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Abstract. We compare spectral and wavelet estimators of the response amplitude op-

erator (RAO) of a linear system, with various input signals and added noise scenarios.

The comparison is based on a model of a heaving buoy wave energy device (HBWED),

which oscillates vertically as a single mode of vibration linear system. HBWEDs and

other single degree of freedom wave energy devices such as oscillating wave surge con-

vertors (OWSC) are currently deployed in the ocean, making such devices important

systems to both model and analyse in some detail. The results of the comparison re-

late to any linear system. It was found that the wavelet estimator of the RAO offers no

advantage over the spectral estimators if both input and response time series data are

noise free and long time series are available. If there is noise on only the response time

series, only the wavelet estimator or the spectral estimator that uses the cross-spectrum

of the input and response signals in the numerator should be used. For the case of noise

on only the input time series, only the spectral estimator that uses the cross-spectrum

in the denominator gives a sensible estimate of the RAO. If both the input and response

signals are corrupted with noise, a modification to both the input and response spec-

trum estimates can provide a good estimator of the RAO. A combination of wavelet and

spectral methods is introduced as an alternative RAO estimator. The conclusions apply

for autoregressive emulators of sea surface elevation, impulse, and pseudorandom bi-

nary sequences (PRBS) inputs. However, a wavelet estimator is needed in the special

case of a chirp input where the signal has a continuously varying frequency.
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1. Introduction

Several studies have promoted the wavelet transform (WT) as an alternative to spectral

analysis (SA) for estimating the response amplitude operator (RAO) of linear systems [15,

29, 30]. The study of these systems is important because all structures are sensitive to

vibration and some exploit this vibration. A stable linear system will respond to a stationary

sinusoidal input at some specific frequency by vibrating at that frequency. However, the

amplitude of the response relative to the amplitude of the input, known as the RAO or gain,

depends on the frequency. There is also a phase shift, which depends on the frequency.

Given this characterisation of a linear system, it is often more convenient to study the

linear system in the frequency domain instead of in the time domain. Wavelet transforms

have a potential advantage of displaying frequency composition over time. In contrast, the

definition of a population spectrum as the Fourier transform of the autocovariance function

is based on the assumption of a stationary random process.

The use of spectral analysis to estimate the RAO is justified for a general input rather

than a stationary input, if the spectrum is considered as a sample estimate of a Fourier

transform. A blow from an impact hammer, an accessory for spectrum analysers commonly

used in model testing for lightweight structures, is a good example of a non-stationary

input. Since spectral estimation of the RAO is not limited to a stationary input, it follows

that the WT may not necessarily offer any advantage over the SA.

In this paper, we compare WT methods with SA methods for estimating the RAO of

a linear system, with different classes of input signals and with different distributions of

noise corrupting either input or response signals. The comparison is set in the context of

a wave tank model of a heaving buoy wave energy device (HBWED). The reasons for this

choice are that wave energy devices generally are receiving renewed attention as the need

for renewable energy resources becomes increasingly apparent, and their response to the

random wave environment is crucial for design. Specifically, the HBWED can plausibly

be modelled as a single mode of the vibration system, and this allows a straightforward

comparison of WT and SA estimation of the RAO. The oscillating wave surge converters

(OWSC) are single degree of freedom devices — but the OWSC oscillates horizontally in

surge instead of oscillating vertically in heave as the HBWED, and is nonlinear [32].

Spectral analysis has been used in the study of dynamic systems for many decades

(e.g. see [14]), and the spectrum analyser has been standard equipment in test laboratories

since the 1960s [13]. In contrast, although the Haar sequence was proposed in 1909 [10],

the mathematical generalisation and the use of WT for the analysis of dynamic systems is

still in the development stage [15, 21, 24]. Since a wavelet is localised in the time-scale

domain, certain information can be accessed directly and immediately from the wavelet

representation of a time series. This multiscale feature of wavelet transforms can be used to

validate a dynamic model from a continuous wavelet transform of the process observations

and model time series data [21].

Wavelets enable the detection of even very weak signals by using local amplification

and compression, which has been advantageous in analysing dynamic systems. By using

a wavelet transform, the random property of a chaotic response can also be observed
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— even for very short time series data such as in [33], where the authors have applied

wavelet transform techniques to analyse the nonlinear dynamic system of ship roll and

heave-roll coupling. Pernot & Lamarque [26] have computed the transient responses of

parametrically excited dynamic systems by using wavelet transforms and also used them

for a stability analysis of linear systems. Gouttebroze [9] used a wavelet identification

technique to identify the characteristics of structural systems, by analysing the amplitude

and phase of a wavelet transform for vibration data. Other applications of wavelets include

solving differential equations, turbulence analysis, image processing and signal processing

[11].

