
East Asian Journal on Applied Mathematics Vol. 2, No. 2, pp. 150-169

doi: 10.4208/eajam.090312.190412a May 2012

Coefficient of Variation Based Image

Selective Segmentation Model Using

Active Contours

Noor Badshah1, Ke Chen2,∗, Haider Ali1 and Ghulam Murtaza1

1 Department of Basic Sciences, UET Peshawar, Pakistan.
2 Centre for Mathematical Imaging Techniques and Department of

Mathematical Sciences, The University of Liverpool, United Kingdom.

Received 9 March 2012; Accepted (in revised version) 19 April 2012

Available online 27 April 2012

Abstract. Most image segmentation techniques efficiently segment images with promi-

nent edges, but are less efficient for some images with low frequencies and overlapping

regions of homogeneous intensities. A recently proposed selective segmentation model

often works well, but not for such challenging images. In this paper, we introduce a

new model using the coefficient of variation as a fidelity term, and our test results show

it performs much better in these challenging cases.
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1. Introduction

In image segmentation, the main issue is to extract features according to a given cri-

terion [3, 5, 6, 10, 11, 13, 15]. There are two important method categories. The first cat-

egory refers to edge-based methods, where active contours have proven their effective-

ness [5, 8, 13, 20]. The general idea behind an active contours model is to apply partial

differential equations (PDEs) to deform a curve towards the boundaries of the object of in-

terest, so the contour is driven towards image edges. For edge detection, most models use

an edge detector function which depends on the gradient of a given image [3,10,11]. The

second category contains region-based methods, including active contour models involving

minimum description length criteria [14], region growing and emerging [2], Mumford-

Shah functional minimisation [18] and watershed algorithms [24] as examples.
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Let z(x , y) be a given image defined on a rectangular domain Ω. Mumford and Shah

(MS) [18] proposed the general model

min
u,Γ

F(u,Γ) = µ . leng th(Γ) +λ

∫

Ω

|z− u|2d x +

∫

Ω\Γ

|∇u|2d x

to automatically find the edge Γ of z by a piecewise smooth function u. The Chan-Vese

(CV) [6] model is a special case of the piecewise constant MS model when restricted to

only two phases. Since the CV model is not based on the gradient of the image z(x , y)

for the stopping process, it can detect contours both with and without gradients. The CV

active contour model uses the energy minimisation functional given by:

F(c1, c2,Γ) = µ.leng th(Γ) +λ1

∫

inside(Γ)

|z− c1|
2 d x d y +λ2

∫

outside(Γ)

|z− c2|
2 d x d y,

where z is a given image, Γ is an unknown boundary, and c1 and c2 are constants that

depend on Γ and represent the average value of z inside and outside of Γ respectively.

The above categories of segmentation models are global, because all global features are

to be segmented. Although useful, in certain segmentation problems we need to segment

a particular object and not all objects. Selective segmentation is a task in which an object

or region of interest is detected, given additional information of geometric constraints in

the form of list of points near the object or region.

Based on the work of Refs. [6, 10, 11], we recently proposed a mixed model of edge-

based and region-based methods that provved more robust for noisy images [3]. However,

this model can produce spurious objects — i.e. fails the selection in some cases. Now

we equip our model with a new type of fidelity term for it to perform better, even when

edges are not prominent or an image has overlapping regions with almost homogeneous

intensities. The fidelity term is based on a coefficient of variation, and our experimental

results demonstrate the superior performance of this new model.

This paper is organised in the following way. A review of the previous model [3] is

presented in Section 2. Our new model of minimisation and the Euler-Lagrange equation

are discussed in Section 3. We describe a semi-implicit method and an additive operator

splitting (AOS) method for solving the PDE on Section 4, and give some experimental

results in Section 5.

2. BC Model

To segment a given image z or find the boundary Γ of a desirable feature, the recent

Badshah and Chen (BC) model [3] solves

min
c1,c2,Γ

F(Γ, c1, c2) ,
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where

F(Γ, c1, c2) =µ

∫

Γ

d(x , y)g(|∇z|)ds

+λ1

∫

outside(Γ)

(z − c1)
2 d x d y +λ2

∫

inside(Γ)

(z − c2)
2 d x d y (2.1)

and µ, λ1 and λ2 are constants and are used for assigning different weights, and c1 and c2

are the mean intensities outside and inside a contour Γ respectively. The distance function

is [11]

d(x , y) =

m
∏

i=1

�

1− e
−
(x − x i)

2

2σ2 e
−
(y − yi)

2

2σ2

�

, ∀(x , y) ∈ Ω ,

where the marker set

A = {(x i, yi) : i = 1,2,3, · · · , m}

are the given geometrical constraints and we wish to detect the boundary of an interested

object nearA . Intuitively, it is clear that d ≈ 0 in the neighbourhood ofA .

