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Abstract. This paper concerns the Monte Carlo method in pricing American-style op-

tions under the general class of exponential Lévy models. Traditionally, one must store

all the intermediate asset prices so that they can be used for the backward pricing in the

least squares algorithm. Therefore the storage requirement grows like O (mn), where

m is the number of time steps and n is the number of simulated paths. In this paper,

we propose a simulation method where the storage requirement is only O (m+ n). The

total computational cost is less than twice that of the traditional method. For machines

with limited memory, one can now enlarge m and n to improve the accuracy in pricing

the options. In numerical experiments, we illustrate the efficiency and accuracy of our

method by pricing American options where the log-prices of the underlying assets fol-

low typical Lévy processes such as Brownian motion, lognormal jump-diffusion process,

and variance gamma process.

Key words: American options, Monte Carlo simulation, memory reduction, exponential Lévy pro-

cesses.

1. Introduction

During the past decade, the exponential Lévy models have been popularized in finan-

cial modeling among researchers as well as practitioners, see e.g. [11]. The classical

Black-Scholes model [3] presumes that the price of the underlying asset follows a geo-

metric Brownian motion with constant volatility. However, the empirical observation in

real financial trading reveals that the implied volatility surface often displays a so-callel

volatility smile [18]. Moreover, the distribution of the asset return, assumed to be Gaus-

sian in the Black-Scholes model, exhibits a heavy tail [10], i.e. large moves of the market
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have decent probabilities to occur. As remedies for Black-Scholes, the exponential Lévy

models contain Lévy jumps in addition to the classical diffusion, so that the phenomena of

the volatility smiles and the heavy tails can be generically accounted for [11]. We remark

that the exponential Lévy model is a very general class of models. It includes well-known

examples such as the Black-Scholes model [3], lognormal jump-diffusion model [19],

double-exponential jump-diffusion model [15], variance gamma model [17], normal in-

verse Gaussian model [2], CGMY model [5], etc. We refer to the classical reference [11]

for further background in financial modeling by exponential Lévy processes. The present

paper concerns the use of Monte Carlo simulation in pricing American-style options under

the general framework of exponential Lévy models.

It is well known, see e.g. [13], that with the no-arbitrage principle the option price is

given by the discounted expected payoff under certain risk-neutral measure. This leads to

option pricing by the Monte Carlo method, for which the first application was made by

Boyle [4] in 1977. Since then, Monte Carlo method has been a popular tool in pricing fi-

nancial derivatives [13]. Yet, Monte Carlo method is known to have difficulties in handling

American-style options with early exercise feature. In 2001 Longstaff and Schwartz [16]

proposed a practical algorithm, named least squares method (LSM), to price American op-

tions. Their method is based on a backward-in-time induction, where at each time step the

continuation value of the option is estimated by a least square approximation.

However, one drawback of LSM is that, in order to compute the intermediate exercise

prices at all time steps, it requires the storage of all asset prices at all time steps for all sim-

ulated paths. Thus the total storage requirement grows like O (mn) where m is the number

of time steps and n is the number of simulated paths. The plain Monte Carlo method, re-

ferred as the full-storage method in this paper, is therefore computationally inefficient since

the accuracy of the simulation is severely limited by the storage requirement.

This storage problem can be alleviated by “bridge methods" such as the Brownian

bridge [9], the inverse Gaussian bridge [22], and the gamma bridge [23] — where the

memory requirement can be reduced to O (n log m). Nevertheless, one drawback is that

a specific bridge method can only work on the corresponding model that the price of the

underlying asset follows. Thus the Brownian bridge is suitable for Brownian motion, the

gamma bridge for the variance gamma process, and so on. That is to say, all bridge meth-

ods are model-dependent, which limits their use in applications.