2. Case Study

A heaving buoy wave energy device (HBWED) has been selected as the case study for

the comparison. The HBWED is a deep water wave energy device that has reached the

stage of commercial development. An HBWED called PowerBuoy (cf. Fig. 1) developed

by Ocean Power Technologies Inc. has been deployed at the northeast coast of Scotland,

and is soon to be deployed along the southwest coast of Victoria, Australia [25]. The

study of the dynamic system that models the HBWED provides a basis for an investigation

of issues affecting wave energy development, such as efficiency and engineering design.

For example, Masubuchi et al. [19] have analysed the frequency response of an ocean

wave energy device with two floating bodies. The dynamic behaviour of the system can

be understood from that study, and hence the energy absorption from ocean waves can be

optimised.

2.1. Heaving buoy with one degree of freedom

A heaving buoy wave energy device such as in Fig. 1 is constrained to move in the

vertical (heave) direction only, so the motion of this device can be modelled as a linear

dynamic system with a single mode of vibration [28]. A mathematical description for this

device is a second order differential equation of the form

ÿ + 2ζωn ẏ +ω2
n y = u , (2.1)

where ζ is the damping factor, ωn is the undamped natural frequency and
p
ω2

n

�
1− ζ2
�

is the damped natural frequency of the system.

In this investigation, we adopt ζ = 0.2 and ωn = 0.05 as realistic values for a wave

tank model of a HBWED. Thus Eq. (2.1) can be written as

ÿ + 0.02 ẏ + 0.0025y = u. (2.2)

The solution can be expressed as a convolution integral

y (t) =

∫ t

−∞
h(t −τ)u (τ) dτ , (2.3)
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Figure 1: Deployed heaving buoy devi
e PowerBuoy, at the northeast 
oast of S
otland. [25℄
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Figure 2: Theoreti
al IRF and wavelet estimates of the IRF (without noise).
where h(t) is the impulse response function (IRF) of the linear system. The response to a

unit impulse for the system given in Eq. (2.1) is

h(t) =
1

ωn

p
1− ζ2

e−ζωn t sin
�p

1− ζ2ωn t
�

. (2.4)

For our particular case Eq. (2.2), the impulse response function (IRF) is given by

h(t) =
1

0.05
p

0.96
e−0.01t sin
�

0.05
p

0.96t
�

, (2.5)

which is plotted in Fig. 2. The undamped natural frequency of the system described by

Eq. (2.2) isωn = 0.05 rad/sec and the natural frequency is
p
ω2

n

�
1− ζ2
�≈ 0.049 rad/sec.

The Fourier transform of the convolution product in Eq. (2.3) used below is

Y (ω) = H (ω) · U (ω) , (2.6)
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where Y (ω), H (ω) and U (ω) denote the Fourier transforms of y(t), h(t) and u(t) re-

spectively.

2.2. Input based on wave tank data

A time series of wave tank data {ut ; t = 1,2, · · · , 396} sampled at 0.1 second inter-

vals [12] is shown in Fig. 3(a). This time series is too short for our investigation, but

was adopted to determine the coefficients for an autoregressive model AR(p) to simulate

stationary time series input — e.g. see [3].

The most suitable autoregressive model, based on the Akaike information criterion

(AIC) [1] and consideration of the residuals, is an AR(13) given by

ut =0.4016ut−1− 0.8701ut−2− 0.2660ut−3− 0.5223ut−4− 0.5154ut−5

− 0.5076ut−6− 0.3935ut−7− 0.3831ut−8− 0.2614ut−9− 0.3748ut−10

− 0.0866ut−11− 0.1398ut−12− 0.0735ut−13+wt , (2.7)

where wt is a Gaussian (Normal) variate with mean 0 and standard deviation 149.3. A

realisation of length 40,000 from the AR(13) model, corresponding to 4,000 seconds

sampled every 0.1 second, was initially used as the input to the model of the HBWED.

The first 1,000 seconds of input are shown in Fig. 4(a) and the first 40 seconds are shown

in Fig. 3(b), which is qualitatively similar to the original time series in Fig. 3(a).

The digitised input data is denoted as {ut}, while {yt} is the digitised response. From

Eq. (2.1), the response at time t can be approximated by a difference equation. Using
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central differences, the approximation for the first derivative is of the form

ẏt ≈
yt+1 − yt−1

2∆
, (2.8)

and for the second derivative of form

ÿt ≈
yt+1 − 2yt + yt−1

∆2
(2.9)

where ∆ is the sampling interval [20]. Thus an approximation of the response for the

linear system in Eq. (2.1) is given by

yt = a1 yt−1 + a2 yt−2 + a0ut−1 , (2.10)

where

a0 =
∆2

1+ ζωn∆
, a1 =

2−ω2
n∆

2

1+ ζωn∆
, a2 =

ζωn∆− 1

1+ ζωn∆
.