The function g(|∇z|) is called as an edge detector function, and a popular choice is

g(|∇z|) =
1

1+ |∇z|2

although there are many other choices. Since the edge is the portion of an image where

there is a sudden change in the intensity function, the value of the function |∇z|2 is large

at the pixels belonging to the edge. Consequently, g(|∇z|)≃0 near an edge.

The first term of the BC model is
∫

Γ
d(x , y)g(|∇z|)ds, similar to Refs. [10,11]. The aim

is to find the unknown boundary curve Γ by minimising their proposed functional. Since

this model depends on an edge detector function using gradient information, this causes

model malfunction with noisy images or images with fuzzy or discrete edges. Isotropic

Gaussian smoothing can be used to smooth z, but unfortunately it also smoothrs the

edges, geodesic active contours alone are not sufficient. To empower this model to work

with noisy images, region information is also used — viz. by adding λ1

∫

outside(Γ)
(z −

c1)
2 d x d y +λ2

∫

inside(Γ)
(z − c2)

2 d x d y with the edge information, to form the remaining

two terms of the BC model that also appear in the CV model [6]. In this way, the CV model

advantages are utilised in the BC model.

The application of a level set formulation [19,20,22] enables implicit representation of

the boundary, interior and exterior regions of the object of interest in a given image. Let us

denote the exterior of Γ by Ω+ and the interior by Ω−. If φ : Ω→ R, a Lipchitz continuous

function is a level set function such that

Γ = {(x , y) : φ(x , y) = 0} ,

Ω+ = {x , y) : φ(x , y) > 0} , Ω− = {(x , y) : φ(x , y) < 0} .
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Further, the quantities in Eq. (2.1) can be reformulated as

leng th{Γ} =

∫

Ω

|∇H(φ)|=

∫

Ω

δ(φ)|∇φ| d x d y ,

∫

outside(Γ)

|z − c1|
2d x =

∫

Ω

|z − c1|
2H(φ) d x d y ,

∫

inside(Γ)

|z− c2|
2d x =

∫

Ω

�

�z − c2

�

�

2
(1−H(φ)) d x d y ,

where the one-dimensional Heaviside and Dirac delta functions

H(x) =

¨

1 if x ≥ 0

0 if x < 0
and δ(x) = H ′(x)

will be respectively replaced by regularised versions [6,7,19]

Hε(w) =
1

2

�

1+
2

π
arctan

�

w

ε

�
�

, δε(w) = H ′ε(w) =
ε

π(ε2+w2)
.

Thus Eq. (2.1) becomes

Fε(φ, c1, c2) =µ

∫

Ω

d(x , y)g(|∇z|)δε(φ)|∇φ| d x d y +λ1

∫

Ω

|z(x , y)− c1|
2Hε(φ) d x d y

+ λ2

∫

Ω

|z(x , y)− c2|
2(1−Hε(φ)) d x d y .

Keeping φ fixed and minimising Fε(φ, c1, c2) with respect to c1 and c2, we have

c1(φ) =

∫

Ω
z(x , y)Hε(φ) d x d y
∫

Ω
Hε(φ) d x d y

and c2(φ) =

∫

Ω
z(x , y)(1−Hε(φ)) d x d y
∫

Ω
(1−Hε(φ)) d x d y

,

assuming that the curve has a non-empty exterior and non-empty interior in Ω. Now keep-

ing c1, c2 fixed and minimising Fε with respect to φ yields the following Euler-Lagrange

equation for φ:















δε(φ)
h

µdiv
�

G(x , y)
∇φ
|∇φ|

�

−λ1(z(x , y)− c1)
2 +λ2(z(x , y)− c2)

2
i

= 0 in Ω ,

G(x , y)δε(φ)

|∇φ|

∂ φ

∂ ~n
= 0 on ∂Ω ,

(2.2)

where G(x , y) = d(x , y)g(|∇z|), ~n is the unit exterior normal to the boundary ∂Ω, and