In this paper, we develop a memory-reduction method, which does not require storing

of all intermediate asset prices. The storage is significantly reduced to O (m+ n). Coupled

with the least squares method proposed in [16], our memory-reduction method is appli-

cable to the general class of exponential Lévy processes. The main idea of our method

is to first generate the price process forward until the expiration time, and to store only

the seeds of the random number sequences at each time step. When computing the op-

tion prices backwardly, we recompute the just-in-time asset prices using the corresponding

seeds. Since the prices are recomputed exactly, the memory-reduction method gives the

same result as the full-memory method. The additional computational cost is the cost of

regenerating the random numbers corresponding to the asset prices. The total computa-

tional cost is therefore always less than twice that of the full-storage method.
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The remainder of the paper is organized as follows. Section 2 reviews the exponential

Lévy processes as well as the full-storage method. Section 3 gives the background of

random number generators and the concept of seeds. Section 4 introduces our memory-

reduction method. In Section 5, we show how the memory-reduction method is applied

to specific models — viz. the Black-Scholes model, Merton’s jump-diffusion model and the

variance gamma model. Numerical results are provided there to show the efficiency and

accuracy of our method, by comparing it with methods from other well-known approaches.

Concluding remarks are drawn in Section 6.

2. Exponential Lévy Processes and the Full-Storage Method

Let the risk-neutral price dynamics be modeled by the exponential Lévy process

St = S0 exp(r t + Lt), (2.1)

with the risk-free rate r and a Lévy process Lt . A Lévy process Lt is a stochastic process

with stationary independent increments, continuous in probability, having sample paths

that are right-continuous with left limits (“cadlag"), and satisfying L0 = 0. We note that

the increments, Ls− Lt for any s > t, are independent if the increments Ls− Lt and Lu− Lv

are independent random variables whenever the two time intervals [t, s] and [v,u] do not

overlap. The increments are stationary if the distribution of any increment Ls − Lt only

depends on s− t; and therefore increments with equally long time intervals are identically

distributed.

We first review the Monte Carlo simulation for computing American-style options. First

the time horizon is discretized into m time steps with equal length ∆t := (T − t0)/m as

t0 < t1 < ... < tm = T , or t j = t0+ j∆t, where t0 is the current time and T is the expiration

date of the option. Let Li, j denote the realization of Lt on the i-th path at time t j . They

are computed by adding the increment ∆Li, j := Li, j − Li, j−1 to Li, j−1 recursively at each

time step. Thus the whole path simulation process is to simulate the random numbers that

give ∆Li, j. We will denote by Σi, j = {ǫk
i, j
}ηi, j

k=1
the ordered set of [0,1] uniform random

numbers used in generating ∆Li, j. Here ηi, j is the number of random numbers required

to generate ∆Li, j. It is different for different process. The outline for a general of path

simulation procedure is given below:

Algorithm 2.1. (Path simulation)

For-loop: i = 1,2, ..., n

Set Li,0← 0

For-loop: j = 1,2, ..., m

1. Get the increment ∆Li, j by generating Σi, j

2. Li, j ← Li, j−1 +∆Li, j

3. Si, j ← S0 exp(r j∆t + Li, j)

End for-loop
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End for-loop

Algorithm 2.1 simulates the paths and then stores all intermediate asset prices Si, j for

later computation of the option prices, hence the storage requirement grows like O (mn).

We call this the full-storage method. Once we have all the intermediate asset prices Si, j, we

can price American-style options using the least square method (LSM) suggested by [16].

Let us recall it here. At the final exercise date T , the optimal exercise strategy for an

American option is to exercise it if it is in the money. This can be done as the terminal

asset prices Si,m are available for each path i. However, prior to T the optimal strategy is

to compare the immediate exercise value with the expected cash flows from continuing,

and then exercise if immediate exercise is more valuable. In the full-storage method, the

intermediate asset prices Si, j are available for each path i and at each time step j. Thus

the key to optimally exercising an American option is to identify the conditional expected

value of continuation. In [16], the cross-sectional information in the simulated paths

is used to identify the conditional expectation function. This is done by regressing the

cash flows from continuation on a set of basis functions depending on the current asset

prices Si, j. The fitted function from this regression is an efficient unbiased estimate of the

conditional expectation functions, from which one can estimate an optimal stopping rule

for the option.

Numerical illustration of LSM for pricing American put options under the Black-Scholes

framework can be found for instance in [16]. The computational complexity of the full-

storage method is O (mn).

3. Random Number Generators

In Step 1 of Algorithm 2.1, in order to get ∆Li, j we need to generate a set of [0,1]

uniform random numbers {Σi, j} for each time step j on each path i. Most programming

softwares already have built-in functions to generate [0,1] uniform random numbers. In

MATLAB, we can initialize the pseudorandom number generator with seed d by the com-

mand rand('seed',d), and then generate a pseudorandom sequence {ǫk} by repeatedly

using the command rand. In MATLAB, {ǫk} is generated by a simple multiplicative con-

gruential generator [20, Chapter 9]

d0 = d, dk = adk−1+ c mod M , for k ≥ 1; ǫk ≡ dk/M . (3.1)

The parameters in (3.1) are chosen as a = 16807, c = 0, M = 231 − 1, due to Park and

Miller [21].