With ∆ = 0.1 sec, an approximation of the response for the specific system in Eq. (2.1) is

therefore

yt =
1.99975

1.00100
yt−1 −

0.999

1.001
yt−2 +

0.010

1.001
ut−1 , (2.11)

which is plotted in Fig. 4(b) over 1,000 seconds.
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3. Estimation of Transfer Function

The frequency composition of a stationary stochastic process is described by its spec-

trum, which is defined as the Fourier transform of its autocovariance function [4]. This

spectrum can be estimated by smoothing the sample periodogram [12]. If the sample time

series is of length N , then the periodogram has spikes at N/2 specific frequencies from

2π/N∆ up to π/∆. However, these must be smoothed to produce consistent estimates of

the true population spectrum. The number of spikes that are averaged is known as the

span [6]. The span must be wide enough to remove spurious peaks, but not so wide that

true peaks are substantially reduced. With short time series, these conflicting requirements

lead to unreliable estimates of the spectrum. Another consideration is that the specific fre-

quencies of the periodogram depend only on the length of the time series, and generally

will not coincide with any deterministic frequency present in a non-stationary time series.

The deterministic frequency will leak out into neighbouring spikes. Fig. 5 shows the spec-

tra for the input and response time series used in this study, with a span of 16 and time

series length 40,000.

A linear dynamic system can be characterised by its transfer function, which describes

its response to disturbances at specific frequencies. In a marine context, the modulus of

the transfer function is known as the response amplitude operator (RAO) [12], and in

electrical engineering it is known as the gain. If the spectrum of the disturbance and the
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RAO is known, then the spectrum for the response can be calculated. Alternatively, the

RAO can be estimated as the ratio of the response sample spectrum to the input sample

spectrum. The RAO characterises the response of marine structures that can plausibly be

modelled as linear systems, such as a HBWED or cargo ships, to sea states [22]. Other

applications of the RAO include the response of other vehicles such as cars on uneven road

surfaces and aircraft on a runway. Another aspect of spectral analysis is that any sudden

change in the spectrum of noise from a machine can be an early warning of a defect. Such

monitoring is called signature analysis, and together with preventative maintenance can

avoid catastrophic failure.

3.1. Spectral estimators

Let the input signal be given by

ut = Ueiωt , (3.1)

where U is a real number representing the amplitude of the input. Similarly, let the re-

sponse be given by

yt = Yei(ωt+φ) , (3.2)

where Y is a real number representing the amplitude of the response and φ is the phase

shift given by the linear system. By substituting Eqs. (3.1) and (3.2) into the second order

differential equation of the linear dynamical system Eq. (2.1), we see that

−ω2Yei(ωt+φ) + i2ζωnYωei(ωt+φ) +ω2
nYei(ωt+φ) = Uei(ωt) . (3.3)

Eq. (3.3) leads to

Y

U
=

e−iφ

ω2
n −ω2 + i2ζωnω

, (3.4)

and the RAO or gain is given by

G(ω) =

�����
e−iφ

ω2
n −ω2 + i2ζωnω

����� =
1

q�
ω2

n −ω2
�2
+ 4ζ2ω2

nω
2

. (3.5)

This is the same as H (ω) in Eq. (2.6), a fact that is used with the wavelet estimator of the

RAO. The maximum value for the RAO is

Gmax = 1/
�
ζω2

n

p
4− 3ζ2
�

, (3.6)

when the frequency is equal to
p
ω2

n

�
1− ζ2
�
. Furthermore, the phase shift is

φ = tan−1

�
− 2ζωnω

ω2
n−ω2

�
. (3.7)
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For a linear system with single input ut and single response yt , the RAO can be esti-

mated by
���cG2 (ω)

���=
È

Cy y

Cuu

, (3.8)

where Cuu and Cy y are the sample spectra of the input and response respectively. However,

this estimator is sensitive to noise. An alternative estimator, which is unaffected by noise

on the response, is the ratio of the cross-spectrum of the input and the response to the

spectrum of the input — i.e.

cG1 (ω) =

��Cuy

��
Cuu

, (3.9)

where Cuy is the sample cross-spectrum of the input and response. The cross-spectrum

is the Fourier Transform of the cross-covariance function of the input and response time

series — e.g. see [12]. Similarly, the estimator

cG3 (ω) =
Cy y��Cyu

�� (3.10)

is unaffected by noise on the input [2].

