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Abstract. Free boundary problems with nonlinear diffusion occur in various applica-

tions, such as solidification over a mould with dissimilar nonlinear thermal properties

and saturated or unsaturated absorption in the soil beneath a pond. In this article,

we consider a novel inverse problem where a free boundary is determined from the

mass/energy specification in a well-posed one-dimensional nonlinear diffusion prob-

lem, and a stability estimate is established. The problem is recast as a nonlinear least-

squares minimisation problem, which is solved numerically using the lsqnonlin routine

from the MATLAB toolbox. Accurate and stable numerical solutions are achieved. For

noisy data, instability is manifest in the derivative of the moving free surface, but not in

the free surface itself nor in the concentration or temperature.
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1. Introduction

Many industrial and scientific applications involving inverse problems have ensured

that this mathematical field has undergone extensive development over several decades,

including a recent emphasis on nonlinear inverse problems — e.g. the Stefan solidifica-

tion problem involving nonlinear diffusion with a free boundary [1], the determination

of unknown coefficients together with the temperature in a nonlinear heat conduction

problem [2,3], and the procedure to find an approximate stable solution to the unknown
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coefficient from over-specified data based on the finite difference method combined with

the Tikhonov regularisation approach [11].

In this article, we consider the problem of identifying the free boundary in a nonlinear

diffusion problem. We formulate the inverse problem under investigation in Section 2. The

respective numerical methods for solving the direct and inverse problems are described in

Sections 3 and 4, and the numerical results are discussed in Section 5. Our final conclusions

are presented in Section 6.

2. Mathematical Formulation

The nonlinear one-dimensional diffusion problem involves the partial differential equa-

tion

∂ u(x , t)

∂ t
=
∂

∂ x

�

a(u)
∂ u(x , t)

∂ x

�

+ f (x , t) , (x , t) ∈ Ω (2.1)

where the domain Ω = {(x , t) : 0 < x < h(t), 0 < t < T < ∞} has the unknown free

smooth boundary x = h(t) > 0, subject to the initial condition

u(x , 0) = φ(x) , 0≤ x ≤ h(0) =: h0 (2.2)

where h0 > 0 is given and the Dirichlet boundary conditions

u(0, t) = µ1(t) , u(h(t), t) = µ2(t) , 0≤ t ≤ T . (2.3)

In order to determine the unknown boundary h(t) for t ∈ (0, T], we impose the over-

determination condition of integral type

∫ h(t)

0

u(x , t)d x = µ3(t) , 0≤ t ≤ T , (2.4)

which represents the specification of mass/energy of the diffusion system [4]. The six

functions a(u) > 0, φ(x), µi(t) for i ∈ {1,2,3}, and f (x , t) are given. Physically, u(x , t)

represents the concentration or temperature, a(u) the diffusivity, and f (x , t) a source or

sink. The function pair (h(t) > 0,u(x , t)) ∈ C1[0, T]× C2,1(Ω) satisfying Eqs. (2.1)–(2.4)

is the solution of the problem, under the following existence and uniqueness theorems [6].

Theorem 2.1. (Existence)

Assume that:

1. φ(x) ∈ C2[0,h0], µi(t) ∈ C1[0, T] for i ∈ {1,2,3}, f (x , t) ∈ C1,0([0, H1]×[0, T]),

and a(u) ∈ C1[M0, M1];

2. φ(x) > 0 for x ∈ [0,h0], µi(t) > 0 for t ∈ [0, T], i ∈ {1,2,3}, f (x , t) ≥ 0 for

(x , t) ∈ [0, H1]×[0, T], and a(u) ≥ a0 > 0 for u ∈ [M0, M1] where a0 is some given

constant; and
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3. µ1(0) = φ(0) , µ2(0) = φ(h0) ,
∫ h0

0
φ(x)d x = µ3(0) ,

µ′1(0) = a(µ1(0))φ
′′(0)+ a′(µ1(0))φ

′2(0)+ f (0,0) ,

µ′2(0) = a(µ2(0))φ
′′(h0) + a′(µ2(0))φ

′2(h0) +φ
′(h0)h

′(0)+ f (h0, 0) .

