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Abstract. A new generalised Hadjidimos preconditioner and preconditioned gener-
alised AOR method for the solution of the linear complementarity problem are pre-
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1. Introduction

Many researchers have studied various preconditioners to solve the well known linear
algebraic system
Ax=0b,

so that corresponding classical iterative methods such as Jacobi or Gauss-Seidel converge
faster. Hadjidimos [10] considered the preconditioner
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where a =[0,a,, -+ ,a;, -+ ,a,] €R" involves constants a; > 0, i = 2(1)n and
: )
—0aydy; O
S1(a) = —aay 0 (1.2)
K —Qnpdn; 0 j

In the case where a; = 1, i = 2(1)n, P;(a) is the Milaszewicz preconditioner [17], which
eliminates the elements of the first column of A below the diagonal.

It has been found that preconditioner modifications can improve the convergence rates
of classical iterative methods [10]. Wang [11] presented a preconditioner P = I + Sy,
where a, 3 are constants and

(o \

0 0
Sap = O ’ 0 . (1.3)
\ —ana—p 0 Y

If B = 0, the Wang preconditioner becomes the Evans preconditioner [7]. In this paper, we
extend the Hadjidimos and Wang preconditioner approach by constructing a generalised
Hadjidimos preconditioner P;(yf) =I + S;(y), where

(o )

—Y2a51 —f2 O
Si(rB) = _Y'a"l _B A 0 , (1.4)
\ —Ynln1 — ﬁn 0 }

Yy =100,Y2, " ,Yi>**»>Ynl €R", v; = 0,i = 2(1)n, and B;, i = 2(1)n are constants. Thus
in (1.4), if y; =1,i =2(1)n, 5; = 0,i = 2(1)n, P;(yf5) we have the Milaszewicz precon-
ditioner, and if y; = 0,i = 2(1)n—1, ; =0,i = 2(1)n—1, P;(yf3) the Wang preconditioner.

Given the established efficiency of preconditioners for solving linear algebraic systems,
in this paper we consider the solution of the linear complementarity problem [13]:

find x € R™ such that
x>0,Ax—f >0, x (Ax—f)=0, (1.5)
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where A = [a;;] € R™" is a given matrix and f € R" is a vector. Many solution methods
have been considered [2,3,5,6,13,15,16]. We discuss a new PGAOR (preconditioned gen-
eralised AOR) to accelerate these methods for the linear complementarity problem (1.5),
using the above generalised Hadjidimos preconditioner.

In Section 2, some preliminaries and the new PGAOR are presented. Convergence
analysis is given in Section 3. The convergence rates of the PGAOR are compared with
other preconditioner approaches in Section 4. Numerical experiments are discussed in
Section 5, followed by our conclusions in Section 6.

2. Preliminaries and the New PGAOR

Let us first briefly summarise the notation. In reference to R" and R™*", the rela-
tion > denotes partial ordering. In addition, for x,y € R" we write x > y if x; > y;,
i=1,2,---,n. A nonsingular matrix A = (ai]-) € R™" is termed an M—matrix if a;; <0
fori # j and A”' > 0. Its comparison matrix <A >= (a;;) is defined by a; = |ayl,
a;j = —la;j| (i # j). Ais said to be an H—matrix if < A > is an M—matrix. For simplicity,
we may assume that a; =1, i = 1(1)n.

Let x €R™, (x+)j =max{0,xj},j= 1,2,--+,n for any x, y € R". We have that:

D (x4+y)s Sxp+y4s
2) xp —yy<(x—y)ts
3) |x|=x4+(—x);;and
4) x <y implies that x, <y, .
The linear complementarity problem (1.5), conveniently denoted by LCP(A, f)(1.5), is

equivalent to [1]
z=(z—aEAz+f));,

where a is a positive constant and the matrix E is positive diagonal. We begin with a
Lemma together with its appropriate reference, a practice we also continue elsewhere if
no proof is provided.

Lemma 2.1. [2] If A € R™" is a positive diagonal M—matrix, then LCP(A, f) (1.5) has a
unique solution x* € R™.