A related statistic is the coherence, defined as

dcoh (ω) =

��Cuy

��2

CuuCy y

=

cG2
1

cG2
2

. (3.11)

The coherence can be thought of as the square of the correlation coefficient between the

input and response over frequency, and its value is therefore between 0 and 1. It can be

used to detect noise on input, noise on response, nonlinearity, compensated delays and

leakage (resolution bias) in the linear system.

If there is noise on both the input and the response, one strategy is to usecG2, after mak-

ing an allowance for the noise component in the computed Cuu and Cy y . The allowance

considered here is to assume the high frequency component of the computed Cuu and Cy y

is due to noise, and that the noise is white and has a flat spectrum. Computationally, this

modification is implemented as a subtraction of the average of the spectrum ordinates over

the highest 1/20 of the frequency range from all the spectrum ordinates. This modification

of cG2 is denoted by

���cG4 (ω)

���=

s
C−y y

C−uu

, (3.12)

where C−uu and C−y y are the modified spectrum estimates.

3.2. Wavelet IRF estimator

Wavelet transforms are defined in continuous and discrete forms. In statistical studies,

sample data are usually taken in discrete form, so we only discuss the discrete wavelet

transform (DWT).
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The DWT of a signal of length n yields the DWT coefficients, consisting of J − 1 levels

of wavelet coefficients {Wj,k} and J − 1 levels of scaling coefficients {Vj,k}, where j =

0, · · · , J − 1, J = log2(n), k = 0, · · · , N j − 1 and N j = 2 j. A simpler and faster technique

to perform the discrete wavelet transform, known as the DWT pyramid algorithm, was

introduced by Mallat [18]. By using the DWT pyramid algorithm, the coefficients can be

calculated by

Wj,k =

L−1∑

l=0

ψlVj+1,2k+1−l mod N j+1
, (3.13)

Vj,k =

L−1∑

l=0

ϕlVj+1,2k+1−l mod N j+1
, (3.14)

where ψ is the wavelet filter, ϕ is the scaling filter, L is the width of the filter and VJ ,k = xk,

with {xk; t = 0,1,2, · · · , n− 1} the time series data. In this analysis, the Haar wavelet is

used where

ψHaar
l
=

¨
−1/
p

2 l = 0

1/
p

2 l = 1
, (3.15)

ϕHaar
l
=

¨
1/
p

2 l = 0

1/
p

2 l = 1
. (3.16)

Consider a time series {x t ; t = 1,2,3, · · · , n}. The DWT of {x t} can be represented by the

sequence

xDWT =
�

x̃1 x̃2 x̃3 x̃4 · · · x̃n

�
, (3.17)

where x̃1 = V0,0 is the vector of scaling coefficients at level 0, x̃2 = W0,0 is the vector of

wavelet coefficients at level 0, x̃3 = W1,0 and x̃4 = W1,1 are the first and second wavelet

coefficients at level 1, and x̃n =WJ−1,NJ−1−1 are the final wavelet coefficients at level J−1.

An interesting feature of the wavelet transform is that the signal can be recovered from

its wavelet and scaling coefficients by the inverse discrete wavelet transform (IDWT). It

can be performed by using Mallat’s pyramid algorithm defined as

Vj,k =

L−1∑

l=0

ψlW
↑
j−1,k+l mod N j

+

L−1∑

l=0

ϕlV
↑
j−1,k+l mod N j

, (3.18)

where

W
↑
j,k
=

¨
0 k = 0,2, · · · , N j+1

W
j, k−1

2

k = 1,3, · · · , N j+1 − 1 , (3.19)

V
↑
j,k
=

¨
0 k = 0,2, · · · , N j+1

V
j, k−1

2

k = 1,3, · · · , N j+1 − 1 . (3.20)

Following Newland [24],

yn =∆hDWT · uDWT , (3.21)
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where

hDWT =
�

h̃1 h̃2 h̃3 h̃4 · · · h̃n

�
,

uDWT =




ũ1

ũ2

ũ3/2

ũ4/2

ũ5/4
...

ũn/2
J−1




.

Here hDWT is the DWT of the IRF, uDWT is the DWT of the input time series {un−θ , 1≤θ≤ n},
yn is the response at time n and ∆ is the sampling interval. For N − n + 1 responses,

Eq. (3.21) can be written in matrix form

Y =∆hDWT ·UDWT , (3.22)

where

Y =
�

yn yn+1 · · · yN

�
,

hDWT =
�

h̃1 h̃2 · · · h̃n

�
,

UDWT =
�

uDWT
n uDWT

n+1 · · · uDWT
N

�
,

and uDWT
i is the DWT of {ui−θ , 1 ≤ θ ≤ n}. If the number of inputs is N = 64 and n= 16,

the number of responses that can be calculated by equation 3.22 is N − n+ 1 = 49. Thus

Eq. (3.22) can be rewritten as

�
y16 y17 · · · y64

�
=∆
�

h̃1 h̃2 · · · h̃16

�

×




ũ
(16)
1 ũ

(17)
1 · · · ũ

(64)
1

ũ
(16)
2

ũ
(17)
2

· · · ũ
(64)
2

ũ
(16)
3 /2 ũ

(17)
3 /2 · · · ũ

(64)
3 /2

ũ
(16)
4 /2 ũ

(17)
4 /2 · · · ũ

(64)
4 /2

ũ
(16)
5 /4 ũ

(17)
5 /4 · · · ũ

(64)
5 /4

...
...