Then the inverse problem (2.1)–(2.4) is locally solvable (in time).

Theorem 2.2. (Uniqueness)

Suppose that not only condition 2 of Theorem 2.1 but also the condition

a(u) ∈ C1[M0, M1], f (x , t) ∈ C1,0([0, H1]× [0, T])

holds. Then a solution of the inverse problem (2.1)–(2.4) is unique.

The constants H1, M0 and M1 in these theorems have the following meaning for the heat

equation (2.1) — cf. the maximum principle [5]:

H1 =
1

M0

max
[0,T]
µ3(t) , M0 =min

�

min
[0,h0]

φ(x), min
[0,T]
µ1(t), min

[0,T]
µ2(t)

�

,

M1 =max

¨

max
[0,h0]

φ(x), max
[0,T]
µ1(t), max

[0,T]
µ2(t), max

[0,H1]×[0,T]
f (x , t)

«

.

We can also obtain a formula for h′(0) by differentiating Eq. (2.4) with time and using

Eqs. (2.1)–(2.3):

h′(0) =
µ′3(0)− a(µ2(0))φ

′(h0) + a(µ1(0))φ
′(0)−

∫ h0

0
f (x , 0)d x

µ2(0)
. (2.5)

Under a change of variable y = x/h(t), the inverse problem (2.1)–(2.4) reduces to

the following equivalent problem for the unknowns h(t) and v(y, t) := u(yh(t), t) in a

rectangular domain [6]:

∂ v(y, t)

∂ t
=

1

h2(t)

∂

∂ y

�

a(v)
∂ v(y, t)

∂ y

�

+
yh′(t)

h(t)

∂ v(y, t)

∂ y
+ f (yh(t), t) , (y, t) ∈Q (2.6)

where Q = {(y, t) : 0< y < 1,0< t < T}, subject to the initial condition

v(y, 0) = φ(h0 y) , 0≤ y ≤ 1 (2.7)

and the boundary and over-determination conditions

v(0, t) = µ1(t) , v(1, t) = µ2(t) , 0≤ t ≤ T , (2.8)

h(t)

∫ 1

0

v(y, t)d y = µ3(t) , 0≤ t ≤ T . (2.9)

At the end of this section, we establish the continuous dependence of the free boundary

h(t) on the input energy data (2.4).
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Theorem 2.3. (Stability)

Suppose that the conditions of Theorem 2.1 are satisfied. Let µ3 and µ̃3 be two data in

(2.4) and let (h(t), u(x , t)) and (h̃(t), ũ(x , t)) be the corresponding solutions of the inverse

problem (2.1)–(2.4). Then there is a positive constant C such that the following stability

estimate holds:

‖h− h̃‖C1[0,T]+ ‖v − ṽ‖C1,0(Ω) ≤ C‖µ3− µ̃3‖C1[0,T] , (2.10)

where

v(y, t) = u(yh(t), t) , ṽ(y, t) = ũ(yh̃(t), t) , (y, t) ∈Q . (2.11)

Proof. In order to establish the stability estimate (2.10), we follow the uniqueness proof

given in Ref. [6]. If p(t) := h(t)− h̃(t), q(t) := h′(t)− h̃′(t), W (y, t) := v(y, t)− ṽ(y, t)

and ∆µ3(t) := µ3(t)− µ̃3(t), from Eq. (2.9) one obtains

µ3(t) = h(t)

∫ 1

0

v(y, t)d y , µ̃3(t) = h̃(t)

∫ 1

0

ṽ(y, t)d y ,

or after some calculus

p(t) = −
µ̃3(t)

�
∫ 1

0
v(y, t)d y

��
∫ 1

0
ṽ(y, t)d y

�

∫ 1

0

W (y, t)d y +
∆µ3(t)

∫ 1

0
v(y, t)d y

,

t ∈ [0, T] . (2.12)

Note that condition 2 of Theorem 2.1 implies that v and ṽ are positive in Q. Following the

proof of Theorem 2.2 in Ref. [6], we obtain the expression for the derivative of p — viz.

q(t) =
∆µ′3(t)

µ2(t)
+

a(µ1(t))Wy(0, t)− a(µ2(t))Wy(1, t)

µ2(t)h(t)

