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Abstract. We propose and analyse a class of fully discrete schemes for the Cahn-Hilliard

equation with Neumann boundary conditions. The schemes combine large-time step

splitting methods in time and spectral element methods in space. We are particularly

interested in analysing a class of methods that split the original Cahn-Hilliard equa-

tion into lower order equations. These lower order equations are simpler and less

computationally expensive to treat. For the first-order splitting scheme, the stability

and convergence properties are investigated based on an energy method. It is proven

that both semi-discrete and fully discrete solutions satisfy the energy dissipation and

mass conservation properties hidden in the associated continuous problem. A rigor-

ous error estimate, together with numerical confirmation, is provided. Although not

yet rigorously proven, higher-order schemes are also constructed and tested by a series

of numerical examples. Finally, the proposed schemes are applied to the phase field

simulation in a complex domain, and some interesting simulation results are obtained.
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1. Introduction

The Cahn-Hilliard equation, originally introduced by Cahn and Hilliard to describe the

phase separation and coarsening phenomena in a melted alloy [3], has now been used

to model many moving interface problems from fluid dynamics to materials science via a

phase-field approach — e.g. see Refs. [4, 5, 9, 21, 23, 25, 26, 28, 31]. Usually, the Cahn-

Hilliard equation takes the form

∂tu+∆

�

∆u−
1

ǫ2
f (u)

�

= 0 , 0< t ≤ T, x ∈ Ω , (1.1)
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where Ω ⊂ Rd (for d = 2,3) is a bounded domain, f (u) = F ′(u) with F(u) a given energy

potential, the parameter ǫ denotes the interfacial width that is small compared to the

characteristic length of the problem under consideration, and ∆ denotes the Laplacian

operator. This fourth-order equation can be viewed as the gradient flow of the Liapunov

energy functional

E(u) =

∫

Ω

�

1

2
|∇u|2+

1

ǫ2
F(u)

�

dx (1.2)

in the space H−1(Ω).

Another commonly used model in the investigation of moving surface problems is the

Allen-Cahn equation (e.g. see Refs. [1,10,11,19,22]):

∂tu−∆u+
1

ǫ2
f (u) = 0 , (1.3)

which was first introduced by Allen and Cahn [1] to describe the motion of antiphase

boundaries in crystalline solids. Similar to the Cahn-Hilliard equation, Eq. (1.3) can

be viewed as the gradient flow of the same Liapunov energy functional E(u) defined in

Eq. (1.2) in the space L2(Ω). Both equations (1.1) and (1.3) satisfy the energy law

∂t E(u(t))≤ 0 ,

but each of them has its own advantages. Roughly speaking, the Allen-Cahn equation

satisfies the maximum principle, and the computation is cheaper since it is a second-order

equation. By contrast, the Cahn-Hilliard equation does not satisfy the maximum principle,

but possesses conservation of total mass for the system, which is very important for some

practical applications — e.g. the mixture of two incompressible fluids [23] or liquid crystal

flows [24,27].

Numerical methods for the Cahn-Hilliard equation can be found in many references —

cf. [6–8,12–18,20,30,32,33] and other references therein. Existing numerical techniques

include finite element schemes [7,13,15,16,20], finite difference approaches [2,17], and

combined spectral and large-time stepping methods [33]. Compared to a standard con-

forming finite element method, which requires that the approximation space is a subspace

of H2, the methods based on a splitting technique [7,18,29,32] only require C0-continuity

of the approximate solution and are therefore easier to implement. In this article, we anal-

yse an approach for the Cahn-Hilliard equation using splitting schemes in time and spectral

element methods in space. Our main purpose is to establish the stability and convergence

properties of the proposed scheme, together with an extension to the spectral element

method for the spatial discretisation. We are aware that similar analysis has been carried

out in Refs. [18,32], where an error estimate was obtained assuming boundedness of the

discrete solution, but that assumption is only valid in the one-dimensional case for the stan-

dard energy potential. To overcome this difficulty, we consider here the two-dimensional

Cahn-Hilliard equation corresponding to a truncated potential F(u) with quadratic growth