∂ φ/∂ ~n is the normal derivative of φ at the boundary.
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The above PDE may be considered as a steady state form of the evolution equation

∂ φ

∂ t
= δε(φ)
h

µ∇.
�

G(x , y)
∇φ

|∇φ|

�

−λ1(z − c1)
2+λ2(z− c2)

2
i

in Ω , (2.3)

where φ(t, x , y) = φ0(x , y) in Ω. For robustness and iteration initialisiation, a balloon

term αG(x , y)|∇φ| was added, where α is constant [11]. To solve the above evolution

equation, an additive operator splitting method (AOS) was used [16,25].

Although we have shown in Ref. [3] that the BC model is more robust than previ-

ous models, there are images where it fails — in particular, MRI and CT images with

fuzzy edges, unilluminated organs and overlapping homogeneous regions. Since the BC

model (2.1) involves the fidelity term or region detector
∫

|z−c1|
2 d x d y+
∫

|z−c2|
2 d x d y

taken from the CV model [6], not only are its advantages but also its weaknesses are car-

ried to the BC model. Experimental results showed that the BC model does not work effi-

ciently for some images, due to the detection of spurious objects. Better region detectors

are required for the detection of low contrast, unilluminated and overlapping homoge-

neous regions.

3. Coefficient of Variation Equipped Selective Model

Based on the concept of coefficient of variation (CoV ) [1,17], we introduce a new type

of fidelity term — viz.

λ1

∫

outside(Γ)

(z − c1)
2

c2
1

d xd y +λ2

∫

inside(Γ)

(z − c2)
2

c2
2

d xd y .

Thus we propose the following model, to be denoted by CSM:

min
Γ,c1,c2

F(Γ, c1, c2)

where

F(Γ, c1, c2) =µ

∫

Γ

d(x , y)g(|∇z|)ds+λ1

∫

outside(Γ)

(z − c1)
2

c2
1

d x d y

+λ2

∫

inside(Γ)

(z − c2)
2

c2
2

d x d y

and µ, λ1, λ2 are constants and used for assigning different weights. For a discrete image

z, the new model may be explained as follows.

The variance defined by

Var(z) =
1

N

∑

i, j

�

zi, j −Mean(z)
�2

,
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where zi, j denotes the image intensity at position (i, j) and Mean(z) the mean intensity,

was previously used in the BC model as the fidelity term. The Coefficient of Variation

(CoV ) is defined as

CoV 2 =
Var(z)
�

Mean(z)
�2

.

The CoV value is higher in areas where there are edges than in areas that are uni-

form [17, 21], hence a higher value indicates that the pixels belong to the edges and a

small value indicates the pixels belong to a uniform region. Indeed, the properties of

CoV [17,21] suggest that it can be used as a fitting term as well as a good region detector.

The experimental results using the CoV as the fidelity term to modify the CV model show

that the converged contour tends to be next to the initial contour. We use the CoV to

detect non-spurious objects near an initial contour. Consequently, the level set formulation

for (3.1) becomes

F(φ, c1, c2) =µ

∫

Ω

d(x , y)g(|∇z|)δ(φ)|∇φ| d x d y +λ1

∫

Ω

(z(x , y)− c1)
2

c2
1

H(φ) d x d y

+λ2

∫

Ω

(z(x , y)− c2)
2

c2
2

(1−H(φ)) d x d y ,

and a modified minimisation problem from using Hε and δε is

min
φ,c1,c2

Fε(φ, c1, c2) ,

where

Fε(φ, c1, c2) =µ

∫

Ω

d(x , y)g(|∇z|)δε(φ)|∇φ| d x d y +λ1

∫

Ω

(z(x , y)− c1)
2

c2
1

Hε(φ) d x d y

+λ2

∫

Ω

(z(x , y)− c2)
2

c2
2

(1−Hε(φ)) d x d y .