. . .
...

ũ
(16)

16
/8 ũ

(17)

16
/8 · · · ũ

(64)

16
/8




. (3.23)

Robertson et al. [29] propose a method to estimate the IRF when the inputs and re-

sponses of a linear dynamic system are known, using the above relation. From Eq. (3.22),

the DWT of the IRF can be estimated by

hDWT =
1

∆
Y ·UDWTT ·
�

UDWT ·UDWTT
�−1

. (3.24)
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Thus the IRF can be found by the inverse DWT of the terms hDWT/2J — i.e.
�
hi, i = 1,2, · · · , n

	
= IDWT
¦
hDWT/2J
©

, (3.25)

where J = log2 n. However, this operation cannot be directly implemented if we use the

wavelet packages in MATLAB or in R sofware [27]. Some alteration should be made to

Eq. (3.21-3.25), so that this wavelet estimation of the RAO can be used without producing

any error.

From Eq. (3.21), the factor 1/2 j is removed from the DWT coefficients of input time

series such as

uDWTT

=
�

ũ1 ũ2 ũ3 ũ4 · · · ũn

�
. (3.26)

Thus the matrix operation shown in Eq. (3.23) becomes
�

y16 y17 · · · y64

�
=∆
�

h̃1 h̃2 · · · h̃16

�

×




ũ
(16)
1

ũ
(17)
1
· · · ũ

(64)
1

ũ
(16)
2 ũ

(17)
2 · · · ũ

(64)
2

ũ
(16)
3 ũ

(17)
3 · · · ũ

(64)
3

...
...

. . .
...

ũ
(16)

16
ũ
(17)

16
· · · ũ

(64)

16




. (3.27)

It is notable that the first n − 1 response values are lost from the previous matrix

operation. However, this can be overcome by introducing n − 1 zeroes before the first

input time series so that the input time series record length becomes N + n − 1, where

the first n− 1 values are zero — i.e. {unew
1 = 0,unew

2 = 0, · · · ,unew
n−1 = 0,unew

n = u1,unew
n+1 =

u2, · · · ,unew
N−n+1 = uN}. This is because there is essentially a zero signal prior to time 0.

Thus from Eq. (3.22), for N responses

Y =∆hDWT · ÛDWT , (3.28)

where

Y =
�

y1 y2 · · · yN

�
,

hDWT =
�

h̃1 h̃2 · · · h̃n

�
,

ÛDWT =
�

ûDWT
n ûDWT

n+1 · · · ûDWT
N+n−1

�
,

and ûDWT
i is the DWT of {unew

i−θ , 1≤ θ ≤ n}. Consequently, Eq. (3.27) can be rewritten as

�
y1 y2 · · · y64

�
=∆
�

h̃1 h̃2 · · · h̃16

�

×




ũ
(16)
1 ũ

(17)
1 · · · ũ

(79)
1

ũ
(16)
2

ũ
(17)
2
· · · ũ

(79)
2

ũ
(16)
3 ũ

(17)
3 · · · ũ

(79)
3

...
...

. . .
...

ũ
(16)

16
ũ
(17)

16
· · · ũ

(79)

16




. (3.29)
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To find the DWT of the IRF, we use the same step as in Eq. (3.24). However, to find the

IRF we do not need to divide the DWT of the IRF by 2J as in Eq. (3.25) — i.e. we use

�
hi , i = 1,2, · · · , n

	
= IDWT
¦

hDWT
©

, (3.30)

where J = log2 n. From the discrete Fourier Transform, the wavelet-estimated IRF can give

us the wavelet-estimated RAO as

ÓGw

�
ωt

�
=∆
��H �ωt

��� =∆
�����

n∑

k=1

hke−i2π t

n
k

����� , (3.31)

where H(ωt) is the discrete Fourier Transform of the wavelet-estimated IRF involvingωt =

t/(n∆) and t = 1, · · · , n.