+
p(t)

µ2(t)

�

ṽ(1, t)a(µ2(t))− ṽ(0, t)a(µ1(t))

h(t)h̃(t)
−

∫ 1

0

f (yh(t), t)d y

− h̃(t)

∫ 1

0

d y

∫ 1

0

y fz(yz, t)

�

�

�

�

z=h̃(t)+σ(h(t)−h̃(t))

dσ

�

. (2.13)

We also have that

W (y, t) =

∫ t

0

∫ 1

0

G(y, t;η,τ)

�

�

−
ηh̃′(τ)

h(τ)h̃(τ)
ṽη(η,τ)−

h(τ)+ h̃(τ)

h2(τ)h̃2(τ)
a(ṽ(η,τ))

+

∫ 1

0

η fz(ηz,τ)

�

�

�

�

z=h̃(τ)+σ(h(τ)−h̃(τ))

dσ
�

p(τ)+
q(τ)

h(τ)

+W (η,τ)

∫ 1

0

a′(z)

�

�

�

�

z=ṽ(η,τ)+σ(v(η,τ)−ṽ(η,τ))

dσ

�

dηdτ , (y, t) ∈Q , (2.14)
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where G(y, t;η,τ) is the Green function for the linear partial differential equation

Wt =

�

a(v(y, t))

h2(t)
Wy

�

y

+
yh′(t)

h(t)
Wy (2.15)

subject to the homogenous initial and boundary conditions

W (y, 0) = 0 , y ∈ [0,1] , (2.16)

W (0, t) =W (1, t) = 0 , t ∈ [0, T] . (2.17)

The expression for the derivative Wy(y, t) is obtained by replacing G(y, t;η,τ) with

Gy(y, t;η,τ) in Eq. (2.14). In Ref. [6], the uniqueness of the solution of the problem

(2.1)–(2.4) is obtained by remarking that when µ3 = µ̃3 (i.e. ∆µ3 = 0) then Eqs. (2.12)–

(2.14) constitute an homogenous system of Volterra integral equations of the second kind

with integrable kernels and the triplet solution (p(t),q(t),W (y, t)). For the stability, one

can observe that the inhomogeneous free terms in Eqs. (2.12) and (2.13) are

∆µ3(t)
∫ 1

0
v(y, t)d y

and
∆µ′3(t)

µ2(t)
,

respectively. These terms are bounded by M0
−1||∆µ3||C1[0,T], and the stability estimate

(2.10) follows immediately.

Remark 2.1. From Theorem 2.3, there is continuous dependence of h upon the input data

µ3 in the C1[0, T] norm. However, in practice the energy data µ3 given by Eq. (2.4) comes

from measurement, which is inherently contaminated with noise — cf. Eqs. (4.5)–(4.7)

below. The input data µ3 is therefore in C[0, T] but not in C1[0, T], and consequently

the derivative µ′3 of the noisy function µ3 is unstable. However, there are many numerical

methods that can stabilise the ill-posed process of numerical differentiation — e.g. see

Ref. [9].

3. Solution of the Direct Problem

We now consider the direct initial-boundary value problem (2.6)–(2.8) where h(t),

f (x , t), a(u) and µi(t), i ∈ {1,2} are known, and the solution u(x , t) is to be determined

together with µ3(t) defined by Eq. (2.4). There is no major difficulty in formally apply-

ing finite difference methods to nonlinear parabolic equations — the main difficulties are

associated with the consequent difference equations, which are usually solved iteratively

after being linearised in some way (see later). We use the three-time-level finite difference

scheme suggested by Lees [7].

We uniformly divide the fixed domain Q = (0,1)× (0, T ) into M and N subintervals of

equal step length∆y and∆t, where ∆y = 1/M and∆t = T/N , respectively. The solution

at the node (i, j) is thus vi, j := v(yi, t j), where yi = i∆y, t j = j∆t, h(t j) = h j , φ(x i) = φi ,
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and f (yi , t j) = fi, j for i = 0, M , j = 0, N . In order to solve the direct problem for the

nonlinear parabolic equation (2.6) subject to the initial condition (2.7) and the Dirichlet

boundary conditions (2.8), we define the standard difference operators

D+v(x i, t j) =
v(x i+1, t j)− v(x i, t j)

∆y
, D−v(x i, t j) =

v(x i, t j)− v(x i−1, t j)

∆y
,

D0v(x i, t j) =
v(x i+1, t j)− v(x i−1, t j)

2∆y
,

and for any suitably defined function k(x , t) we put

ā(k(x i, t)) = a

�

k(x i, t) + k(x i−1, t)

2

�

.

