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Abstract. The alternating direction method of multipliers (ADMM) is applied to a con-

strained linear least-squares problem, where the objective function is a sum of two

least-squares terms and there are box constraints. The original problem is decomposed

into two easier least-squares subproblems at each iteration, and to speed up the inner

iteration we linearize the relevant subproblem whenever it has no known closed-form

solution. We prove the convergence of the resulting algorithm, and apply it to solve

some image deblurring problems. Its efficiency is demonstrated, in comparison with

Newton-type methods.
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1. Introduction

In this paper, we consider the constrained linear least-squares problem

min
l≤x≤u

¨

1

2
‖Ax− c‖2 +

λ2

2
‖Bx−d‖2
«

, (1.1)

where A, B ∈ Rm×n with m ≥ n, c,d ∈ Rm, λ ∈ R, l ∈ (R∪−∞)n and u ∈ (R ∪+∞)n are

given, and ‖ · ‖ denotes the 2-norm. The box constraints involved are to be interpreted

entry-wise — i.e. li ≤ x i ≤ ui , ∀i ∈ {1,2, · · · , n}.
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Clearly, the problem (1.1) can be written as minl≤x≤u ‖Cx−e‖2/2 for some C ∈ R2m×n

and e ∈ R2m, and there are standard solution procedures such as the Newton-type or in-

terior point methods [9, 23, 29]. However, our emphasis here is on applications where A

and B are two different types of operator, and the design of better algorithms to capture

their properties — e.g. in image deblurring, where A is a blurring operator (integral oper-

ator) and B is a regularization operator (differential operator). When d = 0 (1.1) becomes

the Tikhonov regularization with c the observed image, λ2 the regularization parameter,

and x the image to be restored. The box constraints represent the dynamic range of the

image — e.g. li = 0 and ui = 255 for an 8-bit gray-scale image [37]. In our numerical

experiments discussed in Section 4, by imposing the box constraints we find that the peak

signal-to-noise ratio of the restored images can be increased by 0.2 to 2.2 decibles, so it

pays to solve the constrained problem. In addition, (1.1) also serves as one of the two

subproblems for the splitting algorithm in Ref. [22], which solves the deblurring problem

with total-variational regularization where B = I (the identity matrix) and d is an approx-

imation of x [32]. Other applications of (1.1) include contact problems, control problems,

and intensity-modulated radiotherapy problems [4,10].

In this paper, we develop fast solvers for the problem (1.1) that exploit the properties of

A and B. In the literature, algorithms for solving (1.1) are essentially Newton-type methods

in the context of interior point methods — e.g. some that have been proposed to solve the

nonnegative least-squares problem [9,29]. Interior point methods are particularly tailored

to ill-posed problems arising in image reconstruction [5, 31]. By formulating the Karush-

Kuhn-Tucker conditions as a system of nonlinear equations, a Newton-type method was

proposed to solve the nonnegative least-squares problem [3]. A precondition technique

was applied to deal with the resulting ill-conditioned inner linear system at each Newton

iteration, when the iterate approaches a solution on the boundary of the feasible set. This

work inspired the reduced Newton method presented in Ref. [24], to solve a subsystem

of the inner linear system corresponding only to components of the iterate that are not

close to the boundary. Since this subsystem is smaller and less ill-conditioned compared

to the subsystem in Ref. [3], the reduced Newton method outperforms projection-type

methods and some interior point Newton methods for image deblurring problems. A quite

recent approach is the affine scaling method [7], which solves the Newton steps entry-wise

by combining non-monotone line-search strategies and the cyclic version of the classical

Barzilai-Borwein stepsize rule [1].

Here we apply the alternating direction method of multipliers (ADMM) originally pro-

posed in Refs. [13, 15] to the problem (1.1), where we note the objective function is a

sum of two least-squares terms linked together by a common variable x. By introducing an

auxiliary variable, we separate the two least-squares terms and apply the ADMM directly.

The ADMM decomposes (1.1) into two easier subproblems, each of which is a least-squares

problem with only one quadratic term in the objective function. However, if neither of the

matrices A or B in (1.1) is the identity matrix so the respective ADMM subproblem does

not have a closed-form solution, it is usually difficult to solve. In this paper, we apply a

linearization such that a closed-form solution to the resulting linearized ADMM subprob-

lem can be derived readily. For image deblurring problems, the cost per ADMM iteration
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is about O(n log n), where n is the number of pixels in the image. We prove that our lin-

earized ADMM method converges to the minimizer of (1.1), and then show the efficiency

of the method by testing it on some image deblurring problems.

