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Abstract. A recursive scheme is proposed for identifying a single input single output

(SISO) Wiener-Hammerstein system, which consists of two linear dynamic subsystems

and a sandwiched nonparametric static nonlinearity. The first linear block is assumed

to be a finite impulse response (FIR) filter and the second an infinite impulse response

(IIR) filter. By letting the input be a sequence of mutually independent Gaussian random

variables, the recursive estimates for coefficients of the two linear blocks and the value

of the static nonlinear function at any fixed given point are proven to converge to the

true values, with probability one as the data size tends to infinity. The static nonlinearity

is identified in a nonparametric way and no structural information is directly used. A

numerical example is presented that illustrates the theoretical results.
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1. Introduction

The Wiener-Hammerstein (W-H) system comprises two linear dynamic subsystems with

a sandwiched static nonlinearity — cf. Fig. 1. A system consisting of the first two blocks

is called a Wiener system, whereas a system consisting of the last two blocks is known

as a Hammerstein system. Thus W-H systems are a natural extension of Wiener systems

and Hammerstein systems, which are all important for modelling many real phenomena.

Applications include a distillation column [1], a pH control process [2] for Wiener systems,

a cat visual cortex for Hammerstein systems [3], and a light flickering severity-meter for

W-H systems [4]. Identification of these systems has therefore been an active research
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area for many years — e.g. see Refs. [5–12] for Wiener systems, [13–16] for Hammerstein

systems, and [4,17–21] for W-H systems.

Since a W-H system is a combination of a Wiener system and a Hammerstein system,

a natural starting point is to identify those two simpler components before considering a

W-H system. The identification for Wiener systems is much more difficult than for Ham-

merstein systems, with the essential difference in identification of these two types of non-

linear systems roughly as follows. In the case of a Hammerstein system, if a sequence of

independent identically distributed (i.i.d.) random variables is selected as input, it still

remains a sequence of i.i.d. random variables after passing through the static nonlinear-

ity of the Hammerstein system. Hence identifying the linear subsystem in a Hammerstein

system is a standard Auto-Regressive and Moving Average (ARMA) model issue, where

the random variables (outputs of the nonlinearity) in the Moving Average (MA) part may

not be zero-mean. However, it is quite different in the case of a Wiener system for i.i.d.

input. The intermediate signal (the output of the linear subsystem) is no longer mutually

independent, and in general has a complicated distribution unless the input of the linear

subsystem is Gaussian. Moreover, the unboundedness of any Gaussian signal may cause

additional difficulties in the convergence analysis when using a Gaussian input. This ex-

plains why more restrictive conditions are used and less theoretical results are obtained for

identifying Wiener systems in comparison with Hammerstein systems. Thus the chief key

difficulty in identification for W-H systems is how to identify Wiener systems.

Due to the weak properties of the intermediate signal of a Wiener system, it is no won-

der that the static nonlinearity is usually assumed to be invertible or described in a simple

parametric form (typically as a low order polynomial). If the order of the polynomial is

high, the number of whole terms in the system input-output expansion will be huge. How-

ever, even under such strict restrictions, it is still quite difficult to establish convergence

results.

Nonparametrisation for the nonlinearity is another way, and some weak convergence

results have been established in this context [5]. Several recursive identification algo-

rithms for Wiener systems have also been proposed under different system settings [7–9],

and their strong consistences are justified. The first guaranteed consistent recursive iden-

tification algorithm for the Wiener system is given in Ref. [7], where it is unnecessary

for the nonparametric nonlinear function to be inversive. However, a certain amount of

data is excluded for usage there due to a technical reason, and this drawback was cured

in Ref. [9]. The Wiener system with a more general linear subsystem is introduced and

considered in Ref. [8]. The main idea there is that the coefficients of the linear subsystem

are estimated by a system of equations comprising cross-correlation coefficients of input

and output, when the nonlinearity is estimated by the estimated intermediate signal and

the output with the kernel function technique. It seems possible that nonparametrisation

may be used in identifying W-H systems.

Although a number of identification algorithms have been proposed for W-H system

(e.g. see [4, 17, 19–21]), relevant theoretical guarantees for the consistency of the corre-

sponding identification algorithms seem rare. In Ref. [17], the best linear approximation

method carried out to serve as an initial estimation for W-H systems is actually a para-
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metric way to deal with W-H systems. As in the case of a Wiener system, if the static

nonlinearity is in a parametric form the complete expression of the input-output would

generally be very long, so in this paper we set the nonlinearity in a nonparametric form.

Based on this, we design a recursive identification scheme for W-H systems and prove its

strong consistency. The coefficients of the two linear subsystems and the value of the static

nonlinear function at any fixed given point are precisely identified recursively. It is worth

pointing out that the static nonlinearity is identified in a nonparametric way, and need not

be invertible. Meanwhile, the strong consistency (convergence with probability one) of the

proposed algorithms is established in Theorems 4.1 and 4.2. A numerical example is tested

to justify the theoretical analysis.

The main technical contributions of this article are as follows.

• We avoid using the socalled stochastic approximation with expanding truncations

technique as in Refs. [7–9,14], and a direct scheme in a briefer form is proposed and

analysed here. This increases the possibility that the algorithms may be extended to

the more complicated closed-loop case.

• Some new analytic techniques are introduced to deal with certain stochastic series,

when implementing the main idea of Refs. [7–9] mentioned earlier. Thus the coeffi-

cients of the linear subsystems are estimated by a system of equations involving the

cross-correlation coefficients of input and output, and the nonlinearity is estimated

by the estimated first intermediate signal vk and the estimated secondary intermedi-

ate signal xk with the kernel function technique — cf. in Fig. 1. The non-singularity

of the relevant matrix of cross-correlation coefficients is analysed and sufficient con-

ditions are proposed.