3.3. Multiple regression IRF estimator

Alternatively, we can use multiple regression to estimate the discretised impulse re-

sponse {hi, i = 1,2, · · · , n}, defined as

yt = h1ut + h2ut−1 + · · ·+ hnut−n + εt , (3.32)

where t = n− 1, · · · , N and εt is the discrete white noise. In matrix form, Eq. (3.32) can

be written as

Y= h ·U+ ε . (3.33)

The IRF hi can be estimated by the least squares method

h =
1

∆
Y ·UT ·
�

U ·UT
�−1

. (3.34)

However, multiple regression provided in the R software [27] uses a lot of computational

memory for storage overhead, especially if we use long time series data.

3.4. Combined wavelet-spectral method

Both the wavelet and spectral analysis discussed give good estimates of the RAO for

data without noise. If there is noise on the response time series, cG1 and ÓGw give good

estimates of the RAO provided the noise is not correlated with the input signal. Meanwhile,
cG3 is a good RAO estimator if there is noise on the input time series, and cG4 can be used

if there is noise on both input and response signals. However, wavelet analysis can also

offer another alternative RAO estimator if there is noise on the input time series only, or if

there is noise on both input and response time series. If the noise is intermittent, wavelet

analysis can be used to select noise-free sub-series, from which the RAO can be estimated

by spectral methods. If the noise is stationary and independent, and the input signal is

relatively low frequency, the standard deviation of the noise σ̂w can be estimated as the

mean absolute deviation (MAD) of the finest scale wavelet coefficients [8]. In this context,
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the MAD — computed in R with the mad() function [23]— is the median of the absolute

values of deviations from the median [27].

The estimate of the RAO is

��bGws (ω)
�� =
È

Cy y

Cbubu − Cww

(3.35)

where Cbubu is the estimated spectrum of the noisy measurement of the input and Cww is

the spectrum of the noise. If we assume the noise is white, then the estimate of Cww is

σ̂2
w/0.05.

4. Estimates of the Transfer Function of a Heaving Buoy

4.1. No noise

For this investigation, the AR(13) input and the response time series discussed in Sec-

tion 2.2 were used to estimate the IRF for the linear dynamical system of Eq. (2.1). Two

lengths of time series were considered, to compare each method dependency with the time

series length. The shorter time series was of length T = 1000 seconds, and the longer

time series was T = 4000 seconds. Initially, the Haar wavelet (the simplest type of wavelet

filter) was selected for the analysis. The wavelet estimate of the IRF for length T = 1000

seconds and T = 4000 seconds are plotted in Fig. 2, which shows a very similar value

between those two cases and also with the theoretical IRF. The Fourier transform of the

IRF is the estimate of the RAO.

To make the comparison, the wavelet and spectral estimates of the RAO are plotted

with the theoretical RAO in Fig. 6 for both cases. For spectral estimates, the span values

were set at 4 and 16 for the shorter and longer time series respectively, to smooth the

estimates of the RAO and prevent identifying spurious peaks. In Fig. 6(a), we see that the

spectral estimates based on the shorter time series with span 4 underestimate the peak at

the natural frequency, but cG3 is less biased than cG2 and cG1. The wavelet estimate is the

least biased. The bandwidth of the spectral estimation is S

0.5/(N/2)
Hz, where S is the span

and N is the time series length. The coherence function is relatively low around the natural

frequency, reflecting the difference between cG1 and cG2. With the longer time series, the

span was set to 16 but the number of spikes in the spectra were increased by a factor of 4

and the resulting bandwidth was narrower. For this longer time series, all four estimates

shown in Fig. 6(b) are close to the theoretical value. We therefore conclude that the time

series length of the input and the response data play an important role in estimating the

RAO via the spectral methods. The data with longer time series (4,000 sec and hence

40,000 data) was needed to obtain a reliable estimate of the RAO.

In the previous analysis, the Haar wavelet was used in the wavelet method. To show

that this method works for other types of wavelet, the Daubechies D(4) [7] wavelet has

also been used. Fig. 7 shows that the difference between the wavelet estimate of the

RAO using the Daubechies D(4) wavelet and the wavelet estimate of the RAO using the
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tral and wavelet estimates of RAO (without noise).
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Haar wavelet is imperceptible. Thus even when the simpler (Haar) wavelet was used, the

wavelet method gave a good estimate of the RAO.

4.2. Noise on the response

Two types of noise were considered for the case of noise on the response time series —

viz.
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e and the 
omparison of spe
tral and wavelet estimates of RAO (noise on theresponse).
1. discrete white noise (DWN), wt is a Gaussian with mean 0 and standard deviation

10000,

2. correlated noise, nt = 0.9nt−1+wt where wt is a Gaussian with mean 0 and standard

deviation 1000.