A Time Splitting Space Spectral Element Method for the Cahn-Hilliard Equation 335

at infinities [6, 13], such that boundedness of the solution can be obtained [4]. To fur-

ther improve the stability, we propose to add an extra stability term as in Ref. [29]. More

precisely, we consider the initial-boundary-value problem for the Cahn-Hilliard equation

∂tu+∆

�

∆u−
1

ǫ2
f (u)

�

= 0 , (x , t) ∈ Ω× (0, T ) , (1.4)

∂ u

∂ n
=
∂ 3u

∂ n3
= 0 , x ∈ ∂Ω , 0< t < T , (1.5)

u(x , 0) = u0(x ) , x ∈ Ω , (1.6)

where Ω = (0, L1)× (0, L2), u0 is a given initial function, n is the outward normal to ∂Ω,

and F(u) is the truncated double-well potential defined by

F(u) =



















1

2
(u− 1)2 , u > 1 ,

1

4
(u2 − 1)2 , |u| ≤ 1 ,

−
1

2
(u− 1)2 , u < −1 ,

such that

f (u) = F ′(u) =







u− 1 , u > 1 ,

u3 − u , |u| ≤ 1 ,

−(u− 1) , u < −1 .

It is an easy matter to verify that

‖ f (u)‖0 ≤ ‖u‖0 , | f ′(u)| ≤ 1 and | f (u1)− f (u2)| ≤ |u1− u2| . (1.7)

This article is organised as follows. We discuss a semi-discrete approximation of the

Cahn-Hilliard equation in Section 2, and prove the existence and uniqueness of the semi-

discrete solution. In Section 3, the fully discrete approximation is constructed, and its

stability and convergence properties are investigated. In particular, the consequence of

the extra stability term for the error is made evident. We present some numerical results

in Section 4, which validate the error estimates and confirm that larger time-steps can

be used by adding a consistent extra term. Some simulations of two incompressible fluids

using our proposed method are also discussed in Section 4, followed by concluding remarks

in Section 5.
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2. Semi-Discrete Problem: A Spectral Element Method in Space

We start by introducing an auxiliary function w =: (1/ǫ2) f (u)−∆u, and reformulating

Eqs. (1.4)–(1.6) as follows:

ut −∆w = 0 , x ∈ Ω, 0< t ≤ T , (2.1)

−∆u+
1

ǫ2
f (u)−w = 0 , x ∈ Ω, 0< t ≤ T , (2.2)

∂ u

∂ n
=
∂ w

∂ n
= 0 , x ∈ ∂Ω, 0< t ≤ T , (2.3)

u(x , 0) = u0(x ) , x ∈ Ω . (2.4)

The variational formulation of problem (2.1)–(2.4) is as follows. Given u0 ∈ H1(Ω) and

∀t ∈ (0, T], find u(t) ∈ H1(Ω) and w(t) ∈ H1(Ω) such that

∂t(u(t),v) + (∇w(t) ,∇v) = 0 , ∀v ∈ H1(Ω) , (2.5)

(∇u(t),∇χ) +
�

1

ǫ2
f (u(t))−w(t),χ

�

= 0 , ∀χ ∈ H1(Ω) , (2.6)

u(x , 0) = u0(x ) , x ∈ Ω . (2.7)

In the consequent space discretisation of the problem (2.5)–(2.7), the spectral element

aspect proceeds by breaking the domain Ω into a number of non-overlapping elements

Ω̄ =

K
⋃

k=1

Ω̄k , Ωk ∩Ωl = ; , k 6= l ,

and to simplify our analysis we assume all elements are rectilinear. In particular, we let

h=max{hk
i
, i = 1,2; k = 1, · · · , K}, where hk

1 and hk
2 are the lengths of the rectangle Ωk in

the two directions, respectively.

Hereafter we use N to denote the parameter pair (N , K), when the piecewise polyno-

mials space is defined as follows:

PN(Ω) = {φ ∈ L2(Ω) ; φ|Ωk
∈ PN (Ωk) , 1≤ k ≤ K} ,

where PN (Ωk) denotes the space of all polynomials of degree ≤ N with respect to each

variable in Ωk. In particular, if K = 1, we denote PN (Ω) by PN(Ω). In what follows, c

means a generic constant, which may depend on the solution u but is independent of the

discretisation parameters.