Thus a pseudorandom sequence is actually not random but deterministic, in the sense

that it is generated according to some formula and hence can be regenerated exactly if the

seed d0 is known. For example, the MATLAB commands
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will output different e if the seed d is changing every time, but output the same e if d is

fixed. By extracting and remembering a proper seed, we can regenerate part of a pseu-

dorandom sequence as we desire. More specifically, suppose we have already generated

a sequence {ǫk}pk=1
, and then we want to regenerate only {ǫk}pk=q

, i.e. the part of the

sequence beginning at ǫq. All we need is to extract the seed after generating ǫq−1. The

seed-extracting command in MATLAB is rand('seed'). Thus given the sequence {ǫk}pk=1

generated byrandn−−−→ ǫ1 . . .
randn−−−→ ǫq−1


=randn('seed')−−−−−−−−−−→ extract seed 
 randn−−−→ ǫq . . .
randn−−−→ ǫp,

we can regenerate {ǫk}qk=p
byrandn('seed',
)−−−−−−−−−−→ set seed 
 randn−−−→ ǫq randn−−−→ ǫq+1

randn−−−→ ......
randn−−−→ ǫp

Some computer languages only provide [0,1] uniform random numbers. When we sim-

ulate Lévy processes, we will also need to generate non-uniform random variables such as

the standard normal random variables, Poisson random variables, and the gamma random

variables. Various kinds of methods, say the inverse transform method and the acceptance-

rejection method, can be used to obtain non-uniform random variables based on [0,1]

uniform random numbers. For standard normal random numbers, the most commonly

used method is the Box-Muller transformation [12, pp. 235]. For Poisson random vari-

ables, the inverse transform method is a standard method [13, pp. 128]. For complete-

ness, we provide the Best’s generator for the gamma random variables in the Appendix

— cf. [12, pp. 410 and pp. 420]. We will be using these methods to generate the needed

random variables. In the following, we will use Z ∼ N (0,1) and ǫ ∼ U [0,1] to denote

random numbers Z and ǫ distributed as standard normal and [0,1] uniform respectively.

4. The Memory-Reduction Method

In this Section, we present our memory-reduction method which does not require one

to store the intermediate asset prices {Si, j}n,m
i, j=1

when computing the option prices. In this

method, each increment ∆Li, j is generated twice without being stored while the corre-

sponding intermediate asset price Si, j is generated only once in the backward pricing of

the option.

As in the full-storage method, we compute Li, j = Li, j−1+∆Li, j by using the increments

∆Li, j. But in our memory-reduction method, we use a different way to generate the set

of random numbers Σi, j to obtain ∆Li, j—we generate them time-wise. More precisely, we



Memory-reduction method for pricing American-style options 25

obtain the increments ∆Li,1 by generating the random numbers in Σi,1 on each path i,

i = 1, ..., n, for the time step j = 1 first. Then we obtain ∆Li,2 by generating Σi,2 on all

paths for j = 2, etc. For each time step j, at the last path, i.e. path n, we extract and

save the current seed d j for later use. Given an arbitrary seed d1, the procedures can be

illustrated as follows (cf. Phase 2 in the following Algorithm 4.1):

set seed d1→∆L1,1(Σ1,1)→∆L2,1(Σ2,1)→ ......→∆Ln,1(Σn,1)→
extract seed d2→∆L1,2(Σ1,2)→∆L2,2(Σ2,2)→ ......→∆Ln,2(Σn,2)→
extract seed d3→ ......
...

extract seed dm→∆L1,m(Σ1,m)→∆L2,m(Σ2,m)→ ......→∆Ln,m(Σn,m)

Note that we need an m-vector to hold {d j}mj=1 and an n-vector to hold {Li, j}ni=1. That

n-vector can be re-used for every time step j.