The rest of this paper is organized as follows. In Section 2, we present the linearized

ADMM approach to solve (1.1), and in Section 3 we establish the convergence of the

derived algorithms. Our numerical tests of the linearized ADMM, in comparison with

some existing Newton-type methods, are reported in Section 4. Finally, some conclusions

are reached in Section 5.

2. The Linearized ADMM Approach

In this Section, we present the linearized ADMM approach and derive the algorithms

for solving (1.1). The problem is first reformulated so that the ADMM can be applied, and

we then consider the ADMM subproblem linearization where the closed-form solution is

readily derived.

2.1. The ADMM approach

To some extent, the ADMM is an improved variant of the classical augmented La-

grangian method (ALM) [21, 30] for solving linearly constrained convex programming

problems [21, 30] when the objective functions are in a separable form — i.e. a sum of

individual functions without crossed variables. The efficiency of the ADMM has been well

documented in the context of convex programming and variational inequalities — e.g. see

Refs. [12, 16, 19, 38]. Recently, the ADMM has been used to successfully address many

applications in the area of image processing [8,11,27,28,33,34,36], and the relationship

between the ADMM and the split Bregman method [17] has been discussed [11,33,34].

In order to apply the ADMM, we first reformulate (1.1) as

min
x∈Rn, y∈Ω

¨

1

2
‖Ax− c‖2+

λ2

2
‖By− d‖2 : x− y = 0

«

, (2.1)

where Ω := {l ≤ x ≤ u | x ∈ Rn} and y is an artificial variable. Strictly speaking, (2.1) is a

typical linearly-constrained convex programming problem, so the ALM is readily applica-

ble. Specifically, from the augmented Lagrangian function of (2.1)

LA (x,y,z,β) =
1

2
‖Ax− c‖2 +

λ2

2
‖By− d‖2 − 〈z,x− y〉+

β

2
‖x− y‖2, (2.2)

where z ∈ Rn is the Lagrange multiplier and β > 0 is a penalty parameter for violation of

the linear constraints, the ALM iterative scheme for (2.1) to render (xk+1,yk+1,zk+1) from

(xk,yk,zk) at each step is






(xk+1,yk+1)← arg min
x∈Rn,y∈Ω

LA (x,y,zk,β),

zk+1← zk − β(xk+1− yk+1) .
(2.3)



Linearized Alternating Direction Method of Multipliers for a Constrained Linear Least-Squares Problem 329

It is notable that the direct application of the ALM (2.3) treats (2.1) as a generic linearly

constrained convex programming problem without any consideration of its separable struc-

ture, such that the variables xk+1 and yk+1 must be solved simultaneously. In contrast, the

ADMM decomposes the minimization in (2.3) into two subproblems to solve for xk+1 and

yk+1 consecutively, under the scheme















xk+1← arg min
x∈Rn
LA (x,yk,zk) ,

yk+1← arg min
y∈Ω
LA (x

k+1,y,zk) ,

zk+1← zk − β(xk+1− yk+1) .

(2.4)

The ADMM therefore belongs to the class of splitting methods due to this decomposition

feature, which enables separable structures in the objective function of (2.1) to be ex-

ploited, as in the x-subproblem in (2.4) with the closed-form solution discussed below.

Let us now proceed to consider the solution of the two subproblems in (2.4), where our

linearizing idea is introduced.

The x-subproblem in (2.4) is a least-squares problem without constraints, correspond-

ing to the normal equation

(A⊤A+β I)x = A⊤c+ zk + βyk . (2.5)

For image deblurring problems, A is a spatially-invariant blurring operator. Under periodic

boundary conditions for x, A⊤A becomes a block circulant matrix with circulant blocks [6],

so it can be diagonalized by the two-dimensional fast Fourier transform (FFT). Thus (2.5)

can be solved exactly by using two FFTs and taking one inverse FFT [6,26], so the compu-

tational cost is O(n log n). It is easy to show that the y-subproblem in (2.4) is equivalent

to

min
y∈Ω







λ2

2
‖By− d‖2 +

β

2
















y− xk+1 +
zk

β
















2







, (2.6)

with solution implicitly given by the projection equation

y= PΩ
¦

y−
�

(λ2B⊤B+ β I)y− (λ2B⊤d+ βxk+1 − zk)
�©

, (2.7)

where PΩ denotes the projection operator ontoΩ under the Euclidean norm. For deblurring

problems with Tikhonov regularization (e.g. see [18]), we have B = I in (2.1) so the

explicit closed-form solution of (2.7) is

y= PΩ

�

1

λ2 +β

�

λ2d+ βxk+1− zk
�

�

. (2.8)