It is also worth pointing out that the proposed identification scheme here is a open loop

case, but may still shed some light on more complicated closed loop cases.

The statement of the problem and the proposed estimation algorithms are given in

Section 2. Some preliminaries to facilitate theoretical analysis are introduced in Section 3.

The main results establishing the strong consistency of the estimation algorithms are dis-

cussed in Section 4, and then demonstrated by a simple numerical example in Section 5.

Finally, our concluding remarks are made in Section 6.

2. The Problem and Estimation Algorithms

The structure and assumptions of the W-H system to be considered are introduced and

discussed in Subsection 2.1. Relevant equations involving the input-output correlation

coefficients and coefficients of the two linear blocks are established in Subsection 2.2, as

theoretical preliminaries for our identification algorithms. Finally, recursive identification

algorithms for the two linear blocks and the nonparametric nonlinearity are proposed in

Subsection 2.3.
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ek+2Figure 1: Wiener-Hammerstein system.
2.1. Problem setting

We consider a special setting of SISO W-H systems depicted in Fig. 1, since it is difficult

to study the identification issue for general W-H systems. With input denoted by uk and

output by yk, the two linear blocks are

vk+1 = A(z)uk , (2.1)

B(z)yk+2 = xk+1+ ek+2 , (2.2)

where

A(z) = 1+ a1z + · · ·+ apzp , B(z) = 1+ b1z + · · ·+ bqzq , (2.3)

and the intermediate static nonlinearity is

xk+1 = f (vk+1) . (2.4)

For simplicity, the time delays in both linear subsystems are set to be 1. However, identifi-

cation algorithms and convergence results similar to those established will hold for other

time delays.

The first linear block is a finite impulse response (FIR) filter and the second an infinite

impulse response (IIR) filter, with all the parameters connected with output yk. Since the

first linear block is a FIR filter, if the input {uk} is a sequence of independent random

variables then the subsequence {vl+(p+1)k : k = 1,2, · · · } of the output of this FIR filter

is still an independent sequence, for any fixed l = 0,1, · · · , p. This is very convenient to

analyse some stochastic series, as shown in Lemma 3.4 below. Given these forms of the

two linear blocks, all parameters of the two linear filters are easy to recover by a system of

cross correlation equations as in Eqs. (2.8) and (2.9) — although from a practical point of

view it may be restrictive for the first linear part due to its FIR structure. Since a Moving

Average (MA) linear dynamic model can closely approximate a general model with a real

rational transfer function, this restriction is not severe in a real application if the order p is

sufficient large. We assume that the noise is introduced before the last linear block, which

is more complicated than the case where the noise is included as a mere white observation

noise afterward.

The problem is to recursively estimate the coefficients ai, i = 1, · · · , p and b j , j =

1, · · · ,q of the linear subsystems and the value f (v) at any v, given the observations {yk}
and inputs {uk}. We now list the conditions used, and also provide some brief explanations.
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H1. The static nonlinearity f (·) is a measurable function continuous at v, where f (v) is

estimated. The growth rate of f (v) as |v| →∞ is not faster than a polynomial.

H2. The polynomials A(z) and B(z) have no common zeros, and B(z) is stable — i.e.

B(z) 6= 0 for any |z| ≤ 1.

H3. The input {uk} of the Wiener-Hammerstein system is a sequence of i.i.d. Gaussian

random variables uk ∈ N (0,1), independent of the observation noise {ek}. The

observation noise {ek} is a sequence of mutually independent random variables with

Eek = 0 and supk Ee2
k
<∞.

The growth rate of f (·) required in H1 is used to guarantee the existence of moments of

vk. Condition H2 is a standard setting for the identifibility and stability of linear dynamic

subsystems, which is clearer for the intermediate nonlinearity f (x)≡ x . Technically, H2 is

also needed to avoid pole-zero cancellation in the important formula (2.16) below. When

a Gaussian signal is the input, the intermediate signal vk’s distribution is still Gaussian,

which is the main reason why we select a Gaussian signal here. For simplicity, we choose

the standard Gaussian, but similar theoretical results still hold for any general distribution

N (0,σ2).

2.2. Correlation analysis

The identification idea is to first estimate the coefficients of the two linear subsystems,

and then recover the nonlinear block. This subsection serves as a theoretical preparation

for identification algorithms of the first step — i.e. for estimations of the coefficients of

the two linear blocks. Some cross-correlation coefficients of the input {uk} and output

{yk} are introduced and analysed below, and some algebraic equations connected with the

cross-correlation coefficients and linear coefficients of the W-H system are then derived.

The theoretical analysis is under the assumptions H1-H3.

Let us first point out that the expectation E[uk−i yk+2] is independent of k. From the

stability of B(z) under H2, we assume that

B−1(z) =

∞
∑

i=0

b̄iz
i , (2.5)

where b̄0 = 1 and | b̄k| = O
�

e−τk
�

for τ > 0 — i.e. | b̄k| exponentially decays. From

Eq. (2.2), we have

yk+2 = B−1(z)xk+1+ B−1(z)ek+2 =

∞
∑

i=0

b̄i(xk+1−i + ek+2−i) ;

and from Eq. (2.1)(2.4) and the independence in H3, we obtain

E[uk−i yk+2] =

i
∑

s=0

b̄sE[uk−i xk+1−s] .
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Since {xk} is stationary and the coefficients { b̄s} are completely determined by B(z), the

expectation E[uk−i yk+2] is independent of k, hence we define

γi
∆
= E[uk−i yk+2] , i = 0,1, · · · , p+ q . (2.6)

It is notable that the input-output correlation coefficient γi can be estimated directly from

the empirical mean of input-output data as 1

n

∑n

k=1 uk−i yk+2 at n-th time. Consequently, if

some algebraic equations that are connected with γi and the coefficients of the two linear

blocks are established, then the coefficients ai and b j may be found from these equations.