Keeping φ fixed and minimising Fε(φ, c1, c2) with respect to c1 and c2, we have

c1(φ) =

∫

Ω
z2(x , y)Hε(φ) d x d y
∫

Ω
z(x , y)Hε(φ) d x d y

(3.1)

and

c2(φ) =

∫

Ω
z2(x , y)(1−Hε(φ)) d x d y
∫

Ω
z(x , y)(1−Hε(φ)) d x d y

. (3.2)
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Now keeping c1, c2 fixed and minimising Fε with respect to φ yields the following Euler-

Lagrange equation for φ:



















δε(φ)
h

µdiv
�

G(x , y)
∇φ
|∇φ|

�

−λ1

(z(x , y)− c1)
2

c2
1

+λ2

(z(x , y)− c2)
2

c2
2

i

= 0 in Ω ,

G(x , y)δε(φ)

|∇φ|

∂ φ

∂ ~n
= 0 on ∂Ω ,

(3.3)

where G(x , y) = d(x , y)g(|∇z|) .

Remark 3.1. Denominators in (3.1) and (3.2) can be zero in situations where we need to

segment an object or region having zero value. For such cases, we can obtain the values of

c1 and c2 as follows:

c1(φ) =

∫

Ω
z2(x , y)Hε(φ) d x d y
∫

Ω
z(x , y)Hε(φ) d x d y + γ

, c2(φ) =

∫

Ω
z2(x , y)(1−Hε(φ)) d x d y
∫

Ω
z(x , y)(1−Hε(φ)) d x d y + γ

,

where γ is a small positive real number. Similarly, we may replace c2
l

by c2
l
+ γ in (3.3).

We now add a balloon term αG(x , y)|∇φ| to speed up the convergence of the evolution

equation as in Ref. [3]. Thus we get

∂ φ

∂ t
= δε(φ)
h

µ∇.
�

G(x , y)
∇φ

|∇φ|

�

−λ1

(z(x , y)− c1)
2

c2
1

(3.4)

+λ2

(z(x , y)− c2)
2

c2
2

+αG(x , y)|∇φ|
i

in Ω ,

φ(t, x , y) = φ0(x , y) in Ω.

The existence of φ can be proved along similar lines to Ref. [11].

4. Numerical Methods

We present two numerical methods for solving the nonlinear parabolic PDE (3.4).

4.1. Semi-implicit method

First we write the PDE (3.4) in a self-adjoint form

∂ φ

∂ t
= µδε(φ)∇
�

G(x , y)
∇φ

|∇φ|

�

+ f (x , y) ,

i.e.

∂ φ

∂ t
= µδε(φ(x , y))

�

G(x , y)∇.
� ∇φ

|∇φ|

�

+∇G(x , y).
� ∇φ

|∇φ|

�

�

+ f (x , y) , (4.1)
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where

f (x , y) = µδε(φ)

�

−λ1

(z(x , y)− c1)
2

c2
1

+λ2

(z(x , y)− c2)
2

c2
2

�

+αG(x , y)|∇φ| .

Now using the differences given by

∆x
−(φi, j) = φi, j −φi−1, j , ∆x

+(φi, j) = φi+1, j −φi, j ,

∆
y
−(φi, j) = φi, j −φi, j−1 , ∆

y
+(φi, j) = φi, j+1 −φi, j

and a semi-implicit scheme, the discretised form of the above equation is

φn+1
i, j
−φn

i, j

△t
=µδε(φ

n
i, j)Gi, j







1

h2
1

△x
−







△x
+φ

n+1
i, j

Æ

(△x
+φ

n
i, j
/h1)

2 + (△y
+φ

n
i, j
/h2)

2













+µδε(φ
n
i, j)Gi, j

1

h2
2

△y
−

� △y
+φ

n+1
i, j

Æ

(△x
+φ

n
i, j
/h1)

2 + (△y
+φ

n
i, j
/h2)

2

�

+µ
δε(φ

n
i, j
)

|∇φn
i, j
|

�

1

h2
1

△x
+G(x , y)△x

+φ
n+1
i, j

�

+
µδε(φ

n
i, j)

|∇φn
i, j
|

�

1

h2
2

△y
+G(x , y)△y

+φ
n+1
i, j

�

+ fi , j .