On the other hand, if B 6= I a closed-form solution of (2.7) is generally unavailable, so we

propose a linearization to obtain a useful approximate solution for y.
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2.2. The linearized ADMM approach for (2.1)

When there is no known closed-form solution to (2.6), we propose to treat the y-

subproblem efficiently by linearizing the quadratic term λ2‖By− d‖2/2 and adopting the

linearized subproblem as a surrogate for (2.6). The closed-form solution of the linearized

subproblem can easily be derived, so the computational cost of the inner iteration in (2.4)

is reduced. On linearizing the first quadratic term in (2.6), the subproblem reduces to

yk+1 = arg min
y∈Ω

n

λ2
�

〈B⊤(Byk − d),y− yk〉+
τ

2
‖y− yk‖2
�

+
β

2








y− xk+1 +
zk

β










2o

, (2.9)

where the parameter τ of the proximal term will be chosen judiciously later. The optimality

condition of (2.9) leads to the variational inequality

(y′−yk+1)⊤
¦

λ2B⊤(Byk−d) +
�

zk−β(xk+1−yk+1)
�

+λ2τ(yk+1−yk)
©

≥ 0 , ∀y′ ∈ Ω , (2.10)

yielding the explicit solution

yk+1 = PΩ

�

1

λ2τ+ β

�

−λ2B⊤(Byk − d) +λ2τyk − zk + βxk+1
�

�

. (2.11)

The computation to obtain yk+1 is dominated by the matrix-vector multiplication in B⊤Byk.

However, for image deblurring problems B is a discretized differential operator (e.g. the

discrete gradient operator) that is sparse, so the cost of the matrix-vector multiplication is

only O(n)— cf. [35].

The combination of (2.5) with (2.11) constitutes our linearized ADMM method, where

closed-form solutions exist for not only the x-subproblem but also the y-subproblem, such

that the computational cost at the inner iterations in (2.4) is low — e.g. O(n log n) for

image deblurring problems.

2.3. Numerical algorithms based on the linearized ADMM approach

Based on our discussion in Sections 2.1 and 2.2, we now derive two different algo-

rithms for solving (1.1), which stem from two different formulations of the problem.

Let ρ(·) denote the spectral radius. Our first algorithm is based on formulation (2.1):

Algorithm 1: The first linearized ADMM algorithm for (1.1)

Input A, B, c, d, λ > 0, β > 0 and τ > ρ(B⊤B). Initialize (y,z) = (y0,z0), k = 0.

While not converged, Do

1) Generate xk+1 by solving (2.5): (A⊤A+β I)xk+1 = A⊤c+ zk + βyk.

2) Generate yk+1 by (2.11):

yk+1 = PΩ

n

1

λ2τ+β
·
�

−λ2B⊤(Byk − d) +λ2τyk − zk + βxk+1
�
o

.

3) Update zk via zk+1 = zk − β(xk+1− yk+1).

End Do
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However, we can reformulate (1.1) in another way, where the ADMM is also applicable —

e.g. (1.1) can be reformulated as

min
x∈Ω, y∈Rn

¨

1

2
‖Ax− c‖2+

λ2

2
‖By− d‖2 : x− y = 0

«

, (2.12)

so on linearizing the quadratic term ‖Ax − c‖2/2 in analysis similar to that in Sections 2.1

and 2.2 we readily obtain another linearized ADMM algorithm:

Algorithm 2: The second linearized ADMM algorithm for (1.1)

Input A, B, c, d λ > 0, β > 0 and τ > ρ(A⊤A). Initialize (y,z) = (y0,z0), k = 0.

While not converged, Do

1) Generate yk+1 by solving (λ2B⊤B+ β I)yk+1 = λ2B⊤d− zk + βxk.

2) Generate xk+1 by

xk+1 = PΩ

n

1

τ+β

�

τxk + zk + βyk+1− A⊤(Axk − c)
�
o

.

3) Update zk via zk+1 = zk − β(xk+1− yk+1).