When computing the option price we move backward in time, and compute on each

path i the corresponding asset prices Si, j = S0 exp(r j∆t + Li, j) at each time step j. This

requires Li, j. Given Li, j+1, to obtain Li, j, we only need to regenerate ∆Li, j+1. This can be

done by reproducing the random number sequence in Σi, j+1 using the seed d j+1, i.e.

set seed d j →∆L1, j+1(Σ1, j+1)→ ......→∆Ln, j+1(Σn, j+1)

Once we get all the Si, j for the time step j, we can compute the option prices on all paths

at time step j by using the LSM method in [16]. We summarize our memory-reduction

method in Algorithm 4.1 below:

Algorithm 4.1.

Phase 1 (path simulation):

Set L i
0← 0 for i = 1,2, ..., n

For-loop: j = 1,2, ..., m

1. Extract the current seed d j

For-loop: i = 1,2, ..., n

2. Get the increment ∆Li, j by generating Σi, j

3. Li, j ← Li, j−1 +∆Li, j

End for-loop

End for-loop

Phase 2 (price computation):

For-loop: j = m, ..., 1

If j < m,

4. Recall the seed d j+1
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For-loop: i = 1,2, ..., n

5. Get the increment ∆Li, j+1 by regenerating Σi, j+1

6. Li, j ← Li, j+1 −∆Li, j+1

7. Si, j ← S0 exp(r j∆t + Li, j)

End for-loop

End if

Compute the current option price on all paths using the LSM method

End for-loop

We note that our memory-reduction approach requires only three vectors: an m-vector

for storing the seeds {d j}mj=1 in Steps 1 and 4, an n-vector to hold {Li, j}ni=1 for the current

time-step j in Steps 3 and 6 and an n-vector to hold {Si, j}ni=1 for the current time-step j in

Step 7. The additional computational burden is Steps 1–4 in Phase 1, where we generate

the paths and remember the seeds. Since in Phase 2 we are regenerating the exact paths as

in the full-storage method, it is clear that the results obtained by the full-storage method

and the memory-reduction method are exactly the same. Moreover, since path generation

is only one part of all the computations required in the algorithm (the other part—the

major part—being the least-squares methods of [16]), we see that the total cost of our

method is less than twice that of the full-storage method. We will illustrate these facts

numerically in Section 5. We note that in order to use our Algorithm 4.1 for different kinds

of option, we only need to specify how ∆Li, j in Step 2 are generated.

5. Numerical Examples

In this Section, we apply our method to different models in the class of exponential

Lévy processes. In Subsection 5.1, we consider the Black-Scholes model and compare our

memory-reduction method with the Brownian-bridge method and also the Crank-Nicolson

method. In Subsections 5.2 and 5.3, numerical results are reported for both finite-activity

and infinite-activity jump processes, respectively. We compare our results with a binomial

tree method and an integro-differential equation method. Regarding the LSM we used, we

estimate the continuing values of an option on those “in-the-money" samples and choose

the first three Laguerre polynomials plus a constant term as our basis functions throughout

the section.

5.1. Black-Scholes model

As an illustration for how to use the memory-reduction method, we begin with the

Black-Scholes model:
dSt

St

= rd t +σdWt , (5.1)

where r is the risk-free rate, σ is the volatility, and Wt is the standard Wiener Process.

The memory-reduction method for this simple case was considered in [6], but we repeat
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it here as an introduction to our method. By Itô’s lemma, the Lt in (2.1) becomes Lt =

−1

2
σ2 t +σWt and hence

∆Li, j = −
1

2
σ2∆t +σ

p
∆tZi, j (5.2)

where Zi, j ∼ N [0,1]. By the Box-Muller transformation [12, pp. 235], a pair of Zi, j can

be generated by a pair of ǫi, j ∼N [0,1]. Hence here the set Σi, j in Algorithm 4.1 has only

one element ǫi, j. Now we can apply Algorithm 4.1 by specifying the procedures in Step 2

as follows:

Algorithm 5.1 (Black-Scholes).

1. Generate Zi, j ∼N (0,1) using ǫi, j ∼U [0,1]

2. ∆Li, j ←−1

2
σ2∆t +σ

p
∆tZi, j

Next we compare our memory-reduction method with the Brownian-bridge method

in [9] and the Crank-Nicolson method in [24] on pricing American put options under

model (5.1). Note that the results obtained by the full-storage method and the memory-

reduction method are exactly the same, since the same paths are used to price the option.