From Fig. 8(a) it can be seen that cG1 and ÓGw are less affected by the noise than cG2,

while cG3 is worse. Both cG1 and ÓGw are very similar at the peak, but ÓGw is less affected

by the noise at higher frequencies. The coherence is relatively low at high frequencies,

which is to be expected because the response of the system to high frequency forcing is

slight and the noise dominates. All the estimates are poor as the frequency tends to 0.

The results with correlated noise are qualitatively similar. The cG1 is insensitive to noise

uncorrelated with the input because this noise does not affect the cross-covariance of the

input and response signal. The wavelet estimator is insensitive to noise, since the wavelet

method is equivalent to fitting the regression model

yt = β0+ β1ut + β2ut−1 + · · ·+ nt (4.1)

by ordinary least squares. The noise nt added to the response does not bias the estimates

β̂0, β̂1, · · · and β̂n, even if it is autocorrelated.

4.3. Noise on the input

To demonstrate the method of Section 3.4, we smooth the autoregressive input by

taking a locally weighted scatterplot smoothing (LOESS) method. The smoothed input

and response time series are shown in Fig. 9, and the DWT coefficients of this smoothed



230 M. A. A. Bakar, D. A. Green and A. V. Metcalfe

−
6
0

0
4
0

Smoothed input without noise

time(sec)

w
a
v
e
 h

e
ig

h
t(

m
m

)

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

(a) First 1000 seconds of smoothed input without noise

−
2
0
0

0
1
0
0

Smoothed input with noise

time(sec)

w
a
v
e
 h

e
ig

h
t(

m
m

)

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

(b) First 1000 seconds of smoothed input with noise, vt ∼
N (0, 50)

−
6
0
0
0

0
4
0
0
0

Response

time(sec)

a
m

p
lit

u
d
e
 (

m
m

)

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

(c) First 1000 seconds of responseFigure 9: Smoothed input and response time series.
input are shown in Fig. 10(a). Gaussian white noise with mean 0 and standard deviation

50.0 was added to the smoothed input, and the DWT coefficients of this noise-corrupted

measurement of the input are shown in Fig. 10(b). The estimate of the standard deviation

of the noise is 49.7. It is shown in Fig. 11(a) that bGws is as good as bG3 when the noise on

the input signal is discrete white noise, because from Eq. (3.35) the noise spectrum has

been removed from the input. However, other estimators of the RAO are affected by the

added noise on the input time series.

The correlated noise nt = 0.9nt−1 + vt was also considered, where vt is Gaussian

with mean 0 and standard deviation 10. However, the combined wavelet-spectral estimate
bGws of the RAO is not as good as the spectral estimator bG3 because the correlated noise

spectrum is not flat, unlike the discrete white noise spectrum.
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4.4. Noise on both the input and the response

Noise on both the input and the response time series was also considered, where the

added noise is discrete white noise. In Fig. 12, the modified spectral estimate bG4 is seen

to be better than other estimators. This is to be expected, since bG4 uses the modified input
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and response spectrum estimates. The combined wavelet-spectral estimate bGws gives a

good estimate of the RAO’s peak, but gets worse at higher frequency.

4.5. Different types of input signals

Four different types of signal were also considered as the input to the single mode of

vibration linear system in Eq. (2.2) — viz.

1. chirp signal with constant amplitude,

2. chirp signal with increasing amplitude,

3. unit impulse signal,

4. pseudorandom binary sequence (PRBS) signal.

The responses are shown in Fig. 13.

Comparisons of both spectral and wavelet RAO estimators are shown in Fig. 14. For

both of the chirp input signal cases, it is seen that the spectral methods are not suitable

to estimate the RAO, whereas the wavelet method performs very well. For the PRBS and

the unit impulse signal, the wavelet estimator is only marginally better than the spectral

estimators on the peak of the RAO. Differences are caused by the selected bandwidth/span

of the spectral analysis package, which over-smoothed the spectrum estimation and hence

biased the RAO spectral estimates, especially at the peak response.



Comparison of Spectral and Wavelet Estimators of Transfer Function for Linear Systems 233

Chirp input signal

time(sec)

w
a
v
e

 h
e

ig
h

t(
m

m
)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

−
1

0
0

0
1

0
0

Response

time(sec)

a
m

p
lit

u
d

e
 (

m
m

)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

−
5

0
0

0
0

5
0

0
0

0

(a) Chirp with constant amplitude

Chirp with increasing amplitude input signal

time(sec)

w
a
v
e

 h
e

ig
h

t(
m

m
)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

−
2

0
0

0
2

0
0

Response

time(sec)

a
m

p
lit

u
d

e
 (

m
m

)

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0−

1
5

0
0

0
0

0
1

4
0

0
0

0

(b) Chirp with increasing amplitude

Unit impulse input signal

time(sec)

w
a
v
e
 h

e
ig

h
t(

m
m

)