Consider A=1 — L — U where L and U are strictly lower and strictly upper triangular
matrices, and denote D = diag(A). A generalised AOR (GAOR) algorithm is [12]:

#H = (25— D7 [aQLz" + (QA—aQL) 2 +0f ] ) 4 .
If a =1, then this GAOR is simply

2kl = (zk - D! [QszH —G-Q(A—L)zk—i-QfJ)7L ;
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and if a = y/w,Q = wl, then
gkl = (zk ~ DY (yLeM + (wA—yL) 2K+ a)f) 4

With J = D™Y(L + U), Q = diag (wq, -+ ,w,), ; € R, and a a real constant, we have
the following GAOR:

1) Givenz’ €R",k=0;

2) gkl = (zk —D! [aQsz“ +(QA—aQL)zk + Qf] ) 43

3) If 251 = zX | stop; otherwise, set k = k + 1 and return to Step 2.
On denoting G =1 — aQD !|L| and F = | — D" }(QA — al)|, we have

Lemma 2.2. [12] Suppose that A is a positive diagonal H—matrix. Then for any initial
vector z° € R, the iterative sequence {zX} generated by the GAOR converges to the unique
solution z* of LCP(A, f) (1.5), and

P (G_lF) < max {|1—wi|+o)ip(|J|)} <1,

1<i<n
where 0 < w; <2/[1+p(|J])] and 0<a<1.

For our new PGAOR using the technique from Ref. [13] and the generalised Hadjidi-
mos preconditioner P;(yf) =1+ S;(yf3), we adopt

(o )

—Y2a21 — B2 O
$irp)= —Yiai1 — Bi 0 ’
\ ~Ynln1 — ﬁn 0 }

A=(1+S(yB)A A=D-L—-0U,and f = (I+5,(yB)) f.
Algorithm 2.1. Preconditioned GAOR (PGAOR)

1) Givenz? €R™, k=0;
2) Fork=1,2,---,

Zhtl = (zk —-p7t [ocﬂf,szrl + (QA— aﬂf,) 2k + QfD s (2.1)

3) If zk*1 =z, then stop; otherwise, set k = k + 1 and return to Step 2.
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3. Convergence Analysis

Let us now consider convergence analysis for the new algorithm.

Lemma 3.1. [13] Let A be an M—matrix, and x be a solution of LCP(A, f) (1.5). If f; > 0,
then x; > 0 and therefore Z;I: — f; = 0. Moreover; if f <0, then x = 0 is the solution
of LCP(A, f) (1.5).

If the problem LCP(A, f) (1.5) has a non-zero solution, there is at least one index k
such that f; > 0. Let us assume that f; > 0. From Lemma 3.1, we obtain

Lemma 3.2. Let A= P;(yB)A= [d;;], f=P(yB)f =Ff. If f; >0, then LCP(A, f) (1.5) is
equivalent to the linear complementarity problem

x>0,Ax—f>0,x"(Ax—f)=0. (3.1

lJJ

Proof. Suppose that x is the solution to LCP(A, f) (1.5). Because f; > 0, from Lemma
3.1 we have that x; > 0 and Z;‘Zl a;;x;—f1=0

Thusifi=1,
Zdijxj - fi= Zaijxj —fis
j=1 j=1
and if i # 1, then
Zdijxj - f; ZZ (aij — (riain + /51‘)6111') xj = (fi = (riain + B f1)
=1 =1
—Z(au x; = £) = (rian + B) D (ay;x; — f1)
=
_Z(al] X fl (3.2)

Consequently, x is the solution to problem (3.1).

Conversely, let us suppose that x is the solution to problem (3.1), so that from (3.2)

we have x; > 0, 37, ay;x; — f; = 0. Moreover, for i # 1,
anlauxj —fi =Zn1] (@ + (riai + Bay;) x; — (fi + (rian + Bf1) (3.3)
= i=
—Z(au xj— f)+ (rian +/51-)znl:(a1]-xj - f1) (3.4)
P
Z(al] x;—f), (3.5)

so x is the solution to LCP(A, f) (1.5). O
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Lemma 3.3. [10] If A= (a;;) is a nonsingular M—matrix, then
aliai1<1, l?él

Lemma 3.4. [18] Let A= [a;;] € R"", and a;; < 0 for i # j. Ais an M—matrix if and only
if there exists a positive vector y such that Ay > 0.

Lemma 3.5. If Ais an M—matrix, 0 < y; <1, —y;a;1 +a;1 < B; < —v1iq, i =2,---,n,
then A= P;(yBA= [d;;] is an M—matrix.

Proof Let N :={1,2,---,n}, N; :=N \ {1}, Nj := {i € Ny|a;; # 0}. Then
aij; = 1)] EN:

_Yi)ail_ﬁi5 l#l,]:l, (36)
a;; — (viain + Blay, 1#1,jEN].