For each j = 0, N we put v0, j = µ1( j∆t) and vM , j = µ2( j∆t), so the three-time-level

scheme is

vi,0 = φi , i = 0, M where φ0 = µ1(0) and φM = µ2(0) , (3.1)

vi,1 = vi,0+
∆t

h2
0

D+
�

ā(φi)D−φ
�

+
(∆t)yih

′
0

h0

D−φ + (∆t) fi,0 , i = 1, M − 1 (3.2)

where h′0 = h′(0) is given by Eq. (2.5),

vi, j+1 = vi, j−1 +
2∆t

h2
j

D+
�

ā(vi, j)D− v̂i, j

�

+
2(∆t)yih

′
j

h j

D− v̂i, j + 2(∆t) fi, j (3.3)

where h′j = h′(t j), for i = 1, M − 1, j = 1, N − 1 and

v̂i, j =
vi, j+1 + vi, j + vi, j−1

3
. (3.4)

It is clear that the three-time-level difference scheme determines vi, j+1 uniquely as the solu-

tion of a linear well-conditioned tridiagonal system of equations, which can be solved using

traditional linear algebra methods to advance the solution to the next time step. Eqs. (3.1)

and (3.2) provide the necessary starting values for Eq. (3.3). For sufficiently small values

of ∆y and ∆t, the scheme is stably second-order accurate and convergent [7]. Eq. (2.1)

and Eq. (2.6) are nonlinear, but linearity is achieved in vi, j+1 by evaluating all coefficients

at a time level of known solution values in previous steps. The stability is preserved by

averaging vi, j over three time levels as in (3.4), and the accuracy is maintained by using

central difference approximations [10].

Eq. (3.3) can be rendered in the simpler form

vi, j+1 = v̂i, j−1 +Ai, j v̂i−1, j − Bi, j v̂i, j + Ci, j v̂i+1, j + 2(∆t) fi, j , (3.5)
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where

Ai, j =
2(∆t)a2i, j

h2
j
(∆y)2

−
(∆t)yih

′
j

h j∆y
, Bi, j =

2(∆t)a3i, j

h2
j
∆y

, Ci, j =
2(∆t)a1i, j

h2
j
(∆y)2

+
(∆t)yih

′
j

h j∆y
,

with a1i, j = ā(v(x i+1, t j)), a2i, j = ā(v(x i, t j)), a3i, j = a1i, j + a2i, j. The solution is thus

averaged over three levels as

v̂i−1, j−1 =
1

3

�

vi−1, j+1 + vi−1, j + vi−1, j−1

�

,

v̂i, j =
1

3

�

vi, j+1 + vi, j + vi, j−1

�

,

v̂i+1, j−1 =
1

3

�

vi+1, j+1 + vi+1, j + vi+1, j−1

�

,

and the resulting version of Eq. (3.5) is then

− A∗i, j vi−1, j+1 + (1+B∗i, j)vi, j+1 − C∗i, j vi+1, j+1

=A∗i, j vi−1, j − B∗i, j vi, j + C∗i, j vi+1, j + A∗i, j vi−1, j−1 + (1− B∗i, j)vi, j−1 + C∗i, j vi+1, j−1 + 2(∆t) fi, j ,

j = 1, N , i = 2, (M − 1) , (3.6)

where A∗ = A/3, B∗ = B/3 and C∗ = C/3. At each time step t j for j = 1, (N − 1), using

the Dirichlet boundary conditions (2.8) this difference equation can be reformulated as an

(M − 1)× (M − 1) system of linear equations of form

Lu = b, (3.7)

where u = (v2, j+1, v3, j+1, · · · , vM−1, j+1)
t r , b = (b2, b3, · · · , bM−1)

t r ,

L =

















1+ B∗
1, j
−C∗

1, j
0 · · · 0 0 0

−A∗2, j 1+ B∗2, j −C∗2, j · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −A∗M−2, j 1+ B∗M−2, j −C∗M−2, j