End Do

Remark 2.1. To ensure convergence, we require the proximal parameter τ to be suffi-

ciently large — viz. τ > ρ(B⊤B) for Algorithm 1 and τ > ρ(A⊤A) for Algorithm 2, re-

spectively. For some applications such as image deblurring problems, the estimation of

ρ(A⊤A) and ρ(B⊤B) is not difficult. Indeed, when A is a blurring operator we usually

normalize (i.e. require ‖A‖∞ = 1) to ensure that the blurred image remains within the

given dynamic range — e.g. ρ(A⊤A) = ‖A‖2 ≤ ‖A‖∞‖A‖1 = 1 for a symmetric blurring

A. For a discrete gradient operator B, we have the discrete Laplacian operator B⊤B, and

hence ρ(B⊤B) ≤ 8 from Gerschgorin’s theorem [35]. Even for generic operators, if we as-

sume periodic boundary conditions then the operators can be diagonalized by Fast Fourier

Transform (e.g. See [6,26]), so their spectral radius can be computed easily. One can also

employ some backtracking technique to identify an appropriate τ— e.g. see [2].

To clarify our main idea, let us fix the value of the penalty parameter β as a positive

constant in our proposed algorithms. For strategies that adjust this parameter dynamically,

see Ref. [20] for example.

3. Convergence

In this Section, we establish the convergence of our two proposed algorithms. We only

prove the convergence of Algorithm 1 and omit the proof for Algorithm 2, since it is quite

similar. We assume that a minimizer of (1.1) exists, as it does if ker(A⊤A)∩ ker(B⊤B) = ;,
when A⊤A+ λ2B⊤B is positive definite such that (1.1) is strictly convex and admits a
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unique solution x∗ for arbitrarily given c and d — e.g. see Ref. [4]. For image deblur-

ring problems, A and B respectively represent a blurring operator and a regularization

operator — and since a blurring operator is an integral operator (a low-pass filter) but

a regularization operator is a differential operator (a high-pass filter), we generally have

ker(A⊤A)∩ ker(B⊤B) = ;.
We first note that (2.1) is equivalent to finding (x∗,y∗,z∗) ∈ Rn×Ω×Rn := Υ such that







AT (Ax∗− c)− z∗ = 0,

(y ′ − y∗)T (λ2B⊤(B y∗ − d) + z∗)≥ 0, ∀ y ′ ∈ Ω ,

x∗− y∗ = 0 .

(3.1)

For notational convenience, let us write w⊤ = (x⊤,y⊤,z⊤) and v⊤ = (y⊤,z⊤), Υ∗ for the

solution set of (3.1), and for w∗ = (x∗,y∗,z∗) ∈ Υ∗ also write v∗ = (y∗,z∗). Since (1.1)

admits a solution, Υ∗ is nonempty — indeed, Υ∗ is convex due to the monotonicity of

(3.1). Let

G =

�

(β +λ2τ)I −λ2B⊤B 0

0 1

β
I

�

, (3.2)

a matrix which for Algorithm 1 is obviously positive definite when τ > ρ(B⊤B). Let us

now present several lemmas, in proceeding to establish the convergence of Algorithm 1.

Lemma 3.1. Let

F (w) =







A⊤(Ax− c)− z

λ2B⊤(By− d) + z

x− y






.

Then F is monotone — i.e. (w′−w)⊤(F (w′)−F (w))≥ 0 , ∀w′ and w ∈Υ.

Proof. The proof is elementary, and therefore omitted.

The following two lemmas present some contractive properties of the sequence generated

by Algorithm 1, and constitute the essential part of our convergence proof.

Lemma 3.2. Let {wk} be the sequence generated by Algorithm 1. Then ∀w′ ∈Υ,

(w′−wk+1)⊤







F (wk+1) +







β(yk+1− yk)

−β(yk+1− yk)

0







−









0 0 0

0 (β +λ2τ)I −λ2B⊤B 0

0 0 1

β
I









(wk −wk+1)







≥ 0 . (3.3)
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Proof. From (2.5), (2.10) and zk+1 = zk − β(xk+1 − yk+1), ∀w′ ∈ λ we have the

variational inequalities































(x′ − xk+1)⊤
¦

A⊤(Axk+1− c)−
�

zk − β(xk+1− yk)
�
©

≥ 0 ,

(y′− yk+1)⊤
n

λ2B⊤(Byk+1− d) +
�

zk − β(xk+1− yk+1)
�

+λ2τ(yk+1− yk) +λ2B⊤B(yk − yk+1)
o

≥ 0 ,

(z′ − zk+1)⊤
n

xk+1 − yk+1−
1

β
(zk − zk+1)
o

≥ 0 .

