in most of the cases considered by us so far - i.e. the biological mechanisms controlling the

spatial distribution of proteins in living cells are such that cells may actually try to increase

the efficiency of their protein networks by optimising the “mutual information content” of

that distribution.

3. Conclusion

Our method of simultaneously choosing individual threshold values for all images in

a given stack of grey-value images is based on maximising the “amount” of mutual in-

formation between different random variables, representing concentrations of different

molecular species across a biological probe. Apparently, this “comparative” approach ac-

counts well for the biological mechanisms governing cellular protein networks. It suggests

that cells organise the spatial structure of their protein networks in a highly non-random

fashion, by tending to optimise their “mutual information content”, and therefore most

probably their efficiency.

We believe our method has a major advantage, in that it provides two different but

closely intertwined kinds of information about the stacks of fluorescence images as follows.

(1) Biologically well-justified and fully user-independent threshold values obtained for

each image in a stack can be very useful, as demonstrated in the case the MELK data used
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in our study. Thus the threshold values obtained allow us to readily analyse the results

from MELK technology, providing potentially important information about the spatial dis-

tribution of simultaneously present (or absent) combinations of molecular species within

the biological object under investigation – information that can be used to support inter-

pretation and visualisation of these MELK results.

(2) Our method measures statistical (positive and negative) associations between the

random variables derived from a given image stack, or any subset of those variables, via

the value of the Multi-Information Function.

Further developments could include an investigation of the statistical and geometric

properties of the Multi-Information Function, and some improvement of the numerical op-

timisation procedure used to find the global maximum (cf. 2.2), to allow the processing of

much larger amounts of data.
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