0 0 0 · · · 0 −A∗M−1, j 1+ B∗M−1, j

















,

b2 = A∗1, j v0, j − B∗1, j v1, j + C∗1, j v2, j + A∗1, j v0, j−1 + (1− B∗1, j)v1, j−1 + C∗1, j v2, j−1

+ 2(∆t) f1, j + A∗1, j v0, j+1 ,

bi = A∗i−1, j vi, j − B∗i, j vi, j + C∗i, j vi+1, j +A∗i, j vi−1, j−1 + (1− B∗i, j)vi, j−1

+ C∗i, j vi+1, j−1 + 2(∆t) fi, j , i = 3, (M − 2) ,

bM−1 = A∗M−1, j vM−2, j − B∗M−1, j vM−1, j + C∗M−1, j vM , j + A∗M−1, j vM−2, j−1

+ (1− B∗M−1, j)vM−1, j−1 + C∗M−1, j vM+1, j−1 + 2(∆t) fM−1, j + C∗M−1, j vM , j+1 .
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Figure 1: Exa
t and numeri
al solutions for v(y, t), and the absolute error for the dire
t problem obtainedwith M = N = 40.
Example 3.1. Consider the problem (2.6)–(2.8) with T = 1 and

a(v) = e−v , h(t) = 1+ t , h0 = h(0) = 1 , φ(h0 y) = 1+ (1+ y)2 ,

µ1(t) = 1+ et , µ2(t) = (2+ t)2 + et ,

f (h(t)y, t) = et + e−(1+y+y t)2−e t

(4(1+ y + y t)2 − 2) .

The exact solution of the direct problem (2.6)–(2.8) is given by

v(y, t) = (1+ y + y t)2 + et

and the desired output (2.4) is

µ3(t) =
(2+ t)3 − 1

3
+ (1+ t)et .

The numerical and exact solution for the interior solution shown in Fig. 1 are in very good

agreement. The trapezoidal rule was employed to compute the integral in Eq. (2.4) — viz.

∫ 1

0

v(y, t j)d y =
1

2M

 

µ1(t j) +µ2(t j) + 2

M−1
∑

i=1

v(yi, t j)

!

, j = 0, N . (3.8)

As shown in Fig. 2, the numerical solution and the exact solution for µ3 are in excellent

agreement.

4. Numerical Approach to the Inverse Problem

In the inverse problem, we assume that the free boundary h(t) is unknown. The non-

linear inverse problem (2.6)–(2.9) can be reformulated as a nonlinear least-squares min-
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t and numeri
al integration for µ3(t) for the dire
t problem obtained with M = N = 40.
imisation of

F(h) =
















h(t)

∫ 1

0

v(y, t)d y −µ3(t)
















2

L2[0,T]

, (4.1)

defined over the set of admissible functions

h ∈ Λad := {h ∈ C1[0, T]
�

�h(0) = h0, h(t) > 0 for t ∈ [0, T]} . (4.2)

The discretisation of Eq. (4.1) is

F(h) =

N
∑

j=1

h

h j

∫ 1

0

v(y, t j)d y −µ3(t j)
i2

, (4.3)

where h =
�

h j

�

j=1,N
. From the numerical results discussed in the next section, it seems

that there is no need to regularise the least-squares functional (4.1) by adding a Tikhonov

penalty term of some norm of h, with the problem being rather stable to noise added in

the input data µ3(t).

The minimisation of F subject to the physical constraints h > 0 was accomplished

using the MATLAB toolbox routine lsqnonlin, which does not require the user to supply

the gradient of the objective function (4.3), [8]. This routine attempts to find a minimum

of a scalar function of several variables starting from an initial guess, subject to constraints

— generally referred to as constrained nonlinear optimisation. We took bounds for the

positive h(t) by seeking the components of the vector h in the interval (10−10,103). The

adopted parameters of the routine were as follows:

• Number of variables M = N = 40.
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• Maximum number of iterations = 102× (number of variables).