Recalling the definition of F , then ∀w′ ∈ Υ we have

(w′−wk+1)⊤







F (wk+1) +







β(yk+1− yk)

−β(yk+1− yk)

0







−









0

(β +λ2τ)(yk− yk+1)−λ2B⊤B(yk − yk+1)
1

β
(zk − zk+1)















≥ 0 , (3.4)

which immediately implies (3.3).

Lemma 3.3. Let {vk := (yk,zk)} be generated by Algorithm 1, w∗ = (x∗,v∗) ∈ Υ∗, and G be

as defined in (3.2). Then

(vk− v∗)⊤G(vk − vk+1)≥ ‖vk − vk+1‖2G + (z
k − zk+1)⊤(yk+1− yk). (3.5)

Proof. On setting w′ =w∗ in (3.3),

(w∗−wk+1)⊤







F(wk+1) +







β(yk+1− yk)

−β(yk+1− yk)

0






− G(vk − vk+1)







≥ 0 .

Since x∗ − y∗ = 0 and xk+1− yk+1 = (zk − zk+1)/β ,

(vk+1− v∗)⊤G(vk − vk+1)

≥ (wk+1−w∗)⊤F(wk+1) + (wk+1−w∗)⊤







β(yk+1− yk)

−β(yk+1− yk)

0







≥ (wk+1−w∗)⊤F(w∗) +β
�

(xk+1− x∗)− (yk+1− y∗)
�⊤
(yk+1− yk)

≥ (zk − zk+1)⊤(yk+1− yk) ,
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which combined with vk+1− v∗ = vk − v∗ − (vk − vk+1) yields (3.5).

From the preceding lemmas we derive some important properties of {vk}, as summarized

in the following lemma.

Lemma 3.4. Let {vk := (yk,zk)} be generated by Algorithm 1, and let w∗ = (x∗,v∗) ∈ Υ∗.
Then

(i) limk→∞ ‖v
k − vk+1‖G = 0 ;

(ii) {vk} is a bounded sequence ; and

(iii) ‖vk − v∗‖2G is non-increasing and thus converges.

Proof. On writing vk+1 = vk − (vk − vk+1), from (3.5) we have

‖vk − v∗‖2G −‖v
k+1− v∗‖2G

= 2(vk− v∗)⊤G(vk − vk+1)−‖vk − vk+1‖2G
≥ 2‖vk − vk+1‖2G + 2(zk− zk+1)⊤(yk+1− yk)−‖vk − vk+1‖2G

= (β +λ2τ)‖yk − yk+1‖2 −λ2‖B(yk − yk+1)‖2 +
1

β
‖zk − zk+1‖2

+ 2(zk − zk+1)⊤(yk+1− yk) . (3.6)

If we denote

δ =
λ2(τ−ρ(B⊤B))

β
> 0 and γ=

δ+
p

δ2 + 4

2
,

then it is easy to show that 1 < γ < 1+ δ and 1+ δ − γ = 1− 1/γ. It follows from the

Cauchy-Schwartz inequality that

2(zk − zk+1)⊤(yk+1− yk)≥ −γβ‖yk − yk+1‖2 −
1

γβ
‖zk − zk+1‖2 .

Substituting this inequality into (3.6) yields

‖vk − v∗‖2G −‖v
k+1− v∗‖2G

≥β(1+ δ− γ)‖yk − yk+1‖2 +
�

1−
1

γ

�

1

β
‖zk − zk+1‖2

≥ν‖vk − vk+1‖2G , (3.7)

where

ν :=min

�

β(1+ δ− γ)

β +τ
, 1−

1

γ

�

=
β

β +τ

�

1−
1

γ

�

> 0 .

The statements of the lemma trivially follow from (3.7).

The convergence of Algorithm 1 is now covered in the following theorem:
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Theorem 3.1. The sequence {vk := (yk,zk)} generated by Algorithm 1 converges to (x∗,y∗,z∗),

where {(x∗,y∗)} is a solution of (2.1).

Proof. It follows from (i) of Lemma 3.4 that

lim
k→∞
‖yk − yk+1‖ = 0 , lim

k→∞
‖zk − zk+1‖ = 0 . (3.8)

From (ii) of Lemma 3.4, {vk} has at least one accumulation point, which we may denote

by v∞ = (y∞,z∞). There also exists a subsequence {vk j} converging to v∞ — i.e. yk j → y∞

and zk j → z∞. Furthermore, from (2.5) we get

x k+1 = (A⊤A+ β I)−1(A⊤c+ βyk + zk) .