In our test, we choose the risk-free rate r = 0.1, the volatility σ = 0.4, and the expiration

date T = 0.5 year. In Table 1, “CNM" stands for the results computed by the Crank-Nicolson

method given in [24]. The means and the standard deviations after 25 trials are shown

under “Mean" and “STD" for both the memory-reduction method and the Brownian-bridge

method. The two “Error" columns represent the difference between the corresponding

“Mean" and “CNM". We observe that the accuracy is almost the same for all methods.

Table 2 presents the average CPU times for five consecutive trials of each method. We see

that our method brings about slight additional cost, but significantly reduces the storage

requirement when compared with the other two methods. We also observe from Table 2

that, for all three methods there, the CPU time increases linearly with respect to m and n

if either one is fixed. This is as expected, since the CPU times should be increasing like

O (mn).

5.2. Merton’s jump-diffusion model

Merton’s jump-diffusion process [19] can be described by the following stochastic dif-

ferential equation under risk-neutral measure Q (generally not unique):

dSt

St−
= rd t +σdWt + dJt −̟d t. (5.3)

Here t− denotes the instant immediately before time t, Jt =
∑Nt

k=1
(Yk − 1) represents

sudden jumps in price evolution, Nt is a Poisson counting process with intensity λ, and
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k-S
holes model with n = 105 (50,000 plus 50,000 antitheti
) and m= 64.
Memory-reduction Brownian- bridge

S0 CNM Mean STD Error Mean STD Error

6 4.0000 3.99220 0.00002 −0.00780 3.99220 0.00005 −0.00780

8 2.0951 2.09459 0.00192 −0.00051 2.09311 0.00226 −0.00199

10 0.9211 0.92117 0.00167 0.00007 0.92059 0.00232 −0.00051

12 0.3622 0.36190 0.00208 −0.00030 0.36181 0.00231 −0.00039

14 0.1320 0.13225 0.00125 0.00025 0.13184 0.00127 −0.00016Table 2: CPU time in se
onds and memory requirement when S0 = 10.
m 32 32 64 128 Memory

n 20,000 40,000 80,000 20,000 requirement

Full-storage 4.25 8.59 17.19 4.25 8.50 16.98 n(m+ 1)

Memory-reduction 4.37 8.87 17.74 4.37 8.78 17.53 m+ 2n

Brownian-bridge 4.58 9.22 18.53 4.58 9.21 18.43 n(log2 m+ 1)

{log Yk}Nt

k=1
are independent and identically distributed N (α,β2) numbers. Also in (5.3),

̟= λEQ[Yk − 1] = λ

�

exp

�

α+
1

2
β2

�

− 1

�

(5.4)

is the compensator such that EQ[exp(−r t)St] = S0. Rewriting (5.3) as (2.1), we have

Lt = −
1

2
σ2 t +σWt +

Nt
∑

k=1

log(Yk)−̟t. (5.5)

Thus for Merton’s jump-diffusion model, Step 2 in Algorithm 4.1 is

Algorithm 5.2 (Merton).

1. Generate Ni, j ∼Poisson(λ∆t) using the inverse method [13, pp. 128]

2. Generate Z1
i, j
∼N (0,1)

3. If Ni, j > 0, generate Z2
i, j ∼N (0,1)

4. ∆Li, j ← (−1

2
σ2 −̟)∆t +σ

p
∆tZ1

i, j
+αNi, j + β

p

Ni, j Z
2
i, j

Now we test our method on an American put option under Merton’s jump-diffusion

model. The underlying stock price S0 at the current time is $40. The parameter values

are r = 8%, σ =
p

0.05, λ = 5, and β =
p

0.05. We let α = −1

2
β2 such that EQ[Yi] = 1.

The numerical results are reported in Table 3, where the columns “Mean" and “STD" are
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Strike K Amin’s Mean STD Error

Expiring time T = 0.25 year

30 0.674 0.6741 0.0064 0.0001

35 1.688 1.6872 0.0121 −0.0008

40 3.630 3.6248 0.0174 −0.0052

45 6.734 6.7288 0.0256 −0.0052

50 10.696 10.6867 0.0203 −0.0093

Expiring time T = 1 year

30 2.720 2.7191 0.0132 −0.0009

35 4.603 4.6064 0.0204 0.0034

40 7.030 7.0242 0.0199 −0.0058

45 9.954 9.9461 0.0326 −0.0079

50 13.318 13.3050 0.0326 −0.0130Table 4: CPU time in se
onds and memory requirement when T = 1, K = 40.
m 50 50 100 200 Memory

n 20,000 40,000 80,000 20,000 requirement

Full-storage 22.05 43.86 87.77 22.05 43.52 86.88 n(m+ 1)