The spectral element approximation to the problem (2.5)–(2.7) thus reads as follows.

For all t ∈ (0, T], find uN(t) ∈ PN(Ω), wN(t) ∈ PN(Ω) such that

∂t(uN(t) ,vN) + (∇wN(t) ,∇vN) = 0 , ∀vN ∈ PN(Ω) , (2.8)

�

∇uN(t),∇χN

�

+

�

1

ǫ2
f (uN(t))−wN(t),χN

�

= 0 , ∀χN ∈ PN(Ω) , (2.9)

uN(0) = u0,N , (2.10)

where u0,N is an approximation of u0.
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Lemma 2.1. If u0,N ∈ H1(Ω) and (uN, wN) is a solution of Eqs. (2.8)−(2.10), then

∂t E(uN(t)) + ‖∇wN(t)‖
2
0 = 0 . (2.11)

Proof. It can be verified directly that

∂t E(uN) =

∫

Ω

h

∇uN(t) · ∂t∇uN(t) +
1

ǫ2
f (uN(t))∂tuN(t)

i

dx

by (2.9)
=

�

wN(t), ∂tuN(t)
�

by (2.8)
= −‖∇wN(t)‖

2
0 ,

leading to Eq. (2.11).

Lemma 2.2. (uN(t), 1) = (u0,N, 1) , ∀t > 0 .

Proof. This follows from Eq. (2.8) by setting vN = 1.

Lemma 2.3. If u0,N,u0 ∈ H1(Ω) , ‖u0,N‖1 ≤ c0‖u0‖1 and (u0,N, 1) = (u0, 1) , then there

exists a constant c(u0) such that

‖uN(t)‖1 ≤ c(u0) , ∀t ∈ (0, T ) . (2.12)

Proof. From Lemma 2.1, E(uN)≤ E(u0,N)— i.e.

1

2
|uN|

2
1+

1

ǫ2

∫

Ω

F(uN(t))dx ≤
1

2
|u0,N|

2
1+

1

ǫ2

∫

Ω

F(u0,N(t))dx .

It is known from the Young inequality that there exist two constants c1 and c2 such that

1

8
u4 − c1 ≤ F(u) ≤

1

2
u4 + c2 .

Together with the embedding theorem H1(Ω) ,→ L4(Ω), this gives

1

2
|uN|

2
1+

1

8ǫ2

∫

Ω

u4
N(t)dx ≤c3 +

1

2
|u0,N|

2
1 +

1

2ǫ2

∫

Ω

u4
0,N(t)dx

≤c3 +
1

2
|u0,N|

2
1 +

c

2ǫ2
‖u0,N‖

4
1

≤c3 + c4‖u0‖
2
1 + c5‖u0‖

4
1 .

Furthermore, from the Poincaré inequality and Lemma 2.2 we obtain

‖uN(t)‖1 ®|uN(t)|1+ |(uN(t), 1)|

®|uN(t)|1+ |(u0,N, 1)|

®c3 + c4‖u0‖
2
1 + c5‖u0‖

4
1 + |(u0, 1)|

:=c(u0) .

This completes the proof.
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Theorem 2.1. Under the same assumptions as in Lemma 2.3, the semi-discrete problem

(2.8)–(2.10) admits a unique solution (uN, wN) ∈ L∞[(0, T ), H1(Ω)]× L2[(0, T ), H1(Ω)].

Proof. Subtracting Eq. (2.8) with vN = uN(t) from Eq. (2.9) with χN = wN(t) gives

1

2
∂t‖uN(t)‖

2
0 + ‖wN(t)‖

2
0 =

1

ǫ2
( f (uN(t)), wN(t))

≤
1

2ǫ4
‖ f (uN(t))‖

2
0 +

1

2
‖wN(t)‖

2
0 ,

hence from (1.7) we get

∂t‖uN(t)‖
2
0 + ‖wN(t)‖

2
0 ≤

1

ǫ4
‖uN(t)‖

2
0 .