• Maximum number of objective function evaluations = 103× (number of variables).

• x Tolerance (xTol) = 10−10.

• Function Tolerance (FunTol) = 10−10.

• Nonlinear constraint tolerance = 10−6.

In addition, when solving the inverse problem we approximated

h′(t j) =
h(t j)− h(t j−1)

∆t
=

h j − h j−1

∆t
, j = 1, N , (4.4)

with h′0 := h′(0) as in Eq. (2.5). If there was noise in the measured data in Eq. (2.4), we

replaced µ3(t j) in Eq. (4.3) by µε3(t j) given by

µε3(t j) = µ3(t j) + ε j , j = 1, N , (4.5)

where ε j are random variables generated from a Gaussian normal distribution with mean

zero and standard deviation

σ = p× max
t∈[0,T]

|µ3(t)| , (4.6)

where p represents the percentage of noise. We used the MATLAB function normrnd to

generate the random variables ε=
�

ε j

�

j=1,N
:

ε = normrnd(0,σ, N) . (4.7)

5. Numerical Results and Discussion

Numerical results for our nonlinear inverse problem (2.1)–(2.4) were obtained for two

examples, with a linear and nonlinear (rational) variation of the free boundary, respec-

tively. Moreover, we added noise to the measured input data in Eq. (2.9) to mimic the

real situation, by using Eq. (4.5) and Eq. (4.7). To compute the free boundary, we used

the lsqnonlin routine combined with the Trust-Region-Reflective algorithm [8] to find the

minimiser of the nonlinear functional (4.3); and to analyse the error between the exact

and numerically obtained results, we calculated the root mean square error

rmse(h(t)) =

√

√

√

√

1

N

N
∑

j=1

�

hnumerical(t j)− hexact(t j)
�2

. (5.1)

For simplicity, we took T = 1 and the initial guess h(0) = 1 for all examples.
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Example 5.1. Consider the problem (2.1)–(2.4) with unknown free boundary h(t), and

solve this inverse problem with the following input data:

φ(x) = (1+ x)2+ 1 , µ1(t) = 1+ et , µ2(t) = (2+ t)2 + et ,

µ3(t) =
(2+ t)3

3
+ (1+ t)et −

1

3
, a(u) = e−u ,

f (x , t) = et + e−(1+x)2−e t

(4x2+ 8x + 2), h0 = 1 .

The conditions of Theorems 2.1 and 2.2 are satisfied, so the solution exists and is unique.

The analytical solution of the inverse problem (2.1)–(2.4) is given by

h(t) = 1+ t, u(x , t) = (1+ x)2+ et , (5.2)

and

h(t) = 1+ t, v(y, t) = u(yh(t), t) = (1+ y + y t)2 + et , (5.3)

is the analytical solution of the problem (2.6)–(2.9).

We consider the case where there is no noise (i.e. p = 0), and then where there is p = 2%

noise in the input data (2.9). The functional (4.3) is represented in Fig. 3, as a function

of the number of iterations. It can be seen that the convergence is very fast — in five

and seven iterations for p = 0 and p = 2%, respectively. The objective function (4.3)

decreases rapidly and takes a stationary value O(10−7) and 0.3411 for p = 0 and p = 2%,

respectively. The numerical results for the corresponding unknown free boundary h(t) are

presented in Fig. 4. The retrieved free boundary h(t) is in very good agreement with the

exact one in the case when there is no noise in the input data, while the retrieved solution

is stable and within the same range of errors as the input data when it is contaminated by

p = 2% noise. The restored temperatures v(y, t) and u(x , t) for p = 2% noise are shown

in Figs. 5 and 6, respectively. It can be seen that the solutions are stable by being free of
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Figure 3: Obje
tive fun
tion (4.3) without noise (�), and for p = 2% noise (- - -) for Example 5.1.
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Figure 5: The analyti
al and numeri
al solutions, and the relative error for v(y, t) for p = 2% noise forExample 5.1.
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Figure 6: The analyti
al and numeri
al solutions for u(x , t) for p = 2% noise for Example 5.1.
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high oscillations and unbounded behaviour. Thus for this example it seems that the inverse

problem is well-posed and the numerical solutions are accurate and stable with respect to

noise in the input data, for both the free boundary h(t) and the temperature/concentration

v(y, t) or u(x , t).