Memory-reduction 36.93 73.04 146.35 36.93 73.14 146.06 m+ 2n

the means and the standard deviations obtained after 25 trials. We use the 200-time-step

discrete time binomial tree model in [1] as a benchmark, and it is listed under the heading

“Amin’s". We observe that the two methods agree up to 2 decimals. Table 4 gives the

average CPU times for five consecutive runs of the methods. Again the CPU time by our

method is always less than twice of that by the full-storage method.

5.3. Variance gamma model

A variance gamma (VG) process [17] with parameters µ ∈ R, σ > 0, and ν > 0 can

be represented as a time-changed Brownian motion. Let Bt = µt + σWt be a Brownian

motion with drift µ and volatility σ. Define a gamma process Gt with independent gamma

increments of mean h and variance νh over any non-overlapping time intervals of length h,

or Gt ∼ γ( t

ν
,ν) ∼ νγ( t

ν
). Then the three-parameter VG process X t is defined by X t = BGt

and its characteristic function is

ΦX t
(u) = E[exp(iuX t)] =

 

1

1− iµνu+ 1

2
σ2νu2

!
t

ν

. (5.6)

Accordingly, the asset price process St is modeled as

St = S0 exp((r − q)t + X t −̟t) (5.7)
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e gamma model with n= 105 and m= 56.
Strike K PIDE Mean STD Error

1200 35.530 35.363 0.288 −0.167

1260 48.798 48.642 0.306 −0.156

1320 65.991 65.850 0.404 −0.141

1380 87.991 87.777 0.345 −0.214Table 6: CPU time in se
onds and memory requirement when K = 1320.
m 50 50 100 200 Memory

n 20,000 40,000 80,000 20,000 requirement

Full-storage 58.61 117.41 234.93 58.61 118.58 240.12 n(m+ 1)

Memory-reduction 112.53 225.34 450.73 112.53 229.05 462.36 m+ 2n

under the risk-neutral measure Q (generally not unique) with a continuous dividend yield

of q and a constant continuously compounded interest rate of r. In model (5.7), the risk-

neutral drift rate is r−q and the compensator̟ satisfies exp(̟) = EQ[exp(X t)] such that

EQ[exp(−(r − q)t)St] = S0. By evaluating ΦX t
(u) at −i, we have

̟= −1

ν
log

�

1−µν − 1

2
σ2ν

�

. (5.8)

Thus Step 2 in Algorithm 4.1 becomes:

Algorithm 5.3 (variance gamma).

1. Generate Zi, j ∼N (0,1)

2. Generate ∆Gi, j ∼ γ(∆t

ν
) using Best’s generator given in Algorithm A.1

3. ∆Li, j ← µ∆Gi, j +σ
p

∆Gi, j Zi, j −̟∆t

Now consider an American put option with maturity T = 0.56164 written on a stock

with current price S0 = 1369.41. The VG parameters after model calibration are given

by r = 0.0541, q = 0.012, σ = 0.20722, ν = 0.50215, and θ = −0.22898. We test our

method on various strike prices K and with m = 56 ≈ T/0.01. The results are presented

in Table 5. For comparison, results obtained by the partial integro-differential equation

approach in [14] are given under “PIDE". As usual, the “Mean" and “STD" are the means

and the standard deviations respectively, obtained after 25 trials. The difference between

“Mean" and “PIDE" are computed in the column “Error". Again, the numerical results

confirm the accuracy of our method. The average CPU times of five consecutive trials are

given in Table 6, and the CPU time by our method is again bounded above by twice that

by the full-storage method.
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5.4. Remarks on the efficiency of the memory-reduction method

In the above three subsections, we have illustrated how to apply our memory-reduction

method to specific exponential Lévy models. For both the full-storage method and the

memory-reduction method, the computational cost is composed of two parts: the cost in

path simulation and the cost in price computation. Compared with the full-storage method,

the cost in path simulation is almost doubled in the memory-reduction method while the

cost in price computation of both methods are the same. Hence our method always uses

less than twice the time required by the full-storage method. In the following, we mention

two factors affecting this overhead cost.