Applying the Gronwall inequality then yields

‖uN(t)‖
2
0 ≤ ‖u0,N‖

2
0eT/ǫ4

≤ ‖u0,N‖
2
1eT/ǫ4

® ‖u0‖
2
1eT/ǫ4

, 0≤ t ≤ T , (2.13)
∫ t

0

‖wN(τ)‖
2
0dτ ® T‖u0‖

2
1eT/ǫ4

, 0≤ t ≤ T . (2.14)

From Eq. (2.11) we obtain
∫ t

0

|wN(τ)|
2
1dτ=−

1

2

∫ t

0

∂t‖∇uN(t)‖
2
0d t −

1

ǫ2

∫

Ω

∫ t

0

∂t F(uN(t))d tdx

=−
1

2

�

‖∇uN(t)‖
2
0 −‖∇uN(0)‖

2
0

�

−
1

ǫ2

∫

Ω

�

F(uN(t))− F(uN(0))
�

dx

®c(u0) , (2.15)

where we have used the fact that |
∫

Ω

�

F(uN(t))dx | ≤ ‖uN(t)‖
4
4 + c ≤ ‖uN(t)‖

4
1
+ c. Com-

bining Eqs. (2.13) and (2.15) gives
∫ t

0

‖wN(τ)‖
2
1dτ ® c(u0), ∀t ∈ (0, T] . (2.16)

Finally, we obtain the desired result from inequalities (2.12) and (2.16).

Now we carry out an error analysis for the semi-discrete solution. To this end, we

introduce some notation.

The operator ΠN : H1(Ω) → PN(Ω) is defined as follows. For all v ∈ H1(Ω) we have

ΠNv ∈ PN(Ω) where

(∇(ΠNv − v),∇χ) = 0 , ∀χ ∈ PN(Ω) such that (χ, 1) = 0 ,

(ΠNv − v , 1) = 0 .

Note that from the first condition we can easily check that

(∇(ΠNv − v) ,∇χ) = 0 , ∀χ ∈ PN(Ω) . (2.17)

The following approximation result is well known — e.g. see [34].
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Lemma 2.4. For any u ∈ Hm(Ω) with m ≥ 1,

‖u−ΠNu‖0 ≤ chmin(N+1,m)N−m‖u‖m ,

where c is a constant independent of N and u.

Theorem 2.2. If u0 ∈ H1(Ω), u0,N = ΠNu0 and the solution (u, w) of (2.5)–(2.7) satisfies u ,

∂tu ∈ L∞[(0, T ), Hm(Ω)] and w ∈ L2[(0, T ), Hm(Ω)], then the solution (uN, wN) of (2.8)–

(2.10) satisfies the following error estimate:

‖u− uN‖L∞[(0,T),L2(Ω)]+ ‖w −wN‖L2[(0,T),L2(Ω)] ® hmin(N+1,m)N−m . (2.18)

Proof. Let

EN(t) = uN(t)−ΠNu(t), eN(t) = wN(t)−ΠNw(t) .

Then from Eq. (2.17), for all vN ∈ PN(Ω), χN ∈ PN(Ω) and for all t ∈ (0, T] we have

(∂t EN(t),vN) + (∇eN(t),∇vN) = (∂tξ(t),vN) ,

(∇EN(t),∇χN)− (eN(t),χN) =
1

ǫ2

�

f (u(t))− f (uN(t)),χN

�

− (η(t),χN) , (2.19)

where ξ(t) = u(t)−ΠNu(t) and η(t) = w(t)−ΠNw(t). Taking vN = EN(t), χN = eN(t) in

Eq. (2.19), we obtain

1

2
∂t‖EN(t)‖

2
0 + ‖eN(t)‖

2
0

=(∂tξ(t), EN(t)) + (η(t), eN(t)) +
1

ǫ2

�

f (uN(t))− f (u(t)), eN(t)
�

≤
1

2
‖∂tξ(t)‖

2
0 +

1

2
‖EN(t)‖

2
0 + ‖η(t)‖

2
0 +

1

2
‖eN(t)‖

2
0 +

1

ǫ4
‖ f (uN(t))− f (u(t))‖20 .

Furthermore, we observe that

‖ f (uN(t))− f (u(t))‖0 ≤ ‖uN(t)− u(t)‖0 ≤ ‖ξ(t)‖0 + ‖EN(t)‖0 .