Another form of the second linear block (2.2) is

yk+2 = −b1 yk+1− · · · − bq yk+2−q + xk+1+ ek+2 ;

and multiplying this formula by uk−i for i = 0,1, · · · , p+q and then taking the expectation,

we obtain

γ0 = E[uk xk+1] , (2.7)

γi =−
i∧q
∑

l=1

blγi−l + aiγ0 , i = 1, · · · , p , (2.8)

γ j = −
j∧q
∑

l=1

blγ j−l , j = p+ 1, · · · , p+ q , (2.9)

where i∧ j
∆
=min{i, j}. The second term aiγ0 on the right-hand side of Eq. (2.8) is derived

using Lemma 3.3 — i.e. we have E[uk−i xk+1] = aiγ0. Clearly, if γ0,γ1, · · · ,γp+q are

already known and the p + q equations are independent, the parameters ai and b j can

be calculated from Eqs. (2.8)-(2.9) since there are p + q unknown parameters and p + q

linear algebraic equations. As previously mentioned, γ0,γ1, · · · ,γp+q can be estimated

empirically in terms of the input-output data. Thus the main idea to identify the two linear

blocks is accomplished, as mentioned above.

In order to represent Eq. (2.9) in matrix form, let us define

Υ(p,q)
∆
=











γp γp−1 · · · γp−q+1

γp+1 γp · · · γp−q+2

· · · · · · · · · · · ·
γp+q−1 γp+q−2 · · · γp











, (2.10)

where γ−i = 0 for i > 0 by definition. Thus we have the vector equation

[γp+1 γp+2 · · · γp+q]
T = −Υ(p,q)[b1 b2 · · · bq]

T , (2.11)

which is similar to the socalled Yule-Walker equation for a linear system. Eq. (2.11) serves

as the “breaking point" to identify the linear blocks, and it is of key importance to clarify

the conditions that guarantee the invertibility of Υ(p,q)— cf. Lemma 3.1 below.
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Let us next point out an important formula to be used in Lemma 3.1, which connects

{γi} and the linear coefficients {ai, i = 1, · · · , p} and {b j, j = 1, · · · ,q}. Noticing that

γ−i = 0 for i > 0, from Eqs. (2.8) and (2.9) we have

B(z)γi = aiγ0 , 0≤ i ≤ p , (2.12)

B(z)γ j = 0 , j > p . (2.13)

The cross-correlation generating function of {γi} is

Γ(z)
∆
=

∞
∑

k=−∞
γkzk , (2.14)

which satisfies

Γ(z)B(z) =

∞
∑

k=−∞
B(z)γkzk =

∞
∑

k=0

B(z)γkzk

=

p
∑

k=0

B(z)γkzk = γ0

p
∑

k=0

akzk

= γ0A(z) (2.15)

from Eqs. (2.12) and (2.13), hence we obtain the formula

Γ(z) =
γ0A(z)

B(z)
. (2.16)

Since γi = E[uk−i yk+2] is included and the output yk+2 can be expressed in terms of f (·),
in an indirect way the formula (2.16) does contain some information on f (·) .

2.3. Identification algorithms

The identification problem may be viewed as two steps — the first to estimate the

coefficients of the two linear blocks, and the second to identify the nonparametric function

f (v) at a given point v. In practice, we can simultaneously estimate f (·) at (say) 100

uniformly distributed points, to find its graph. On recalling the definition of the correlation

coefficient (2.6), it is natural to calculate the k-th estimation of γi from the available input-

output data as

γ̂i(k) =
1

k

k
∑

l=1

ul−i yl+2 . (2.17)

Equivalently, γi can be estimated recursively as

γ̂i(k) = γ̂i(k− 1)− 1

k

�

γ̂i(k− 1)− uk−i yk+2

�

, (2.18)

with the initial real values γ̂i(0) = 0, i = 0,1, · · · , p+ q. After γ̂i(k), i = 0,1, · · · , p+ q, are

obtained, the k-th estimates for b1, · · · , bq (denoted by b̂1k, · · · , b̂qk) can be calculated from
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Eq. (2.11) by replacing Υ with its k-th estimation Υ̂k, derived by replacing each element

of Υ with the corresponding γ̂i(k) given by

[ b̂1k, · · · , b̂qk]
T = −Υ̂−1

k
[γ̂p+1(k), · · · , γ̂p+q(k)]

T , (2.19)

if Υ̂k is invertible.

From Theorem 4.1, under the assumptions H1-H3 we have Υ̂k → Υ as k → ∞, with

the same convergence rate of γ̂i(k) to γi — i.e.

‖Υ̂k −Υ‖= o(k−δ) ,

where δ ∈ (0,1/2) and ‖·‖ denotes the matrix Euclidean norm. Further, if γ0 6= 0 then Υ is

nonsingular from Lemma 3.1, hence Υ̂k is clearly invertible when k is sufficiently large. To

avoid initial singularities, Υ̂k can be replaced by ( 1

kν
I + Υ̂k) where I is the corresponding

identity matrix and ν ≥ 1, so estimates of b j can be constructed using Eq. (2.19). Then

from Eq. (2.8) the k-th estimates for the parameters ai, i = 1, · · · , p (denoted by âik,

i = 1, · · · , p) are calculated as

âik =
1

γ̂0(k)

 

γ̂i(k) +

i∧q
∑

l=1

b̂lkγ̂i−l(k)

!