Q
Il
~
—_

ij

If Ais an M—matrix, a;; <0, i # j. From Lemma 3.3, for 0 < a;;a;; < 1 we have that
a;; > 1/ay; for i = 2,---,n. Otherwise, from —y;a;; +a;; < B; < —v,;a;; we have that

Bitvian <0, B; = —via; +ay >1/ay; —y,a;. Nowif i #1,0 <7y; <1, then:

1. forj=1,a;=(1-7)a; —B;<0;

2. for j €Ny, j #1, djj = a;; — (v;a;1 + Bi)a;; < 05 and

3. forj = i, dii =1 —('}’iail +[5i)a1i >1-— 1/Cl1i *dq; = 0.
Consequently, A(a) is an L—matrix. From (1.4), P;(y8) = I+S;(yB) > 0; and from Lemma
3.4 there exists a positive vector y > 0 such that Ay > 0. Thus Ay = P,(y8)Ay > 0, and
from Lemma 3.4 A is an M—matrix. O

Theorem 3.1. Let A be a diagonally dominant M—matrix. If 0 < v; <1, —y;a;; +a;; < B; <
—via;1, L =2, ,n, then the iterative sequence of the algorithm 2.1 converges to the unique
solution x* of LCP(A, f) (1.5).

Proof From Lemma 3.5, A is a diagonally dominant H—matrix. Thus from Lemmas 3.2
and 2.2, Algorithm 2.1 converges to the unique solution of LCP(A, f) (1.5). O

4. Comparison Theorem

We now discuss a comparison theorem that shows how our PGAOR is more efficient.
Denote A= P (yB)A= [a;], with

dij» i=1,j€EN;
aj=9 (I=ridan =B i£1,j=1; 4.1)
a;j — (yian +Bdayy, i#LjEN,.
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Lety; €[0,1],i=1,2,---,n,A=1—L—U,

D,,, =diag(0,(v2as1 + B2)arz, *+ , (Ynan + Brlain) ,
and

Sl(Yﬁ)U =Dy +Lyy+Uy,

where L,,, and U,,, are strictly lower and upper triangular matrices. From (1.4), we have
that

0 0 0 0
0 (voag +Brlasy (v2a21+B2)ass -+ (yaas + B2la,
S;(yB)U=| O (rsas1+PB3)arx (ysasm +Bslass -+ (rsaz;+P3)an, || (4.2)
0 (rnan+Brarz (Yn@m +Bais -+ (rpam + Brlai,
0 0 cee 0 0
0 0 e 0 0
L,=| 0 (rsaz;+Bslarx - 0 o1,
0 (rnam+Baz -+ (Ynam +PBplagp—1 O
and
0 O 0 <. 0
0 0 (raap +pB2)ayz --- (r2a1 + B2)ay,
Uw=| : : : . :
00 0 “t Yno1Ap-11 1 B2)as,
0 O 0 e 0
Let
A=D-1-U,
where
b=1-D,,, L=L-S5UB)+L,,, v=u+vu,,, (4.3)
and
N:=1{1,2,--- ,n}, N; ;=N\ {1}, Ny :={ieN;:a; #0}. 4.4)

Consider the following splittings [10]:

My(yB)—Ni(yB) =T +5:(yB)) — (I +S:(y L+ U),
My(yB)—Ny(yB)=I1—-(L+L., —S1(yB)+U+U,, +D,,),
M;3(yB)—Ns3(yB)=U-D,,)—(L+L,,—S;(rw)+U+U,,),
M4(Yﬁ) _N4(Yﬁ) = (I - (L - Sl(}/ﬁ))) - (Drw + Lrw +U+ Urw) >
Ms(yB) —Ns(yB)=I - (L —=S1(yB) — L) = (Dryy + U+ U,y,),
MG(Y[:}) _NG(Y[))) =I-(L- Sl(}/ﬁ)) —D,, — Lrw) -(U+ Urw) 5

D
I

(4.5)
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and define the matrices

o B=M'(yBIN;(yB)=L+U ;

B =M, ' (yBINo(yB) =L+ Ly, + U+ U,y + Dy, = S1(YB) 5

B" =M (yBIN;(yB) = =D, ) 'L+ Ly + U+ Uy, = S1(vB)) 5
H=(I-L)'U;

H' = M3 (yBINs(yB) = (I = (L = S1(yB)) = L) " (Dpyy + U+ Upy) 5
H" =Mz (yBINe(yB) = (I = (L =S1(yB)) = Dy — L) (U + Uy, .