Consequently, for all t ∈ (0, T] we have

∂t‖EN(t)‖
2
0 + ‖eN(t)‖

2
0 ≤

�

4

ǫ4
+ 1

�

‖EN(t)‖
2
0 + ‖∂tξ(t)‖

2
0 +

4

ǫ4
‖ξ(t)‖20 + 2‖η(t)‖20 ,

and hence a direct application of the Gronwall inequality gives

‖EN(t)‖
2
0 ® ‖EN(0)‖

2
0+

∫ T

0

h

‖∂τξ(τ)‖
2
0+ ‖ξ(τ)‖

2
0+ ‖η(τ)‖

2
0

i

dτ , ∀t ∈ [0, T] .

In the same way, we can obtain

∫ t

0

‖eN(τ)‖
2
0dτ® ‖EN(0)‖

2
0+

∫ T

0

h

‖∂τξ(τ)‖
2
0 + ‖ξ(τ)‖

2
0+ ‖η(τ)‖

2
0

i

dτ , ∀t ∈ [0, T] .
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From the triangular inequality and Lemma 2.4, ∀t ∈ [0, T] we have

‖u(t)− uN(t)‖0 ® ‖u0,N − u0‖0 + hmin(N+1,m)N−m
�

‖u(t)‖m + B(u, w)
�

,

�∫ t

0

‖w(τ)−wN(τ)‖
2
0dτ

�
1

2

® ‖u0,N − u0‖0 + hmin(N+1,m)N−mB(u, w) ,

where

B(u, w) =

 

∫ T

0

(‖∂tu(t)‖
2
m + ‖u(t)‖

2
m + ‖w(t)‖

2
m)d t

!1/2

.

Finally, on using Lemma 2.4 once again for u0,N, we obtain Eq. (2.18).

3. Full Discretisation: Splitting Schemes in Time

3.1. A first-order scheme and its error estimate

Let M be a positive integer, ∆t = T/M and consider the following semi-implicit

scheme. Find (un+1
N , wn+1

N ) ∈ PN(Ω)× PN(Ω) , n= 0,1, · · · , M − 1 such that

�

un+1
N − un

N

∆t
,vN

�

+ (∇wn+1
N ,∇vN) = 0 , ∀vN ∈ PN(Ω) , (3.1)

(∇un+1
N ,∇χN)− (w

n+1
N ,χN) = −

1

ǫ2

�

f (un
N),χN

�

, ∀χN ∈ PN(Ω) . (3.2)

Formally, this is a first-order scheme, and its stability was proven in Ref. [29] under the

condition ∆t ≤ 4ǫ4. To improve the stability property, we propose to add an extra stability

term O(∆t∂tu) into Eq. (3.2) with a positive amplitude coefficient S:

(∇un+1
N ,∇χN)− (w

n+1
N ,χN) +

S

ǫ2
(un+1

N − un
N,χN) = −

1

ǫ2

�

f (un
N),χN

�

. (3.3)

Lemma 3.1. If S ≥ 1/2 , then for all m ≥ 1 the solution of Eq. (3.3) satisfies

E(um
N ) +∆t

m
∑

n=1

‖∇wn
N‖

2
0 ≤ E(u0) . (3.4)

Proof. The proof is similar to that for Lemma 3.2 in [29], where the spatial discretisa-

tion used a spectral-Galerkin method.

This Lemma implies that the energy E(um
N ) remains bounded during the computation if S

in Eq. (3.3) is reasonably large.

Lemma 3.2. (un
N, 1) = (u0, 1) , n= 1,2, · · · , M .
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Proof. For vN = 1 in Eq. (3.1), we have

(un+1
N , 1) = (un

N, 1) , n= 1,2, · · · , M ,

hence

(un
N, 1) = (u0

N, 1) = (ΠNu0, 1) = (u0, 1), n= 1,2, · · · , M .

Similar to Lemma 2.3, we can prove the boundedness of the full discrete solution in

the H1 norm, as stated in the following lemma.