, i = 1, · · · , p , (2.20)

where γ̂0(k) can also be replaced by γ̂0(k) + 1/kυ with υ ≥ 1 to overcome any initial

singularity. Thus all of the parameters of the two linear blocks are estimated at step k

by the recursive algorithms (2.18)-(2.20), and the strong consistency of these estimation

algorithms is ensured from Theorem 4.1 given below.

Now let us turn to the identification issue for the nonlinear part. After the estimates

for the parameters ai , i = 1, · · · , p and b j , j = 1, · · · ,q are obtained, the output vk+1 and

the deviation of the linear subsystem are reconstructed by

v̂k+1
∆
= uk + â1kuk−1+ · · ·+ âpkuk−p , (2.21)

σ̂k
∆
=

 

p
∑

i=0

â2
ik

!1/2

, (2.22)

where â0k = 1. In order to estimate f (v) at a given v, we introduce the kernel (or weight)

function

wk
∆
=
p

2σkα exp

¨

−(vk − v)2k2α+
v2

k

2σ2

«

(2.23)

where α ∈ (0,1/6), and the standard deviation of vk+1 (denoted by σ) is given by

σ
∆
=

 

p
∑

i=0

a2
i

!1/2

(2.24)
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where a0 = 1. The weight wk measures the importance of the vk, the input of the nonlinear

block, for estimation of the value f (v) at a fixed point v. In practice, σ is estimated by

Eq. (2.22) and the step-size parameter α is chosen to be large for a fast convergence rate,

such that the weight is actually replaced by

ŵk
∆
=
p

2σ̂kkα exp

¨

−(v̂k − v)2k2α +
v̂2

k

2σ̂2
k

«

, (2.25)

where v̂k is defined by Eq. (2.21) and σ̂k by Eq. (2.22) respectively. On ignoring the noise

component in Eq. (2.2), we estimate the output xk+1 of the nonlinear block as

x̂k+1 = yk+2 + b̂1k yk+1+ · · ·+ b̂qk yk+2−q , (2.26)

since eventually the noise can be averaged out empirically because Eek+2 = 0.

Inspired by the formula

lim
k→∞

Ewk xk = f (v)

and the fact that Ew2
k

is proportional to kα (as shown in Lemma 3.2 below), the value of

f (v) at any fixed v is calculated recursively as

µ̂k(v) = µ̂k−1(v)−
1

k
ŵk

�

µ̂k−1(v)− x̂k

�

, (2.27)

with the initial real value µ̂0(v) = 0. The ŵk involved here are defined by Eq. (2.25), and

then x̂k follows from Eq. (2.26).

In brief, the recursive procedure for identifying f (·) is defined by Eqs. (2.21),(2.22)

and (2.25)-(2.27), on the basis of recursive estimations for the linear coefficients from

Eqs. (2.18)-(2.20). As noted previously, the strong consistency of this recursive algorithm

is established in Theorem 4.2 below.

Remark 2.1. An alternative recursive form replacing (2.27) for estimating f (v) is

µ̂k(v) = µ̂k−1(v)−
1

k

�

µ̂k−1(v)− ŵk x̂k

�

, (2.28)

which directly produces

µ̂k(v) =
1

k

k
∑

i=1

ŵi x̂ i .

The proof of convergence is simpler, and essentially contained in the proof of Theorem 4.2.

However, the algorithm (2.28) generally performs worse than (2.27), perhaps because the

kernel function wi has a different weight at different i and Ew2
k

is proportional to the kα

— cf. Lemma 3.2. The algorithm (2.27) also seems to more effectively eliminate the noise

included from the estimate of the weight ŵk. For these reasons, we have preferred to use

the algorithm (2.27) in this article.



320 X-L. Hu and Y.-P. Jiang

3. Auxiliary Lemmas

We now prove some preliminaries to facilitate our subsequent theoretical analysis. The

following lemma specifies conditions to guarantee the invertibility of Υ(p,q) defined by

(2.10). It is of key importance to recover the two linear blocks, especially the last. The

proof here is a simplification of counterparts in Refs. [22,23].

Lemma 3.1. Under the conditions H1-H3 and for γ0 6= 0 defined by Eq. (2.7), Υ(p,q) given

by Eq. (2.10) is nonsingular.

Proof. By standard matrix theory, it is sufficient to show that it is impossible to find q

constants h1,h2, · · · ,hq such that

H(z)γk =

q
∑

j=1

h jγk−( j−1) = 0 (3.1)

for k = p, p + 1, · · · , p + q− 1, where H(z)
∆
=
∑q

j=1 h jz
j−1. Obviously, the degree of H is

q− 1.

Let us rewrite the formula (2.16) connecting the cross-correlation coefficients {γi} and

polynomials A(z) and B(z):

Γ(z) =
γ0A(z)

B(z)
. (3.2)

From the stability of B(z), Γ(z) is analytic in the disk {z : |z| < r} for some r > 1. Since

A(z) and B(z) are co-prime and γ0 6= 0, Γ(z) has just q (including multiple) nonzero poles.

Then given Eq. (2.9), it is easy to prove that Eq. (3.1) holds for any k ≥ p. Multiplying

Eq. (3.2) by H(z) and noticing γ j = 0 for j < 0, from Eqs. (2.14) and (3.1) we have

Γ(z)H(z) =

∞
∑

k=−∞
H(z)γkzk =

∞
∑

k=0

H(z)γkzk =

p−1
∑

k=0

H(z)γkzk . (3.3)

Clearly, the right-hand side of Eq. (3.3) is a polynomial and thus analytic in the whole

complex plane, while the left-hand side has at least one pole in the region {z : |z| ≥ r}
since the order of H(z) is q − 1 while that of B(z) is q. This contradiction leads to the

assertion.

The following lemma gives some conclusions for the first and second moments involv-

ing the weight wk.