Using h1 = h2 = 1 (i.e. absorb h1 and h2 into the parameter µ), we get

φn+1
i, j
−φn

i, j

△t
=µδε(φ

n
i, j)Gi, j

h

(φn+1
i+1, j
−φn+1

i, j
)Ci, j − (φ

n+1
i, j
−φn+1

i−1, j
)Ci−1, j

+(φn+1
i, j+1
−φn+1

i, j
)Ci, j − (φ

n+1
i, j
−φn+1

i, j−1
)Ci, j−1

i

+
µδε(φ

n
i, j)

|∇φn
i, j
|

h

△x
+G(x , y)(φn+1

i+1, j
−φn+1

i, j
) +△y

+G(x , y)(φn+1
i, j+1
−φn+1

i, j
)
i

+ fi, j , (4.2)

where

Ci, j =
1

Æ

(∆x
+φ

n
i, j
)2 + (∆

y
+φ

n
i, j
)2

, Ci−1, j =
1

Æ

(∆x
+φ

n
i−1, j
)2+ (∆

y
+φ

n
i−1, j
)2

,

Ci, j−1 =
1

Æ

(∆x
+φ

n
i, j−1
)2 + (∆

y
+φ

n
i, j−1
)2

.

As the coefficients Ci−1, j, Ci, j and Ci, j−1 are “frozen" at the nth iteration, Eq. (4.2) defines a

linear system of equations that can be solved by an iterative method. To speed the solution,

we next develop an additive operator splitting (AOS) method (cf. [16,25,26]) to solve the

PDE (3.4).
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4.2. An additive operator splitting method

The above semi-implicit method, although stable with respect to ∆t, can be expen-

sive to apply for spatial dimension ≥ 2. Related to the famous ADI (alternating direction

implicit methods [9]), the AOS scheme [16, 25] splits the two-dimensional spatial opera-

tor into a sum of two one-dimensional space discretiziations, so that the resulting linear

system can be solved efficiently by applying the Thomas algorithm twice. (Other splitting

methods, such as the multiplicative type, may also be considered.) We first rewrite the

PDE (4.1) in the form

∂ φ

∂ t
=µδε(φ)∇(F∇φ) + f

=µδε(φ)
�

∂x (F∂xφ) + ∂y(F∂yφ)
�

+ f

where F = G/|∇φ|, and consider the one-dimensional problem in the x -direction:

φn+1
i, j
−φn

i, j

△t
= µδε(φ)
�

F n
i+1/2, j

(φn+1
i+1, j
−φn+1

i, j
)− F n

i−1/2, j
(φn+1

i, j
−φn+1

i−1, j
)
�

+ fi, j ,

i.e.

φn+1
i, j
= φn

i, j +µ△t
�

c1φ
n+1
i+1, j
− c2φ

n+1
i, j
+ c3φ

n+1
i−1, j

�

+ fi, j , (4.3)

where

c1 = δε(φ)
F n

i, j
+ F n

i+1, j

2
, c2 = δε(φ)

F n
i−1, j

+ 2F n
i, j
+ F n

i+1, j

2
,

c2 = δε(φ)
F n

i, j
+ F n

i−1, j

2
.

After we solve the system of equations (4.3), we solve a similar system in the y-direction,

before averaging the two solutions to get

(I − 2∆tAl(Φ
n))Φn+1

l
= f n for l = 1,2

and

Φn+1
l
=

1

2

2
∑

l=1

Φn+1
l

,

where I is the identity matrix and Al for l = 1,2 is a tridiagonal matrix. The AOS scheme

uses a 1-D semi-implicit scheme in spatial directions independently, so it is absolutely

stable, and both computational effort and storage is linear in the number of pixels. Other

methods for the solution of this PDE include the Additive-Multiplicative Operator Splitting

(AMOS) schemes [4] and Multigrid methods.
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5. Experimental Results

Some simulation results are now given to show that the new CSM method preserves

advantages of the BC method — such as robustness in terms of number of iterations, CPU

time, segmenting noisy images. It has also been found that the CSM performs better when

segmenting images with fuzzy edges, or with overlapping homogeneous regions. For the

sake of more comprehensive comparisons, we also included the Gout model [10,11] in the

numerical experiments. For brevity, we shall denote by

M-1 — the Gout model,

M-2 — the BC model, and

M-3 — the proposed CSM.