Since yk j → y∞ and zk j → z∞, we have yk j − yk j−1→ 0 and zk j − zk j−1→ 0 such that

x k j → x∞ := (A⊤A+β I)−1(A⊤c+ βy∞ + z∞) , (3.9)

so (x∞, y∞, z∞) is also an accumulation point of the sequence {wk = (x k, yk, zk)}.
Next, we show that (x∞,y∞,z∞) satisfies the optimality condition for (2.1). First, on

substituting (3.8) into (3.4) we have

lim
k→∞
(w−wk+1)⊤F(wk+1)≥ 0, ∀w ∈Υ , (3.10)

so any accumulation point of {wk} is a solution point of (3.1), and hence (x∞,y∞,z∞) is a

solution point of (3.1). Since the inequality (3.7) is true for all solution points of (3.1),

‖vk+1− v∞‖ ≤ ‖vk − v∞‖, ∀ k ≥ 0 , (3.11)

so v∞ is the only accumulation point of the sequence {vk}, and hence {vk} converges to

v∞. Accordingly, {wk} converges to (x∞,y∞,z∞), which is a solution of (3.1) and therefore

also of (2.1).

4. Numerical Experiments

In this Section, we test our proposed linearized ADMM algorithms on the image de-

blurring problem

min
l≤x≤u

¨

1

2
‖Ax− c‖2+

λ2

2
‖Bx‖2
«

, (4.1)

where A is a blurring operator, B is a regularization operator and c is the observed image.

Obviously, (4.1) is a special case of (1.1) with d = 0. We compare the proposed Algorithms

1 and 2 with the reduced Newton method in [24] (denoted by RN) and the affine scaling

method in [7] (denoted by AS). It has been shown numerically that RN and AS are better

than projection methods and some existing Newton-type methods. All the codes were
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Figure 1: Original images
written with MATLAB 7.8 (R2009a), and run on a T6500 notebook with the Intel Core 2

Duo CPU at 2.1 GHz and 2GB of memory.

In our comparison, we test the same 256 × 256 images as in Ref. [24] — viz. the

Eagle, Church, Satellite and Bridge images in Fig. 1. Accordingly, m = n = 65, 536 in

model (1.1) for these images. As in Ref. [24], the blurring matrix A is chosen to be the

out-of-focus blur and the matrix B is taken to be the gradient matrix. Under the periodic

boundary conditions for x, both B⊤B and A⊤A are block circulant matrices with circulant

blocks. They are therefore diagonalizable by the 2D discrete Fourier transforms [6], and

hence our Algorithms 1 and 2 involve O(n log n) operations per iteration. The observed

image c is expressed as c = Ax̄+ ηr where x̄ is the true image, r is a random vector with

entries distributed as standard normal, and η is the noise level. The bound constraints

are set to li = 0 and ui = 255 for all i = 1, · · · , n. We employ the MATLAB scripts A= fspe
ial('average',alpha) and C = imfilter(X,A,'
ir
ular','
onv') +
η*randn(m,n), to produce the blurred images corrupted by the averaging kernel of dif-

ferent sizes. Here alpha is the size of the kernel, X denotes the original image, and C
represents the observed image.

We stop the Algorithms 1 and 2 when the relative change ‖xk − xk−1‖/‖xk−1‖ ≤ 10−4.

We measured the quality of restoration by the peak signal-to-noise ratio (PSNR) in decibles

(dB) defined by

PSNR(x) = 20 log10

xmax
p

Var(x, x̄)
with Var(x, x̄) =

∑n−1

j=0 [x̄( j)− x( j)]2

n
,

where x̄ is the original image and xmax is the maximum possible pixel value of the image

x.

In our numerical experiments, we set β = 0.1 for both Algorithms 1 and 2. We re-

call from Theorem 3.1 that the convergence of Algorithm 1 (Algorithm 2, respectively)

is ensured when τ > ρ(B⊤B) (τ > ρ(A⊤A), respectively), so we set τ = 1.05 · ρ(B⊤B)

(τ = 1.05 · ρ(A⊤A), respectively) in the implementation of Algorithm 1 (Algorithm 2,

respectively). Since B⊤B and A⊤A can be diagonalized by Fast Fourier Transform, their

spectral radius can easily be obtained.