Lemma 3.2. Under the conditions H1-H3, for wk defined by Eq. (2.23) we have the following

results:

Ewk = 1 , E[k−α/2wk]
2 = σ exp

¨

v2

2σ2

«

,

lim
k→∞

E[wk xk] = f (v) , lim
k→∞

E[k−α/2wk xk]
2 = σ f 2(v)exp

¨

v2

2σ2

«

.
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Proof. Let us prove the last two conclusions only, as the other two may be proven in a

similar manner. Thus we see that

lim
k→∞

E[wk xk]

= lim
k→∞
p

2σkα
∫

R

exp

�

−(x − v)2k2α +
x2

2σ2

�

f (x)
e
− x2

2σ2

p
2πσ

d x

= lim
k→∞

1p
π

∫

R

exp[−t2 f (v+ k−α t)] d t

= f (v) ;

and similarly,

lim
k→∞

E[k−α/2wk xk]
2

= lim
k→∞

2σ2kα
∫

R

exp

�

−2(x − v)2k2α +
x2

σ2

�

f 2(x)
e
− x2

2σ2

p
2πσ

d x

= lim
k→∞

r

2

π
σ

∫

R

e−2t2

f 2(v+ k−α t) exp

�

(v + t/kα)2

2σ2

�

d t

=σ f 2(v)exp

�

v2

2σ2

�

.

The following lemma is fundamental for the derivation of Eq. (2.8), which is used to

recover the first linear block. (Similar results can be found in Refs. [5,7–9].)

Lemma 3.3. Under the conditions H1-H3, we have that

E[uk− j xk+1] = γ0a j , j = 0,1, · · · , p , (3.4)

where γ0 is given by Eq. (2.7).

Proof. By noticing vk+1 =
∑p

j=0 a juk− j, we see that vk+1 and u j are jointly Gaussian.

Consequently, from

E

��

uk− j −
a j

σ2
vk+1

�

vk+1

�

= 0

it follows that uk− j − (a j/σ
2)vk+1 and vk+1 are independent. Thus we have

E
�

uk− j|vk+1

�

=
a j

σ2
vk+1 ,

and hence

E
�

uk− j f (vk+1)
�

= E
�

E
�

uk− j f (vk+1)|vk+1

��

= E
�

f (vk+1)E
�

uk− j|vk+1

��

= γ0a j , j = 0,1, · · · , p .
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Remark 3.1. Based on Lemma 3.3, let us analyze γ0 in more detail to get some sense of

the conditions to derive γ0 6= 0. From Eq. (2.7), clearly

γ0 = E[uk xk+1] = E[uk f (vk+1)]

= E[vk+1 f (vk+1)]− a1E[uk−1 f (vk+1)]− · · · − apE[uk−p f (vk+1)] ,

on substituting uk = vk+1− a1uk−1 − · · · − apuk−p in the third step. Recalling the fact that

vk+1 ∼N (0,σ2) and Lemma 3.3, we obtain

γ0 =
1p

2πσ3

∫

R

t f (t) e
− t2

2σ2 d t , (3.5)

where σ is given by Eq. (2.24). The existence of γ0 is guaranteed by condition H1, since

the growth rate of f (·) is at most polynomial. A typical case satisfying the restriction γ0 6= 0

is where f (·) is an continuous odd function with a nonzero value at a certain point.

Let us now state a direct corollary of Theorem 2.2 in Ref. [24] (also a slight extension

of Corollary 2.2.1), to establish some strong laws of large numbers.

Proposition 3.1. Let {Xk} be a sequence of random variables satisfying EXk = 0 and

E[X iX j]≤ ρ j−i

Æ

EX 2
i
EX 2

j

for i ≤ j, where ρk ≥ 0 for ∀k. If

∞
∑

k=1

ρk <∞ and

∞
∑

k=1

ln2 k · EX 2
k <∞ ,

then
∑∞

k=1 Xk converges almost surely.

Lemma 3.4. Under the conditions H1-H3, the following strong laws of large numbers hold:

1

n1−δ

n
∑

k=1

(uk− j yk+2 − E[uk− j yk+2])
a.s.−−−→

n→∞ 0 , (3.6)

1

n

n
∑

k=1

(wk xk − E[wk xk])
a.s.−−−→

n→∞ 0 , (3.7)

1

n

n
∑

k=1

wkek

a.s.−−−→
n→∞ 0 , (3.8)

where δ ∈ (0,1/2) and j = 0,1, · · · , p+ q in Eq. (3.6) .

Proof. We first prove Eq. (3.6) from Proposition 3.1. From Eq. (2.5),

yk+2 = B−1(z)xk+1+ B−1(z)ek+2

=

k+1
∑

i=0

b̄i xk+1−i +

k+2
∑

i=0

b̄iek+2−i . (3.9)
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Denoting Xk = (uk− j yk+2 − E[uk− j yk+2])/k
1−δ, from Eq. (3.9) and H3 we have

[k(k+ l)]1−δE[XkXk+l]

= E[uk− j yk+2uk+l− j yk+l+2]− E[uk− j yk+2] · E[uk+l− j yk+l+2]

=

k+1
∑

s=0

k+l+1
∑

t=0

b̄s b̄t E[uk− juk+l− j(xk+1−s xk+l+1−t + xk+1−sek+l+2−t

+ xk+l+1−tek+2−s + ek+2−sek+l+2−t)]−
 

j
∑

i=0

b̄i E[uk− j xk+1−i]

!2

=

k+1
∑

s=0

k+l+1
∑

t=0

b̄s b̄t E[uk− juk+l− j xk+1−s xk+l+1−t]−
 

j
∑

i=0

b̄i E[uk− j xk+1−i]

!2

=

 

j
∑

i=0

b̄i E[uk− j xk+1−i]

!2

−
 

j
∑

i=0

b̄i E[uk− j xk+1−i]

!2

= 0

for l ≥ 2p + q + 1, on noticing that {xk} is a p + 1-dependent sequence and xk+1 ∈
σ{uk,uk−1, · · · ,uk−p}. Hence all of the conditions of Proposition 3.1 are satisfied trivially

— i.e. ρk = 0 for k ≥ 2p+ q+ 1 and

ln2 k · EX 2
k = O

�

ln2 k

k2(1−δ)

�

= O

�

1

kδ1

�

with δ1 ∈ (1,2(1 − δ)). Thus from Proposition 3.1 and Kronecker’s lemma, Eq. (3.6)

follows.