(a) Initial Contour (b) 2 iterations of M-1 (c) After 45 iterations (d) Segmented Result

(e) Initial Contour (f) 2 iterations of M-2 (g) After 10 iterations (h) Segmented Result

(i) Initial Contour (j) 2 iterations of M-3 (k) After 10 iterations (l) Segmented ResultFigure 1: Simple example of segmenting a syntheti
 image, where M-1, M-2 and M-3 have 
ompletedthe task. M-1 took 19 se
onds and both M-2 and M-3 took 4 se
onds. For M-2 and M-3 the modelparameters used are λ = 1 and µ = 2562/400; and for all the three models α = −0.1. The performan
eof model M-1, M-2 and M-3 
an be seen in the �rst, se
ond and third row, respe
tively.
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Below we present the original images, along with the results to compare these three meth-

ods. We begin with some simple examples where all three (M-1, M-2 and M-3) work well,

and then give more examples that show M-3 has far better performance than both M-1

and M-2. In M-2 and M-3, we use λ1 = λ2 = λ. In each of the following figures, the first

row shows the performance of M-1, the second row the performance of M-2, and the third

row the performance of M-3. The first column shows the original image with initial con-

tours, the second column displays the intermediate situations of the active contour of each

model, the third column reveals the final solution in each model, and the fourth column

displays the segmented version of the final solution for convenient deep observations.

The behaviour of M-2 can be seen in Figs. 2(g), 3(g), 4(g) and 5(g)–8(g). The exper-

iments largely reveal the unpredictable behaviour of M-1, as it mainly depends on edge

(a) Initial Contour (b) 20 iterations of M-1 (c) After 10000 iterations (d) M-1 Result

(e) Initial Contour (f) 50 iterations of M-2 (g) After 200 iterations (h) M-2 Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 200 iterations (l) M-3 ResultFigure 2: A 
omparison of M-1, M-2 and the proposed M-3 on segmenting a syntheti
 image. M-3su

essfully dete
ted the sele
ted region. For M-3, the model parameters used are λ= 20, µ= 2562/5000and α = 0. Figs. 2(
), 2(d), 2(g) and 2(h) show that M-1 and M-2 are unable to dete
t the sele
tedobje
t in the given image.
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(a) Initial Contour (b) 20 iterations of M-1 (c) After 1200 iterations (d) M-1 Result

(e) Initial Contour (f) 30 iterations of M-2 (g) After 200 iterations (h) M-2 Result

(i) Initial Contour (j) 20 iterations of M-3 (k) After 35 iterations (l) M-3 ResultFigure 3: Model M-1 in �gure 3(
) took 1200 iterations to 
onverge to a �nal solution, whereas M-3 inFig. 3(k) 
onverged in only 35 iterations. Figs. 3(g) and 3(h) 
ompare M-2 (failing this example) andM-3, where the model parameters used are λ= 15, µ= 2562/5000 and α= 0.
detector function only. Figs. 2(c), 4(c) and 6(c) show that M-1 starts to detect other unde-

sired regions or objects, instead of completing its selective segmentation task. In contrast

with M-1 and M-2, the better performance of M-3 can be seen. The experiments also show

that M-3 is best in accurate and fast detection. and its success with images where M-1 and

M-2 do not work.

In Fig. 2, the original image with initial contour is given. It is clear from Figs. 2(c),

2(d), 2(g) and 2(h) that M-1 and M-2 are unable to detect the region of interest. On the

other hand, the success of M-3 can be seen in Figs. 2(k) and 2(l). In Fig. 2(a), the original

image with initial contour is displayed. Fig. 2(c) shows that M-1 detected the selected

region in 1200 iterations, whereas Fig. 2(k) shows that M-3 detected the same region in

only 35 iterations. On the other hand, the performance of M-2 can easily be interpreted in
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(a) Initial Contour (b) 20 iterations of M-1 (c) After 5000 iterations (d) Segmented Result

(e) Initial Contour (f) 50 iterations of M-2 (g) After 800 iterations (h) Segmented Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 800 iterations (l) Segmented ResultFigure 4: The quality of dete
tion of M-2 and M-3 
an readily be 
ompared from Figs. 4(g), 4(h), 4(k)and 4(l). Fig. 4(
) reveals that M-1 (failing this example) is unable to 
omplete the task. For M-3, theparameters used are λ = 4, µ = 2562/10000 and α = 0.
Fig. 2(g). In Fig. 4(a), a medical image with initial contour is displayed. The accuracy of

detection of M-2 and M-3 is clearly visible in Figs. 4(g), 4(h), 4(k) and 4(l).