In the first set of experiments, we set λ= 0.1 as in Ref. [24]. In Table 1, we report the

performance of RN, AS, Algorithm 1 (Alg1) and Algorithm 2 (Alg2) for different levels of
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al 
omparison of RN, AS, Algorithm 1 and Algorithm 2.
Image η Time (s) PSNR (dB) Objfn-end (×105) PJ
alpha RN AS Alg1 Alg2 RN AS Alg1 Alg2 RN AS Alg1 Alg2 (dB)
Eagle 3 4.49 1.44 0.52 1.70 32.80 32.78 32.83 32.96 2.885 2.885 2.879 2.886 32.26

3 5 5.24 1.53 0.58 1.98 29.36 29.37 29.37 29.50 6.312 6.311 6.301 6.313 28.87

7 5.41 1.77 0.61 2.08 26.83 26.84 26.84 26.94 11.32 11.32 11.30 11.32 26.38

Church 3 5.28 1.78 0.48 1.69 30.92 30.90 30.94 30.94 3.895 3.894 3.887 3.896 30.08

3 5 6.19 1.60 0.58 1.86 28.57 28.56 28.58 28.66 7.442 7.442 7.425 7.443 27.83

7 6.21 1.67 0.63 2.17 26.51 26.51 26.52 26.60 12.57 12.57 12.54 12.57 25.82

Satellite 3 6.15 2.29 0.97 3.59 28.97 28.88 28.97 28.93 3.463 3.464 3.461 3.463 27.91

5 5 15.76 2.27 0.92 3.89 28.53 28.47 28.54 28.52 8.369 8.370 8.365 8.368 26.86

7 11.24 2.46 1.03 4.03 27.90 27.87 27.91 27.91 15.72 15.72 15.71 15.71 25.65

Bridge 3 6.08 2.39 0.88 2.94 24.38 24.33 24.38 24.26 4.588 4.589 4.587 4.592 24.06

5 5 6.11 2.19 0.89 3.31 23.71 23.66 23.71 23.67 8.831 8.833 8.830 8.835 23.34

7 10.09 2.39 0.98 3.78 22.90 22.88 22.91 22.92 15.25 15.25 15.24 15.25 22.50

noise η and blur size alpha. We also include the computing time in seconds (denoted by

“Time(s)"), the PSNR of the recovered images (denoted by “PSNR(dB)"), and the function

value of the model (4.1) (denoted by “Objfn-end") when the iteration was terminated. It

is notable that the Newton-type methods RN and AS both require an interior point inside

[0,255]n as the initial iterate. We applied the method in Ref. [24] to generate their initial

iterate — i.e. we solved the unconstrained version of (4.1)

min
x∈Rn

¨

1

2
‖Ax− c‖2 +

λ2

2
‖Bx‖2
«

, (4.2)

and then projected the solution onto the box [1,254]n to do so. Note that solving (4.2)

amounts to solving its normal equation (A⊤A+λ2B⊤B)x = A⊤c. In contrast, our Algorithms

1 and 2 can use any arbitrary image as the initial iterate, and in our experiments we simply

started their iterations from the blurred image c. In the last column of Table 1, the “PJ"

column, we also report the PSNR of the projected solution of (4.2). We solved (4.2) by the

least squares method, and then projected the solution onto the box [0,255]n. For each test

case, we repeated the experiment three times and report the average performance.

The efficiency of our Algorithms 1 and 2 are shown clearly in Table 1, where the best

results are shown in boldface. We emphasize that the PSNR obtained by any of the four

algorithms for the constrained model (4.1) is 0.2 dB higher at 2.2 dB than that obtained

by the projected solution of the unconstrained model (4.2) — cf. the “PJ" column in the

table, so it pays to solve the constrained model (4.1). Secondly, we see that Algorithm

1 gives the smallest objective function values of all four methods, and it is the fastest.

Algorithm 1 involves matrix-vector multiplication of B⊤B that requires O(n) operations,

whereas Algorithm 2 involves matrix-vector multiplication of A⊤A in O(n log n) operations,

so the iteration cost for Algorithm 1 is notably less.