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0
5
0

1
0
0

Response

time(sec)

a
m

p
lit

u
d
e
 (

m
m

)

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

−
5
0

5
0

1
5
0

(c) Unit impulse

PRBS input signal

time(sec)

w
a
v
e

 h
e

ig
h

t(
m

m
)

0

4
0

0

8
0

0

1
2

0
0

1
6

0
0

2
0

0
0

0
5

0
1

0
0

Response

time(sec)

a
m

p
lit

u
d

e
 (

m
m

)

0

4
0

0

8
0

0

1
2

0
0

1
6

0
0

2
0

0
0

−
2

0
0

0
0

6
0

0
0

0

(d) PRBSFigure 13: Input and reponse time series for di�erent types of input signals.
5. Conclusions and Discussions

Spectral analysis is a well established technique for estimating the RAO of linear sys-

tems. With long data records such as might be gathered over 1 hour at a sampling rate

of 10 per second, and negligible signal noise,ÓGw offers no significant advantage over cG1,
cG2 or cG3 — and the detail around the peak is worse (cf. Fig. 7). The poor detail around
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e and the 
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tral and wavelet estimates of RAO for di�erent typesof input signals
the peak is due to the relatively small number of points in the estimate of the impulse

response, because of limits on the sizes of the non-sparse matrices that can be inverted.

For shorter records consisting of a few thousand data, ÓGw is better at identifying the

magnitude of the peak response (Fig. 6(a)). The estimation of an RAO from a short time

series of a few hundred points, such as might arise in economics, requires considerable

smoothing of estimated spectra by autoregressive estimators, or of the IRF. We have made

no comparisons, as in most RAO estimation it is possible to obtain long time series, typically
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sampled from some analogue measuring device.

If there is only noise on the response, cG1 should be used rather than cG2, and cG3 should

not be used. Theoretically, bothÓGw and cG1 are not biased by noise that is independent of

the input, although the precision of the estimate will be reduced. However, when there is

noise only on the input cG3 gives a very good estimate of the RAO compared to cG1, cG2 and
ÓGw . Noise on both the input and response time series affects all three spectral estimators

(cG1, cG2 and cG3), and the wavelet estimator (ÓGw) of the RAO. However, by using cG4 we

can still get a good estimate of the RAO by making some modifications to the computed

spectra. A combination of the wavelet transform to either identify noise free periods or to

estimate the variance of the noise and hence modify the input spectrum, followed by SA,

also shows promise.

In Section 4.5, it was shown that the SA is inappropriate if the input signal has a

continuously varying frequency, such as for chirp signals. In contrast, the wavelet method

is able to deal with such special cases.
ÓGw relies on estimation of the IRF, from which the RAO is estimated by taking its

Fourier transform. The IRF can also be estimated directly without recourse to the wavelet

transform, by fitting a multiple regression model using ordinary least squares (OLS). For a

given number of points in the IRF, the matrix to be inverted has the same eigenvalues as

that for the wavelet method, and neither matrix is sparse. For our case study, the condition

number was 11.78 for OLS and 10.45 for wavelets. When using R software [27], we were

surprised that the computation time was nearly double with OLS. However, OLS has the

advantage that the time series does not have to be dyadic (have a length that is a power

of 2). The choice between using wavelets or OLS to estimate the IRF will typically depend

on the available software.

The theory and estimation of RAO depends on the assumed linear dynamics, but it

yields a reasonable approximation for many dynamical systems. However, there is consid-

erable scope for the application of wavelets in nonlinear dynamics, and it is now an active

research area [5,16,17,31]. This application of wavelets, especially to the single mode of

a vibration system, could be beneficial for the development of nonlinear single degree of

freedom wave energy devices such as the OWSC and variants of HBWED.
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Notation

ut input time series

yt response time series

ζ damping factor

ωn undamped natural frequency
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∆ sampling interval

ht impulse response

U(ω), Y (ω), H(ω) Fourier transform of ut , yt , ht

U , Y absolute value of U(ω), Y (ω)

Cuu input spectrum

Cy y response spectrum

Cuy input-response cross-spectrum

G(ω) theoretical RAO
cG1(ω), cG2(ω), cG3(ω) spectral RAO estimators
cG4(ω) modified spectral RAO stimator

dcoh(ω) coherence

Wj,k wavelet coefficients

Vj,k scaling coefficients

ψ wavelet filter

φ scaling filter

xDWT DWT of {x t}
ÓGw(ω) wavelet RAO estimator

dGws(ω) combined wavelet-spectral RAO estimator

vt and wt white noise on the input and response time series

nt correlated noise time series
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