We consequently prove Eq. (3.7). Thus on noticing that the first linear subsystem is a

moving averaging form with finite order p+1, clearly {wk xk, k ∈ A j} is an i.i.d. sequence,

where A j = { j + i(p+ 1) : i = 0,1, · · · }. Then from Lemma 3.2,

∞
∑

k=1

1

k1−α [k
−αwk xk − k−αE(wk xk)]

=

p
∑

j=0

∑

k∈A j

1

k1−α [k
−αwk xk − k−αE(wk xk)]

converges almost surely. From Kronecker’s lemma, the desired assertion therefore follows

directly. The proof for Eq. (3.8) is similar to that for Eq. (3.7).

Finally, we introduce a basic fact for later reference.

Lemma 3.5. If a sequence of random variables {ξk} satisfies sup E|ξk|r <∞ for any r > 0,

then for any δ > 0 we have the following limit:

ξk

kδ
a.s.−−−→

k→∞
0 .
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Proof. Since

P

� |ξk|
kδ
> ǫ

�

= P

� |ξk|2/δ
k2

> ǫ2/δ

�

<
1

ǫ2/δk2
E|ξk|2/δ

for any given ǫ > 0, it follows that

∞
∑

k=1

P

� |ξk|
kδ
> ǫ

�

<∞.

From the Borel-Cantelli lemma, we therefore have ξk/k
δ a.s.−−−→

k→∞
0.

4. Main Results

We now proceed to establish the strong consistency of the recursive estimates given by

Eqs. (2.18)-(2.20) for the linear coefficients, and Eqs. (2.21),(2.22) and (2.25)-(2.27) for

nonlinear f (·) under reasonable conditions.

The convergence of algorithms (2.18)-(2.20) for linear coefficients is assured by the

following theorem. Hereafter the abbreviation “a.s.’" means “almost surely convergent" —

i.e. we have convergence with probability 1.

Theorem 4.1. Assume conditions H1-H3 hold for the W-H system given by Eqs. (2.1), (2.2)

and (2.4). Then

γ̂i(k)
a.s.−−−→

k→∞
γi, i = 0,1, · · · , p+ q, (4.1)

where γ̂i(k) is generated by algorithm (2.18) and with the convergence rate:

|γ̂i(k)− γi| = o
�

k−δ
�

a.s. (4.2)

for ∀δ ∈ (0,1/2), i = 0,1, · · · , p + q. If further γ0 = E[uk yk+2] 6= 0, where γ0 is given by

Eq. (3.5), then the estimates for ai, i = 1, · · · , p and b j, j = 1, · · · ,q from Eqs. (2.19) and

(2.20) converge to the true values almost surely and have the same convergence rate as above.

Proof. As already mentioned, the recursive algorithm (2.18) until step n is equivalent

to

γ̂i(n) =
1

n

n
∑

k=1

uk−i yk+2 . (4.3)

It is sufficient to show that

1

n1−δ

n
∑

k=1

[uk−i yk+2− E(uk−i yk+2)] (4.4)
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converges to zero almost surely for δ ∈ (0,1/2), which is just (3.6) in Lemma 3.4. Recalling

γi = E(uk−i yk+2), the assertions for γi follow directly. Consequently, from Eq. (4.2) we

have

‖Υ̂k −Υ‖= o(k−δ) ,

where δ ∈ (0,1/2) and ‖·‖ denotes the matrix Euclidean norm, which immediately implies

the subsequent assertions regarding ai and b j .

Finally, the recursive algorithms given by Eqs. (2.21), (2.22) and (2.25)-(2.27) to re-

cover the value f (v) at a fixed v are analysed in the following theorem.

Theorem 4.2. Assume the conditions H1-H3 hold for the W-H system given by Eqs. (2.1),

(2.2) and (2.4) with γ0 6= 0. Then

µ̂k(v)
a.s.−−−→

k→∞
f (v) , (4.5)

where µ̂k(v) is given by Eq. (2.27).

Proof. For convenience, we divide the proof into five steps. Roughly speaking, the steps

1), 2) and 4) are preliminaries, and the steps 3) and 5) are the mainstream.

1). We first specify the estimation errors between the kernel function wk and its es-

timation ŵk, and between xk and x̂k at step k, respectively. From Theorem 4.1 we have

|v̂k − vk| = o
�

k−δ
�

, where and hereafter a possible subset with zero probability in the

whole sample path set Ω is ignored and δ ∈ (0,1/2). Since the derivative of wk with

respective to vk is O(k3α) as k→∞, the standard mean value theorem implies

|ŵk −wk|= o
�

k−δ1

�

,

where δ1 = δ − 3α > 0 by suitable selection of α. This is the reason why we require

α ∈ (0,1/6) in Section 2. Thus,

ŵk = wk + o
�

k−δ1

�

. (4.6)

Similarly, by Theorem 4.1, for reconstruction of intermediate signal xk from Eq. (2.26) we

have

| x̂k − (xk+ ek+1)| = o
�

k−δ
�

,

so that

x̂k = xk+ ek+1 + o
�

k−δ
�

. (4.7)

2). We develop a strong law of large numbers for {ŵk x̂k} in this step. From Eqs. (4.6)

and (4.7),

ŵk x̂k =
�

wk + o
�

k−δ1

��

·
�

xk + ek+1+ o
�

k−δ
��

= wk(xk + ek+1) + o
�

wkk−δ + (xk + ek+1)k
−δ1 + k−δ1−δ

�

. (4.8)



326 X-L. Hu and Y.-P. Jiang

From Lemma 3.2, and similar to the proof for Eq. (3.7), we have

∞
∑

k=1

1

k
wkk−δ =

∞
∑

k=1

wk

k1+δ
=

∞
∑

k=1

wk − Ewk

k1+δ
+

∞
∑

k=1

Ewk

k1+δ
<∞ .