Definition 4.1. ( [9,19]) If A€ R™", then

1. A=M —N is a regular splitting of Aif M~ >0, N >0

2. A=M — N is an M—splitting of A if M is an M—matrix, N >0 ;

3. A=M — N is an H—compatible splitting of A if <A >=< M > —|N| ; and
4. A=M — N is convergent if the spectral radius p(M~'N) < 1.

Lemma 4.1. [19] If Ais an irreducible n X n matrix, then

1) A has a real positive spectral radius p(A) ;
2) p(A) of A corresponds to a positive eigenvector x > 0 ; and
3) p(A)is a single eigenvalue of A.

Lemma 4.2. [19] Let A= (a;;) be a nonsingular M—matrix, and the matrix C be generated
by A with some non-diagonal elements a;; =0, i # j. Then C is a nonsingular M—matrix.

Lemma 4.3. [19] Let A= M; —N; = M, — N, be two regular splittings of A, where A~1 > 0.

(1) If Ny > N; >0, then
0<p(M;{'N)) <p(M,'N,)<1. (4.6)

(2) IfM;' > M, then
0<p(M{'N))<p(M;'N,)<1. 4.7)

Lemma 4.4. [19] If B is a Jacobi matrix and G is a Gauss-Seidel matrix, then the following
are equivalent:

1) p(B)=p(G)=0;

2) 0<p(@)<pB)<1;

3) p(B)=p(G)=1;and

4 1<p(B)<p(G).
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Theorem 4.1. Let A be an irreducible nonsingular M—matrix, and 0 < y; <1, —y;a;;+a;; <

Bi < —v,a;; fori=2,--- ,n. Then for any y €RR", y > 0 such that

B'y <By,

p(B)<pB)<1,

p(H) <pH)<pH)<1,and

p(H") < pB"), pH)<pB), pH)<pB)<I1.

Proof. From the definition of B, B’ and B”,

biiZO) i €EN; bij:_aij’ LjEN,j#1.

bl = (via;1 + Bay; = (via; — Bay, 1EN,;

b, =0, i€N\Ny;
bl{jz—aiijij, i€N\N,,jEN;,j#1i;
bij = (rian + Bay; — a;j = (riby — Bbyj +bij, 1ENy,jENLj#1;

b, =(=1+y)a;y + ;=1 ~7v)by+ B, i€EN,.

bl =0, ieN;

b{;z—aiijij, i€N\N,,jEN;,j#1i;

_ (rian +Bagj—a;;  (yibin — Bi)by; + by
Yoo 1= (yia + Bayg 1—(ybiy —Bby; ~
" _ (—1+7rdan + B _ (1_}”1'351'1"‘/51'

B 1—-(yian+Blay; 1—=(yibyy — B)byi’

i€N21j€N1:j¢i;

ieN,.

(4.8)
4.9)
(4.10)
(4.11)

(4.12)

(4.13)

From Lemma 4.1, for any nonnegative Jacobi iterative matrix B there exists a positive

vector y such that p(B)y = By. Then

n
p(B)y; =) byy;=bayi+ Y. by
T jAtj=2

n
=(b}, +yibin — Bdy1 + Z (bl{j —(yibi — ﬁi)bu) ¥+ by — by

J#L,j=2
n n
ZZ bi;yj— (yibin — ﬁi)z b1;¥; + (vibin — Bi)b1)yi
j=1 j=2
n 1 n
=S "0y 4+ (b — B[ —— =15 by
]-221 l]y]+(}/l il ﬁl) (p(B) )JEZ 1]y]

n
/
= by,
=

so (4.8) is valid — i.e. B’y < By.
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From Lemma 3.5, A is a nonsingular M—matrix. From (4.5), M,(yB)™ =1 > 0,
No(yB) > 0, M3(yB)™! = (I - D,,,))" > 0, N3y(y3) > 0, they are convergent regular
splittings and obviously M5(yB)™! > M,(yB)™}, so (4.9) follows from Lemma 4.3.

From (4.5), M4(yB) = (I —(L—S:(yB)) and from Lemma 4.2, M,(yf3) is a nonsingular
M-matrix, so My(yB)™1 > 0. Also Ny(yB) = Dy + Ly + U+ Uy, =0, 50 My(yB)—Nu(yB)
is regular and convergent.