Lemma 3.3. There exists a constant c(u0) , depending only on u0 , such that

‖un
N‖1 ≤ c(u0) , n= 0,1, · · · , M . (3.5)

Theorem 3.1. Let (u, w) be the solution of (2.5)–(2.7), and (un
N, wn

N) of (3.1)–(3.3). Suppose

u, w ∈ L∞[(0, T ), Hm(Ω)] and ∂tu ∈ L∞[(0, T ),Hm(Ω)]
⋂

L2[(0, T ), Hm(Ω)]. Then

‖un
N − u(tn)‖0 ® K1hmin(N+1,m)N−m+ K2(1+ S)∆t , n= 1,2, · · · , M ,

where

K1 = ‖u‖L∞[(0,T),Hm(Ω)]+

�
∫ T

0

�

‖∂tu(t)‖
2
m+ ‖w(t)‖

2
m

�

d t

�
1

2

,

K2 =

�
∫ T

0

�

‖∂tu(t)‖
2
m + ‖∂t w(t)‖

2
m

�

d t

�
1

2

.

We omit the proof of the above estimate, which can be accomplished on the same lines as

that in Ref. [29], and it is notable that Theorem 3.1 can be regarded as an extension of the

result there. Our extension is twofold: firstly, the present spatial discretisation makes use

of a multi-domain spectral element method; and secondly, the effect of the extra stability

term on the error is made evident by proving that the extra error decays linearly with the

amplitude coefficient S.

3.2. Higher-order schemes

The accuracy in time can be improved by using higher-order semi-implicit schemes,

such as described in this subsection.

A second-order scheme

By using a second-order backward differentiation for the time derivative term, a second-

order extrapolation for the explicit treatment of the nonlinear term, and a second-order

stabilisation term, we get the following overall second-order scheme.
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Find (un+1
N , wn+1

N ) ∈ PN(Ω)× PN(Ω), n= 0,1, · · · , M − 1 such that

�

3un+1
N − 4un

N+ un−1
N

2∆t
,vN

�

+ (∇wn+1
N ,∇vN) = 0 , ∀vN ∈ PN(Ω) , (3.6)

(∇un+1
N ,∇χN)− (w

n+1
N ,χN) +

S

ǫ2
(un+1

N − 2un
N+ un−1

N ,χN)

= −
1

ǫ2

�

2
�

f (un
N)− f (un−1

N ),χN

�
�

, ∀χN ∈ PN(Ω) . (3.7)

A third-order scheme

A third-order scheme can be constructed in a similar way, as follows.

Find (un+1
N , wn+1

N ) ∈ PN(Ω)× PN(Ω), n= 0,1, · · · , M − 1 such that

�

11un+1
N − 18un

N+ 9un−1
N − 2un−2

N

6∆t
,vN

�

+ (∇wn+1
N ,∇vN) = 0 , ∀vN ∈ PN(Ω) , (3.8)

(∇un+1
N ,∇χN)− (w

n+1
N ,χN) +

S

ǫ2
(un+1

N − 3un
N + 3un−1

N − un−2
N ,χN)

= −
1

ǫ2

�

�

3 f (un
N)− 3 f (un−1

N ) + f (un−2
N ) ,χN

�

�

, ∀χN ∈ PN(Ω) . (3.9)

A detailed analysis of these schemes is beyond the scope of the current work and remains

an important next step for future research. However, a numerical comparison for the

schemes constructed above is undertaken in the next section.

4. Numerical Results and Discussion

We first carry out a numerical test to validate the error estimate. Consider the Cahn-

Hilliard equation

∂tu+∆(u− u3 + γ∆u) = f , (x , t) ∈ Ω× (0,1) , (4.1)

with the analytical solution

u(x , y, t) = ecos(t) cos(πx) cos(πy) , (x , y) ∈ Ω = [−1,1]× [−1,1] , 0< t < 1 .

In Eq. (4.1), f is computed from the left-hand side by using the exact solution and γ = 0.1,

and u0 is taken to be consistent with the exact solution.