Thus by Kronecker’s lemma,

1

n

n
∑

k=1

wkk−δ −−−→
n→∞ 0 .

From Lemmas 3.2, 3.4 and 3.5, all other terms in Eq. (4.8) can be analysed similarly. A

strong law of large numbers therefore holds — viz.

1

n

n
∑

k=1

[ŵk x̂k − f (v)]−−−→
n→∞ 0 ,

which is equivalent to

1

n

n
∑

k=1

ŵk x̂k = f (v)+ o(1). (4.9)

Similarly,

1

n

n
∑

k=1

|ŵk x̂k| = | f (v)|+ o(1) . (4.10)

3). We now analyse the asymptotic performance of the recursive formula Eq. (4.5) by

introducing a subset — i.e. Ω(n0) given in Eq. (4.13), for the set of whole sample paths Ω.

We rewrite Eq. (2.27) as

µn(v) = Φn,1µ0(v)+

n
∑

k=1

Φn,k+1

1

k
ŵk x̂k , (4.11)

where

Φi, j
∆
=

�

1− ŵi

i

��

1− ŵi−1

i − 1

�

· · ·
�

1− ŵ j

j

�

, i ≥ j, Φ j , j+1 = 1. (4.12)

For convenience, we define a subset of Ω as

Ω(n0)
∆
=

¨

ω ∈ Ω :

�

�

�

�

ŵk(ω)

k

�

�

�

�

<
1

2
, k = n0, n0 + 1 , · · ·

«

(4.13)

and first point out that

P[Ω(n0)]→ 1 , n0→∞ . (4.14)
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Actually, from Chebyshev’s inequality, Eq. (4.6) and Lemma 3.2 we have

1− P[Ω(n0)]≤
∞
∑

k=n0

P

��

�

�

�

ŵk(ω)

k

�

�

�

�

≥ 1

2

�

≤
∞
∑

k=n0

4Eŵ2
k

k2
−−−→
n0→∞

0 .

4). To prepare for the final step, we analyse the order of Φn,k defined by Eq. (4.12), for

n > k ≥ n0 as n tends to infinity at a fixed sample path in Ω(n0). We specify the distance

between Φn,k+1 and k/n, as described in Eq. (4.19) below. From the definition (4.12),

Φn,k+1 = exp

(

n
∑

s=k+1

log(1− ŵs

s
)

)

,

hence from the inequalities x

1+x
≤ log(1+ x)≤ x for x > −1 we obtain

exp

(

−
n
∑

s=k+1

ŵs

s− ŵs

)

≤ Φn,k+1 ≤ exp

(

−
n
∑

s=k+1

ŵs

s

)

. (4.15)

Meanwhile, from Eq. (4.6) and Lemma 3.2 we have

n
∑

s=k+1

ŵs

s
=

n
∑

s=k+1

�

ws

s
+ o

�

1

s1+δ1

��

=

n
∑

s=k+1

ws − Ews

s
+

n
∑

s=k+1

Ews

s
+ o

 

n
∑

s=k+1

1

s1+δ1

!

= k−β
n
∑

s=k+1

kβ (ws − Ews)

s
+

n
∑

s=k+1

1

s
+ o

�

1

kδ1

�

= o

�

1

kβ

�

+

n
∑

s=k+1

1

s
+ o

�

1

kδ1

�

= log
n

k
+ o

�

1

kδ1

�

, (4.16)

where 0< δ1 < β < (1/2)− (α/2). Further,
�

�

�

�

�

n
∑

s=k+1

ŵs

s− ŵs

−
n
∑

s=k+1

ŵs

s

�

�

�

�

�

≤
n
∑

s=k+1

�

�

�

�

ŵs

s

�

�

�

�

2

·
�

�

�

�

�

1

1− ŵs

s

�

�

�

�

�

≤ 2

n
∑

s=k+1

�

�

�

�

ŵs

s

�

�

�

�

2

= 2

n
∑

s=k+1

�

ŵ2
s −w2

s

s2
+

w2
s − Ew2

s

s2
+

Ew2
s

s2

�

= O
�

k−1
�

,

and consequently

−
n
∑

s=k+1

ŵs

s− ŵs

≥−
n
∑

s=k+1

ŵs

s
−
�

�

�

�

�

n
∑

s=k+1

ŵs

s− ŵs

−
n
∑

s=k+1

ŵs

s

�

�

�

�

�

≥−
n
∑

s=k+1

ŵs

s
−O

�

k−1
�

.