Fig. 5 exhibits a real breast image, in which we wish to detect a white region. Although

It can be seen in Figs. 5(c) and 5(d) that M-1 detected the desired region, it is notable

that it took 800 iterations to search for an ideal initial contour for this model. An ideal

initial contour for M-1 is a contour to be selected almost on the boundary of an object or

region of interest. It can be seen clearly in Figs. 2(a), 3(a), 5(a), 6(a) and 7(a) that an

ideal initial contour is provided to M-1, but still the results are devastating. In contrast,

it can be observed in Figs. 2(i), 3(i), 4(i), 5(i), 6(i), 7(i), 8(i) and 9(i) that M-3 gives the

best results without demanding an ideal initial contour. Fig. 6 displays a synthetic image

and the performance of all of the three models. The proposed M-3 successfully detects a
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(a) Initial Contour (b) 150 iterations of M-1 (c) After 800 iterations (d) Segmented Result

(e) Initial Contour (f) 50 iterations of M-2 (g) After 500 iterations (h) Segmented Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 380 iterations (l) Segmented ResultFigure 5: M-3 su

essfully dete
ts a white spot in a real breast image. In Fig. 5(g), it is 
lear that thea
tive 
ontour of M-2 has 
rossed the boundary of the region of interest. For M-3, the parameters usedare λ= 20, µ= 2562/5000 and α= 0.
selected region in the synthetic image — cf. Fig, 6(k). Figs. 6(c) and 6(g) show that M-1

and M-2 are unable to detect the selected object in the given image.

Fig. 7 exhibits a real eye image and demonstrates the performance of all three models

by detecting a black region. Fig. 7(k) shows the successful detection by M-3 of the desired

region, whereas Figs. 7(c) and 7(g) show that M-1 and M-2 are unable to complete the

task. A real heart image can viewed in Fig. 8. Successful detection of the selected portion

in a real heart image by M-3 can be seen in Fig. 8(k), whereas Figs. 8(g) and 8(c) show

the inaccurate detection by M-1 and M-2. In Fig. 9, a real abdominal image can be viewed.

A comparison of Figs. 9(k), 9(g) and 9(c) shows that M-3 successfully treats that image,

whereas M-1 and M-2 are unable to complete the task. Finally, Fig. 10 exhibits the per-

formance of M-3 with fog images, which can be extended to video segmentation in many

applications.
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(a) Initial Contour (b) 100 iterations of M-1 (c) After 5000 iterations (d) Segmented Result

(e) Initial Contour (f) 20 iterations of M-2 (g) After 370 iterations (h) Segmented Result

(i) Initial Contour (j) 20 iterations of M-3 (k) After 400 iterations (l) Segmented ResultFigure 6: Su

essful dete
tion of M-3 of a sele
ted region in a syntheti
 image is shown in Fig. 6(k).Figs. 6(
), 6(g) show that M-1 and M-2 are unable to dete
t the sele
ted obje
t in the given image.For M-3, the parameters used are λ= 150, µ= 2562/4000 and α= 0.
To summarize, in performing selective segmentation on challenging images with nearly

equal intensity regions or fuzzy edges:

• the performance of M-2 is less effective because the active contour often crosses

the boundary of an object of interest in the image, so is unable to detect the actual

boundary and consequently the region of interest in the image; and

• the proposed new M-3 outperforms both M-1 and M-2.

6. Conclusion

A new active contour model for selective image segmentation based on coefficient of

variation is presented, which performs better than previous models in segmenting images
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(a) Initial Contour (b) 100 iterations of M-1 (c) After 10000 iterations (d) Segmented Result

(e) Initial Contour (f) 20 iterations of M-2 (g) After 1000 iterations (h) Segmented Result

(i) Initial Contour (j) 20 iterations of M-3 (k) After 1200 iterations (l) Segmented ResultFigure 7: These results show the performan
e of all three models in dete
ting a bla
k region in a realeye image. Fig. 7(k) shows the su

essful dete
tion by M-3, but in Figs. 7(
) and 7(g) M-1 and M-2are unable to 
omplete the tasks. For M-3, the parameters used are λ = 0.4, µ = 2562/20000 and
α =−0.00125.
with objects where edges are not prominent. The new model is able to detect objects with

overlapping regions of homogeneous intensities, and it can also detect object with non-

homogeneous intensities. In future, we plan to develop fast multi-grid methods for the

solution of differential equations arising from minimisation of the model, and to extend

these results to segmenting 3-D images.
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