The left figure in Fig. 1 shows the L2-norm errors as a function of the time step size

for two values of S, using the first-order scheme. We observe that the error curves are

all straight lines of slope 1 in a logarithmic-logarithmic scale plot, which indicates that

the errors decay linearly as ∆t decreases. The L2-norm errors versus the parameter S

are presented in the right figure of Fig. 1, which clearly shows the linear dependence of

the errors on S as predicted by Theorem 3.1. The error behaviour with respect to the

spatial discretisation parameters is presented in Fig. 2. In the left figure, the errors in
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Figure 1: Errors at t = 1 in the L2-norm as a fun
tion of ∆t (left) and S (right), using the �rst-orders
heme with K = 1 and N = 24.
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Figure 2: Errors at t = 1 in the L2-norm as a fun
tion of N (left) and h (right), using the �rst-orders
heme with ∆t = 0.0001, K = 1 (left) and N = 3 (right).
semi-logarithmic scale are shown versus the polynomial degree N , and the straight lines

are evidence of the exponential convergence in space of the numerical solutions. The right

figure in Fig. 2 plots the L2-norm errors as functions of the spectral element size h in

logarithmic-logarithmic scale, corresponding to an algebraic convergence rate.

We repeat the same test for higher-order schemes. In Fig. 3, we plot the error history

for the second-order scheme (3.6)–(3.7) as functions of the time step size ∆t (left figure)

and stabilisation parameter S (right figure), respectively. Clearly, the error curves are

straight lines of slope 2 in the left figure, indicating there is second-order convergence in

time. Furthermore, in the right figure we see that there is again linear dependence of the

error on S for the second-order scheme. The spatial discretisation errors with respect to

the discretisation parameters N and h are shown in Fig. 4. As expected, the convergence
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Figure 3: Errors at T = 1 versus ∆t (left) and S (right) 
omputed by using the se
ond-order s
heme(3.6)�(3.7) with K = 1, N = 24.
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is exponential in N and algebraic with respect to h.

In order to investigate the convergence property of the third-order scheme numerically,

we use (3.8)–(3.9) to compute the solution with the fixed spectral element parameters

K = 1 and N = 32. The result presented in Fig. 5 shows the error decay rate with respect

to ∆t in the left figure, and the decay rate with respect to S in the right figure. Although

not yet proven rigorously, this demonstrates that the error behaviour induced by the time

discretisation (3.8)–(3.9) is O((S+ 1)∆t3).

We now consider a system modelling a specific type of mixture of two incompressible
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fluids with variable density and viscosity in QT =: Ω× (0, T ):















∂t(ρ(φ)u) + u · ∇ (ρ(φ)u) +∇p−∇ · (ν(φ)D(u)) +λ∇ · (∇φ ⊗∇φ) = g ,

∇ · u = 0 ,

∂tφ + u · ∇φ = −γ∆
�

∆φ −
1

ǫ2
f (φ)

�

,

subject to the initial conditions

u(x , 0) = u0(x ) , φ(x , 0) = φ0(x ) , x ∈ Ω ,

and the boundary conditions

u = 0 ,
∂ φ

∂ n
=
∂ 3φ

∂ n3
= 0 , on ∂Ω× (0, T ) . (4.2)

Here the density ρ satisfies the continuity equation

∂tρ+∇ · (ρu) = 0 ,

u represents the velocity vector of the fluids, p is the pressure, φ represents the “phase"

of the molecules, ν is the viscosity coefficient, D(u) = (∇u + (∇u)T )/2 is the stretching

tensor, λ corresponds to the surface tension, g is the external body force, γ represents the

elastic relaxation time of the system, and f (φ) = F ′(φ) with F(φ) = (φ2−1)2/4 standing

for the bulk part of the mixing energy.

However, for our calculations we use the following simplified model equation [23]:

ρ̄
�

∂tu + u · ∇u
�

+∇p−∇ · (νD(u)) +λ∇ · (∇φ⊗∇φ)

=− (1+φ)(ρ1 − ρ̄)g − (1−φ)(ρ2 − ρ̄)g ,
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(a) t=0 (b) t=0.5 (c) t=0.8 (d) t=1.0

(e) t=1.3 (f) t=1.4 (g) t=1.45 (h) t=1.5

(i) t=1.7 (j) t=3.5Figure 6: Phase evolution at di�erent times, for the 
omputed domain [0, 2π] × [0, 2π] de
omposedinto 6400 elements.
where ρ̄ = (ρ1+ρ2)/2 and g is the gravitational acceleration. In all cases, we have used

the second-order scheme and spectral element method for the respective time and space

discretisations of the model, with the computational parameters N = 5 and ∆t = 0.0005

and the following physical parameters:

ǫ = 0.02 , λ= 0.1 , ν = 0.1 , γ = 0.1 , S = 2 ,

ρ1 = 0.5 , ρ2 = 1.5 , g = (0,−10)T ,

u0(x ) = 0 , ∀x ∈ Ω ,

φ0(x ) =

¨

1 for x inside the bubble ,

−1 for x outside the bubble .