Ms(yB) =Mq(yB) — Lpyy = My(yBII — My(yB)'Lyy,). 1 L = My(yB) 'Ly, then

n—1

Ms(yB) ' = - L) My (yB) =D LMy (yB) ! >0,
j=1

so from Ns(yf) = D,,, + U + U,,, = 0 we have Ms(y[8) — N5(yf3) regular and convergent.
Similarly, we can show that M¢(yf) — Ng(yf) is regular and convergent.

From N4(Yﬁ) = Drw +Lrw +U+ Urw = NS(Yﬁ) = Drw +U+ Urw = N6(Y/5) =U+ Urw’
and from Lemma 4.3 p(H”) < p(H') < p(H) < 1.

From Lemma 4.4, 0 < p(H) < p(B) < 1; and Ny(yB)=L - S;(yB)+U+U,,, + D,,, =
NS(Y[))) =U+Uyy +Dpy,s N3(Y[5) =L+L,,—$(B)+U+U,,+D,, = N6(Y[5) =U+U,y,
so from Lemma 4.3 p(H') < p(B), p(H") < p(B"). O

Lemma 4.5. [4]. If Ais a nonnegative matrix,

(a) for any vector x > 0 such that Ax > Bx, then p(A) > 5 ;

(b) for a vector x > 0 such that Ax < yx, then p(A) <.
Moreover, if A is irreducible, x > 0 and Bx < Ax < yx, then f < p(A) <7.

Theorem 4.2. If A is an irreducible nonsingular M—matrix, for i = 2,---,n, 0 <y; <1,
—viai1 +a;1 <B; < —7ia;1, 0Sr<w<=<1Ww#0, r#1) we have

p(L.)<p(L,,)<1, (4.14)
where

Zr’w =D -r) ' [A-w)D+Ww—-r)L +wU],
L,=—-rL) '"[(A1-w)I+Ww-r)L+wU].
Proof 1t is obvious that (D —rL) — [(1 —=w)D+(w —r)L+wU] and (I —rL) — [(1 —

w)I + (w — r)L + wU] are regular, hence ir’w and L,, are nonnegative and irreducible.
Consequently, there exists a positive vector x such that

L,,x =Ax, A=p(L.y),

so that
[(1—-w)D+(w—-r)L+wU]x=A(I—rL)x, (4.15)
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whence
Loyx—2Ax=D-rL)'[QA-w)D+w-r)L+wl0—-AD—-rL)]x. (4.16)
Substituting (4.3) and (4.15) into (4.16), we have
Lyx— Ax
=D —rL) [(1=w)T =Dpy) + (W =1+ Ar)(L + Ly, = S1(yB)) +wU +wU,, ] x
=D —rL)™ [(A = DDy +w(S1(yHIU = S1(yB) +1(1 = ALy = S1(yBN] x .

Thus for A < 1 we have Zr’wx < Ax, and the result follows from Lemma 4.5. O

5. Numerical Experiments

Results from some numerical experiments are now presented, showing that the new
PGAOR is more efficient.

Example 5.1. Linear complementarity problem with coefficient matrix

1.00000 —0.00580 -0.19350 -0.25471 -0.03885

—0.28424 1.00000 -0.16748 -0.21780 -0.21577

A;=| —0.24764 -0.26973 1.00000 —0.18723 -—0.08949

—0.13880 -0.01165 -0.25120 1.00000 -—0.13236
—0.25809 -0.08162 -0.13940 -0.04890 1.00000

Given Theorem 4.2, let us choose r, w, v; and f3;, and denote
Z’r,w =D-ri)™ [(1 —w)D+w—-r)L +WU] ,
L= —rL) [(1=w) +(w—r)L+wU].

We can compute the spectral radius p(L,,,) of L,,,, and the spectral radius p(L,,,) of L., .
The results listed in the following tables demonstrate that the PGAOR is more efficient than
the GAOR, and the generalised Hadjidimos preconditioner is more efficient than the other
preconditioners. In particular, for r = w =1 (the GS iterative method) the PGAOR is most
efficient.

Example 5.2. Linear complementarity problem with coefficient matrix

( 1 C1 Cy C3 c1 ... \

C3 1 Cq Co C1

Cy C3 1 C1 .. C3
A2: .. .. .. >

C1 . . 1 - Coy

Cs 1 o

k E C3 C1 Cy C3 1 j
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Table 1. p(L,,) and p(L,,) when r =0.85, w=0.9.