Example 5.2. We now consider a more severe test case where the unknown function h(t)

is nonlinear with the following data

φ(x) = (1+ x)2+ 1, µ1(t) = 1+ et , µ2(t) =

�

2+ t

1+ t

�2

+ et ,

µ3(t) =
1

3

�

2+ t

1+ t

�3

+
et

1+ t
−

1

3
, a(u) = e−u,

f (x , t) = et + e−(1+x)2−e t �

4x2+ 8x + 2
�

, h0 = 1.

The conditions of Theorems 2.1 and 2.2 are satisfied, so the solution exists and is unique.

The analytical solution of the inverse problem (2.1)–(2.4) is given by

h(t) =
1

1+ t
, u(x , t) = (1+ x)2+ et , (5.4)

and

h(t) =
1

1+ t
, v(y, t) = u(yh(t), t) =

�

1+
y

1+ t

�2

+ et , (5.5)

is the analytical solution of the problem (2.6)–(2.9).

We study the case of exact and noisy input data in Eq. (2.9). The objective function (4.3)

is presented in Fig. 7, as a function of the number of iterations. The functional decreases

very fast to stationary values O(10−7) and 0.0188 in about 7 and 12 iterations, for p = 0

and p = 2% noise respectively. The numerical results for the corresponding free boundary

h(t) are presented in Fig. 8, where the identified free boundary is in very good agreement

with the exact one in the absence of noise, and this outcome is only a little changed when

we perturb the input data with p = 2% noise. The numerical solutions for v(y, t) and

u(x , t) are shown in Figs. 9 and 10 respectively, in comparison with the exact solutions for

p = 2% noise. As in Example 1, stable numerical solutions are obtained. We conclude that

the inverse problem is well-posed, since small errors in the measurement in (2.4) cause

only small errors in the retrieved pair solution (h(t), u(x , t)), and we can say that the

problem depends continuously on the input data.

For completeness, the number of iterations, the number of function evaluations, the

objective function values at final iteration and rmse(h) are given in Table 1, for both Ex-

ample 5.1 and Example 5.2. It can be seen that accurate and stable numerical solutions

are rapidly achieved by the iterative MATLAB toolbox routine lsqnonlin.
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Figure 7: Obje
tive fun
tion (4.3) without noise (�), and for p = 2% noise (- - -) for Example 5.2.
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t solution (�), for Example 5.2.
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Figure 9: The analyti
al and numeri
al solutions and the relative error for v(y, t) for p = 2% noise forExample 5.2.
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Figure 10: The analyti
al and numeri
al solutions for u(x , t) for p = 2% noise for Example 5.2.Table 1: Number of iterations, number of fun
tion evaluations, value of the obje
tive fun
tion (4.3) at�nal iteration and rmse values (5.1), for Examples 5.1 and 5.2.
p = 0 p = 2%

Example 5.1

No. of iterations 5 7

No. of function evaluations 252 336

Function value at final iteration 2E − 7 0.3411

rmse(h) 0.0035 0.0793

Example 5.2

No. of iterations 7 12

No. of function evaluations 336 546

Function value at final iteration 6E − 7 0.0188

rmse(h) 0.0023 0.0212

6. Conclusions

The inverse problem involving identification of the free boundary h(t) and tempera-

ture u(x , t) in the heat equation with nonlinear diffusivity a(u) has been investigated. The

additional condition that ensures a unique solution is the mass/energy specification µ3(t)

given by Eq. (2.4). As with other free surface problems, it turns out that the problem is

well-posed if the data µ3 is smooth. A direct solver based on a three-level finite difference

scheme is developed. The inverse solver is based on a nonlinear least-squares minimisa-

tion, where the MATLAB toolbox routine lsqnonlin is used. As expected, the numerical

results obtained are very accurate for exact data. For noisy data µε3 corresponding to a

random perturbation of the exact data µ3, the results for h(t), v(y, t) and u(x , t) remain

stable and accurate. The instability is only manifested in the derivative h′(t), for which the

use of a regularisation method would be warranted.
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