Test 1 The simulation starts with a circular bubble near the bottom of the domain. The

density of the bubble is less than the density of the surrounding flow. The computational

domain is [0,2π]× [0,2π], broken into 6400 equal elements. Fig. 6 shows the evolution

history of the bubble, which rises progressively due to buoyancy until the bubble touches
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(a) t=0 (b) t=0.5 (c) t=0.7 (d) t=1.0

(e) t=1.15 (f) t=1.16 (g) t=1.17 (h) t=1.18

(i) t=1.19 (j) t=1.2 (k) t=1.3 (l) t=1.4

(m) t=1.5 (n) t=2.0 (o) t=2.2 (p) t=2.22
ont'd ...
the top side. This result is in a good agreement with previously published work — e.g. see

Ref. [23].

Test 2 Consider a bubble rising in a domain containing a small obstacle at the centre.

The phase field equations are solved in the domain [0,2π]× [0,2π]\{(x , y)|(x − π)2 +
(y − π)2 ≤ 0.22}, with the spectral element mesh consisting of 6388 macro elements of
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(a) t=2.3 (b) t=2.5 (c) t=3.0 (d) t=4.0

(e) t=5.0Figure 7: Phase evolution at di�erent times, for the 
omputed domain [0, 2π] × [0, 2π]\{(x , y)|(x −
π)2+ (y −π)2 ≤ 0.22} de
omposed into 6388 elements.
polynomial degree N = 5 in each element. The circular bubble is initially placed close to

the bottom edge. Fig. 7 illustrates the bubble rising during the time evolution, where we

observe that the bubble continues to rise after it touches the obstacle, which envelops the

entire bubble during some time period before the obstacle is reached. Finally, the bubble

stops moving at some time after touching the top edge of the domain. Incidentally, the

bubble remains connected during the whole time evolution.

Test 3 In this test, the computational configuration is similar to Test 2, but with a bigger

obstacle at the centre of the domain — i.e. Ω = [0,2π] × [0,2π]\{(x , y)|(x − π)2 +
(y − π)2 ≤ 0.52}. This simulation uses 6260 macro spectral elements. We repeated the

calculation as in Test 2, and Fig. 8 again shows some snapshots of the rising bubble at

different time instants. As it crosses the obstacle, the bubble first breaks into two separate

bubbles but then reassembles again into one complete unit. Another feature is that its rise

slows down compared to the evolution in Test 2, suggesting that the bigger the obstacle size

the slower the rising speed of the bubble. To the best of our knowledge, this phenomenon

has never been reported in the literature, and requires a physical interpretation.

5. Conclusion

We have proposed and analysed a class of fully discrete schemes for the Cahn-Hilliard

equation with Neumann boundary conditions. The proposed schemes combine time split-
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(a) t=0 (b) t=0.1 (c) 0.2 (d) 0.5

(e) t=1.0 (f) t=1.5 (g) t=2.0 (h) t=2.1

(i) t=2.2 (j) t=2.3 (k) t=2.5 (l) t=3.0

(m) t=3.5 (n) t=3.8 (o) t=3.9Figure 8: Bubble rising snapshots at various time instants in the domain [0, 2π]× [0, 2π]\{(x , y)|(x −
π)2+ (y −π)2 ≤ 0.52}, using a spe
tral element mesh with 6260 ma
ro elements.
ting methods and spatial spectral element methods, allowing us to take advantage of both

time and space schemes. Stability and convergence properties were established for the

first-order time scheme. The higher-order schemes were not analysed, but investigated
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through a number of numerical examples. The proposed schemes were applied to a phase

field simulation in complex geometry, and some new interesting phenomena have been

observed. Although the present work only addresses Neumann boundary conditions, the

results obtained remain valid for the Dirichlet conditions u = ∂ 2u/∂ n
2 = 0 on ∂Ω when

the solution space H1(Ω) is replaced with H1
0(Ω).
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