Preconditioner | (0,73,--+,v5)" | (0,B,+,Bs)" p(Ly) | p(Lrw)
Milaszewicz (0,1,1,1,1)7 | (0,0,0,0,0)T 0.4957
Hadjidimos (0,1,0,0.2,1)T | (0,0,0,0,0)! 0.4835
Evans (0,0,0,0,1)] (0,0,0,0,0)] 0.4878
Wang (0,0,0,0,1)T ] (0,0,0,0,0.025)" 0.4900 | 0.5086
Generalised (0,1,0,0,1)! (0,0,0.1,0.03,0)! 0.4798
Hadjidimos (0,1,1,1,1)1 (0,0.28,0.24,0,0)" | 0.4859
Table 2: p(L,,) and p(L,,) when r =0.95, w =1.
Preconditioner | (0,75,--+,v5)" | (0,B,+,Bs)" (L) | (L)
Milaszewicz (0,1,1,1,1)T | (0,0,0,0,0)T 0.3988
Hadjidimos (0,1,0,0.2,1)" | (0,0,0,0,0)’ 0.3813
Evans (0,0,0,0,1)T (0,0,0,0,0)? 0.3835
Wang (0,0,0,0,1)T 1 (0,0,0,0,0.025)" 0.3866 | 0.4117
Generalised (0,1,0,0,1)! (0,0,0.1,0.03,0)’ 0.3758
Hadjidimos (0,1,1,1,1)T (0,0.28,0.24,0,0)" | 0.3805
Table 3: p(L,,) and p(L,,) when r=1, w=1.
Preconditioner | (0,y3,--,7s)" | (0,B5,---,Bs)" p(Lyy) | p(Lyy)
Milaszewicz (0,1,1,1,1)T | (0,0,0,0,0)T 0.3732
Hadjidimos (0,1,0,0.2,1)" | (0,0,0,0,0)’ 0.3522
Evans (0,0,0,0,1)! (0,0,0,0,0)! 0.3526
Wang (0,0,0,0,1)T 1 (0,0,0,0,0.025)" 0.3562 | 0.3850
Generalised (0,1,0,0,1)! (0,0,0.1,0.03,0)" | 0.3455
Hadjidimos (0,1,1,1, 1) (0,0.28,0.24,0,0)T | 0.3491

105

and f = (sin(n(1—2x;)))iL,. f weletc; = —2/n,c, =0and c;3 = —1/(n+2), it is easy to
show that A, is an M-matrix [14]. The initial approximation of x is taken as a zero vector.
The stopping criterion is |xT * (Ayx — f)| < 1078, and the numerical results are shown in
Table 4. By using the general Hadjidimos preconditioner, the new PGAOR is evidently more
efficient than the GAOR. However, it is notable that if we choose y = (0,1,0,---,0,1)T and
B = (0,0,0.45,---,0.45,0)", on applying the general Hadjidimos preconditioner P the
coefficient matrix PA, is an H-matrix but not an M-matrix and the new PGAOR becomes
faster. We propose to reconsider this elsewhere.

6. Conclusion

For linear systerms, preconditioners can accelerate corresponding iterative methods. In
this paper, a new general Hadjidimos preconditioner is presented. Using the technique in
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Table 4: Example 5.2, Comparison of iterative steps and cputimes of GAOR and PGAOR. ('-/-' mean
that ’iter/cputime(second))’.

Algorithm | 100 400 1000 2000 3000

GAOR 49/0.2028 | 81/4.8048 | 111/39.4059 | 138/116.3611 | 159/244.3132

PGAOR  1°=70,1,0,---,0, )7, B = (0,0,0.45,--,0.45,0)7, r = 0.99,w = 1

y=(0,1,0,---,0,1)",  =(0,0,0.999/(n+2),---,0)", r =0.99,w =1
48/0.1872 | 80/4.7892 | 110/38.8598 | 138/114.2511 | 158/239.3055

26/0.1872 | 41/2.6052 | 68/24.8822 | 97/82.0 | 122/197.1852

Ref. [13], we apply this new Hadjidimos preconditioner to establish a new PGAOR method
to solve the linear complementarity problem. A comparison theorem and numerical results
demonstrate the efficiency of the new method for this purpose.
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