In Table 7, we give the ratio of the timing between the two methods in the “Ratio"

rows for m = 50 and n = 20,000. In the table, the number in the square bracket [·] for

each model is the average CPU time in seconds for generating 1,000 sample paths with

50 time steps. We observe from the table that the cost in path simulation in the Black-

Scholes model is much less than that in the variance gamma model. As a consequence, our

memory-reduction method almost produces no additional computational cost in the Black-

Scholes model, while in the variance gamma model the CPU time of our method nearly

doubles that of the full-storage method.

Another factor is the number of Si, j that are in-the-money. The rows “In-the-money

(%)" in Table 7 count the average percentages of those “in-the-money" Si, j in the m · n
samples in 5 trials. As the difference K−S0 goes up, the number of “in-the-money" samples

goes up, which leads to an increase in the cost of price computation. Consequently, the

ratio goes down.

6. Conclusion

In this paper, we propose a new simulation technique for pricing American options

under exponential Lévy processes. It reduces the storage requirement to O (m+ n). For

machines with limited memory, we can now enlarge m and n to improve the accuracy of

the pricing. Furthermore, our memory-reduction method can easily be extended to pric-

ing other path-dependent options with early-exercise features, such as Asian Bermudan

options or multi-asset American options. Hence our method can be valuable in investi-

gating option prices, especially those written on single or multiple assets with complex

American triggers, long-term options, or any combination of these properties. We also re-

mark that our memory reduction method has a natural extension to other relevant models

such as stochastic volatility models, as long as the forward-path method (with no memory

reduction) uses pseudorandom numbers in Monte Carlo simulation. However, the imple-

mentation becomes somehow more subtle, as different levels of randomness arise. We plan

to consider such extensions in our future work.
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onds with m= 50, n= 20, 000.
Black-Scholes model [0.0331]

S0 6 8 10 12 14

“In-the-money" (%) 98.9 87.3 49.0 15.5 4.7

Full-storage 13.8 11.52 6.68 2.74 1.48

Memory-reduction 14.11 11.78 6.89 2.87 1.61

Ratio 1.022 1.023 1.031 1.047 1.088

Merton’s model (T = 1) [1.62]

Strike K 30 35 40 45 50

“In-the-money" (%) 21.6 33.6 52.4 69.7 79.1

Full-storage 17.94 19.37 21.65 23.71 24.87

Memory-reduction 32.31 33.86 36.02 38.11 39.29

Ratio 1.801 1.748 1.664 1.607 1.580

Variance gamma model [3.85]

Strike K 1200 1260 1320 1380

“In-the-money" (%) 11.8 16.3 23.1 37.2

Full-storage 57.90 58.51 59.37 61.04

Memory-reduction 112.47 113.18 113.91 115.61

Ratio 1.942 1.934 1.919 1.894

A. Appendix

For completeness, here we give the algorithm for generating the gamma random vari-

ables. We also give the commands in FORTRAN and MATHEMATICA for finding the seeds

of a sequence of random numbers.

Algorithm A.1 below generates Gamma random variables γ(a) with density

p(x) =
x a−1

Γ(a)
e−x

when a ≥ 1. For a < 1, one uses the transformation γ(a) = γ(1+a)U1/a with U ∼U [0,1].

See [12, pp. 410 and pp. 420] for a comprehensive discussion.

Algorithm A.1 (Best’s generator).

1. b← a− 1, c← 3a− 3

4

Repeat

2. Generate random variables U , V ∼U [0,1]

3. W ← U(1− U), Y ←p c

W
(U − 1

2
), X ← b+ Y

4. If X < 0, go to Repeat

5. Z ← 64W 3V 2

Until log(Z)≤ 2b log( X

b
− Y )
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Return X

In FORTRAN 90 [8], the command to get aU [0,1] number is rand(). The commands

to set the seed to d are:
all random_seed(size=k)seed(1:k)=d
all random_seed(put=seed(1:k))
where k is the number of 32-bit words used to hold the seed. The commands to extract

the current seed d are:
all random_seed(get=
urrent(1:k))d=
urrent(1:k)
In MATHEMATICA [25], the seeds are set by “SeedRandom[d℄". To extract the current

seed, use “
=$RandomState". MATHEMATICA provides U [0,1] numbers with the com-

mand “Random[ ℄".
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