(4.17)
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From Eqs. (4.16) and (4.17), Eq. (4.15) turns to be

k

n
exp
�

o(k−δ1)−O
�

k−1
��

≤ Φn,k+1 ≤
k

n
exp(o(k−δ1)) . (4.18)

Let us assume that n0 is selected big enough such that n
−δ1

0
< 1. From the assumption

n> k ≥ n0 at the beginning of this step, and the inequality 1+x < ex< 1+ e|x | for |x |< 1,

Eq. (4.18) becomes

k

n

�

1+ o(k−δ1)−O
�

k−1
��

≤ Φn,k+1 ≤
k

n
(1+ o(k−δ1)) . (4.19)

5). Now we are ready to establish the convergence result Eq. (4.5), by first considering

the convergence issue at a fixed sample path in Ω(n0), and then deducing the desired

formula Eq. (4.5). From Eqs. (4.19) and (4.10),

n
∑

k=n0

�

�

�

�

Φn,k+1−
k

n

�

�

�

�

�

�ŵk x̂k

�

�

k
≤

n
∑

k=n0

�

O
�

k−1
�

+ o(k−δ1)
�

�

�ŵk x̂k

�

�

n
= o(n

−δ1

0 ) ,

so
n
∑

k=n0

Φn,k+1

1

k
ŵk x̂k =

n
∑

k=n0

1

n
ŵk x̂k +

n
∑

k=n0

(Φn,k+1−
k

n
)
1

k
ŵk x̂k

=

n
∑

k=n0

1

n
ŵk x̂k +O







n
∑

k=n0

�

�

�

�

Φn,k+1−
k

n

�

�

�

�

�

�ŵk x̂k

�

�

k







= f (v)+ o(n
−δ1

0 )−−−→
n0→∞

f (v) , (4.20)

and hence from Eqs. (4.19) and (4.20) we have

µ̂n(v) = Φn,n0+1µ̂n0
(v) +

n
∑

k=n0+2

Φn,k+1

1

k
ŵk x̂k

=
n0

n

�

1+ o(n
−δ1

0
)
�

µ̂n0
(v)+ f (v)+ o(n

−δ1

0
)

−−−→
n→∞ f (v)+ o(n

−δ1

0 )−−−→
n0→∞

f (v) . (4.21)

Now the sample path set Ω(n0) tends to include nearly all sample paths when n0 → ∞
since its probability tends to 1, so Eq. (4.21) holds with probability 1 — i.e.

µ̂n(v)
a.s.−−−→

n→∞ f (v) ,

which completes the proof.

Theorems 4.1 and 4.2 declare the strong consistency of the recursive identification

algorithms — viz. Eqs. (2.18)-(2.20) for linear coefficients and (2.21)(2.22)(2.25)-(2.27)

for the nonlinear block, as proposed in Section 2.3. (Strong consistency means asymptotic

convergence to the true values with probability 1 as the data size tends to infinity.) The

restriction γ0 6= 0 appears in both theorems, as we mentioned in Remark 3.1. A typical

case is that f (·) is a continuous odd function, satisfying f (v0) 6= 0 for certain v0.
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5. Numerical Example

We now illustrate our results with a numerical example, where the first and second

linear subsystems of a W-H system are

vk+1 = uk + 0.27uk−1− 0.5uk−2+ 0.79uk−3

yk+2− 0.3yk+1+ 0.6yk = xk+1+ ek+2 .

Clearly, the parameters are

a1 = 0.27 , a2 = −0.5 , a3 = 0.79 , b1 = −0.3 , b2 = 0.6 .

Let the nonlinear static block be

f (v) =







sin(πv/2) , if |v| ≤ 1 ,

−1 , if v < −1 ,

1 , if v > 1 ,

and the observation noise be Gaussian ek ∈ N (0,0.12). Clearly, all conditions in our

Theorems 4.1 and 4.2 are satisfied. The signal to noise ratio (SNR) between input and

noise is 100 (or 20dB) – and although the SNR is large, convincing performances of the

estimate algorithms will also hold for lower SNR provided the data size is large enough.

We use Eqs. (2.18)-(2.20) and (2.27) to estimate ai , i = 1, · · · , p; b j , j = 1, · · · ,q and f (v)

respectively.

The estimates for ai, i = 1, · · · , p and b j, j = 1, · · · ,q appear in Fig. 2, where the dotted

lines denote the true values and the solid lines the estimates of the coefficients. In Fig. 3

it is shown how the true f (v) denoted by the dotted line is approximated by its estimate
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Solid: estimatedFigure 2: Estimates for linear 
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ients as k = 1, · · · , 3000.
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Figure 4: Estimates of f (v) as k = 1, · · · , 3000 for v =−1.5, −0.51, 0, 0.51, 1.5.
denoted by the solid line. To derive the estimate curve (solid line) for f (v), the interval

[−1.5,1.5] on which f (v) is defined is divided into 100 equal subintervals, and at the

endpoints v of subintervals f (v) is estimated by Eqs. (2.21),(2.22) and (2.25)-(2.27). The

solid line is the result from the estimates given at k = 3000.
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In Fig. 2, the estimates of the linear parts evidently tend to the true values, which

justifies the theoretical assertion in Theorem 4.1. The nonparametric point-wise estimates

of f (v) at k = 3000 in Fig. 3, and the tendencies of the estimates for v = −1.5, −0.51, 0,

0.51, 1.5 as k = 1, · · · , 3000 in Fig. 4, are consistent with the assertion in Theorem 4.2.

6. Concluding Remarks

A recursive identification scheme for SISO Wiener-Hammerstein systems with non-

parametrised nonlinearity is discussed in this article, and the strong consistency of the

estimation algorithms for the linear blocks and nonlinearity is established in Theorems 4.1

and 4.2, respectively. Technically, these algorithms relate to those in Refs. [7–9,14], but are

simpler by avoiding the socalled stochastic approximation (SA) with expanding truncations

and the theoretical analysis is more straightforward. A numerical experiment illustrates

our theoretical results. The first linear block we considered is a Moving Averaging (MA)

type and the second one an Auto-Regressive (AR) type. More general Auto-Regressive and

Moving Average (ARMA) types for both subsystems could be considered, where similar

algorithms and strong convergence results may be sought.
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