In regard to the PSNR, Algorithm 1 is either the best or within 0.15 dB from the best,

where the difference is due to the fact that we fixed λ= 0.1 for all cases. The regularization

parameter λ should be chosen according to the noise level. For Algorithms 1 and 2 and

“PJ", we tested a finite number of choices of λ by trial and error, and respectively chose

the best λ value (denoted by λ∗) to achieve the highest PSNR. The results are reported
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al 
omparison of Algorithm 1 and Algorithm 2 with best λ∗.
Image η λ∗ PSNR (dB) Time (s) λ∗ PJ
alpha Alg1 Alg2 Alg1 Alg2 Alg1 Alg2 (dB)
Eagle 3 0.16 0.16 37.65 37.64 0.47 0.92 0.17 33.20

3 5 0.23 0.23 32.03 32.03 0.50 0.77 0.24 31.80

7 0.30 0.30 31.02 31.02 0.63 0.81 0.32 30.86

Church 3 0.10 0.10 30.96 30.96 0.42 1.70 0.11 30.11

3 5 0.15 0.15 29.25 29.25 0.44 1.17 0.16 28.69

7 0.19 0.19 28.18 28.18 0.53 0.91 0.21 27.80

Satellite 3 0.05 0.04 29.66 29.66 1.56 9.27 0.10 27.92

5 5 0.08 0.08 28.52 28.51 1.02 5.22 0.15 27.26

7 0.12 0.12 27.84 27.83 0.86 3.31 0.21 26.85

Bridge 3 0.06 0.06 24.96 24.88 1.22 5.13 0.06 24.48

5 5 0.09 0.09 23.73 23.71 0.89 3.83 0.10 23.33

7 0.12 0.12 22.97 22.96 0.77 2.95 0.13 22.64

in Table 2, where it appears that (with a well tuned λ) Algorithm 1 can actually attain a

slightly better PSNR than Algorithm 2. Again, Algorithm 1 is much faster than Algorithm

2, and the PSNR of the constrained model can be 4.4dB higher than that of the projected

solution.

To further verify the efficiency and robustness of our two algorithms, we used the

MATLAB script fspe
ial to generate four more different blurred images and compared

their restoration results. We added the ‘average’ blur to the satellite image with alpha =

3 and noise level η = 4, and to the church image with alpha = 5 and η= 2. For the eagle

image, we adopted the ‘motion’ blur kernel with len = 5, theta = 15 and the noise level

η = 2. For the bridge image, we applied the ’Gaussian’ blur kernel with hsize = 5, σ = 4

and the noise level η = 4. The restored images are shown in Fig. 2, where both timing and

accuracy are given. We again see that Algorithm 1 is faster than the other methods, and its

PSNR is either the best or differs from the best by no more than 0.01dB.

5. Concluding Remarks

This paper provides a novel approach to solving constrained linear least-squares prob-

lems, by combining linearization techniques with the alternating direction method of mul-

tipliers (ADMM). This approach belongs to the category of inexact ADMM, where approx-

imate subproblem solutions are obtained by linearizing some quadratic terms involved.

Since the ADMM is a first-order method that generally requires more outer iterations com-

pared to second-order methods, of major concern in making the ADMM efficient is to alle-

viate the difficulty of obtaining solutions in the inner iterations. The proposed linearization

technique does this well, because the linearized inner subproblems have closed-form solu-

tions.

We have proven the convergence of the proposed linearized ADMM approach, and

applied it to solve some image deblurring problems. Compared to Newton-type methods,

the linearized ADMM approach is more efficient in both speed and restored image quality.

Moreover, the linearized ADMM approach does not require a good initial guess to start the

iteration, in contrast to Newton-type methods that are usually sensitive to the choice of the
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RN, T: 10.9s, PSNR: 31.03dB AS, T:  1.9s, PSNR: 31.03dB Algo.1, T:  0.5s, PSNR: 31.04dB Algo.2, T:  1.9s, PSNR: 31.04dB

RN, T:  6.1s, PSNR: 28.73dB AS, T:  2.4s, PSNR: 28.60dB Algo.1, T:  0.5s, PSNR: 28.72dB Algo.2, T:  2.2s, PSNR: 28.67dB

RN, T:  4.8s, PSNR: 33.98dB AS, T:  1.7s, PSNR: 33.88dB Algo.1, T:  0.6s, PSNR: 34.02dB Algo.2, T:  1.7s, PSNR: 34.02dB

RN, T:  6.0s, PSNR: 24.01dB AS, T:  2.4s, PSNR: 23.97dB Algo.1, T:  0.5s, PSNR: 24.01dB Algo.2, T:  2.3s, PSNR: 23.99dB

Figure 2: From left to right: Results re
overed by RN, AS, Algorithms 1 and 2, respe
tively.�T"represents running time.
initial iterate.

This research may be extended to develop inexact ADMMs for more complex prob-

lems in image processing, such as the multiframe deblurring problem where the objective
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function takes the form
K
∑

i=1

1

2
‖Aix− ci‖

2 +
λ2

2
‖Bx‖2 .
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