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Abstract. The numerical solution of a parabolic Volterra integro-differential equation

with a memory term on a one-dimensional unbounded spatial domain is considered.

A quasi-wavelet based numerical method is proposed to handle the spatial discretisa-

tion, the Crank-Nicolson scheme is used for the time discretisation, and second-order

quadrature to approximate the integral term. Some numerical examples are presented

to illustrate the efficiency and accuracy of this approach.
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1. Introduction

Integro-differential equations are quite common in science and engineering — e.g. to

describe porous viscoelastic behaviour with known fluctuations, or vibrations and dynamic

populations. Various algorithms have been designed for the numerical solution of Volterra

integro-differential equations — including finite element methods [1,13–16], an orthogo-

nal spline collection method [5] and finite difference methods. In particular, Xu discussed

the numerical solution of a fractional diffusion equation by a finite difference scheme in

time and a Legendre spectral scheme in space [10], Liu considered the numerical soluttion

of the Rayleigh-Stokes problem involving a fractional derivative for a heated generalised

second grade fluid [11], and Tang used the Crank-Nicolson scheme to approximate a par-

tial integro-differential equation with a weakly singular kernel [12].
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In this article, we consider the numerical solution to the the following problem. Find

u(x , t) satisfying the Volterra integro-differential equation

∂ u(x , t)

∂ t
+

∫ t

0

k(x , t − s)u(x , s)ds =△u(x , t) + f (x , t) , x ∈ R, t ∈ [0, T] (1.1)

where △u = ∂ 2u/∂ x2, subject to the initial condition

u(x , 0) = u0(x), x ∈ R , (1.2)

and the boundary condition

u→ 0 as |x | →∞ , (1.3)

when the function f (x , t) and the kernel function k(x , t) are assumed to be sufficiently

smooth.

When Eq. (1.1) applies on unbounded domains, numerical solutions have been ob-

tained by many authors. One approach is the artificial boundary method to convert un-

bounded domain to bounded domains — e.g. Ma [19] used finite elements in space and the

discontinuous Galerkin time-stepping method in time to solve the reduced problem, and

the artificial boundary method for the numerical solution of parabolic PDEs on unbounded

domains was considered in Refs. [20, 21]. An algebraic mapping has also been applied

to the problem (1.1)-(1.3) on bounded domains, associated with the Legendre collocation

method [22]. Here we use the Crank-Nicolson scheme is for the time discretisation, and

the quasi-wavelet based numerical method for the spatial discretisation. The quasi-wavelet

method is an effective way to approach the unbounded domain problem, since it is easy

to implement and its distinctive local property produces accurate results. The localisation

property allows us to analyse the local characteristics of functions involved [23], and the

wavelet can be expressed as a superposition of its orthogonal scaling function. Thus the

quasi-wavelet method is a very powerful tool for solving many kinds of partial integro-

differential equations arising in real problems [17, 18, 24]. Interested readers may also

refer to Refs. [28,29,35] for more detail on the quasi-wavelet numerical method.

We present the quasi-wavelet theory in Section 2. Subsection 3.1 presents the time

discretisation for (1.1)-(1.3) via the Crank-Nicolson method, and the quasi-wavelet spatial

discretisation and numerical algorithms are discussed in Section 3.2. Some numerical

examples and results are given in Section 4, and concluding remarks in Section 5.

2. Quasi-Wavelet Based Numerical Method

Before giving a brief description of the quasi-wavelet based numerical method, let us

first introduce the concept of singular convolution that often arise in science and engi-

neering [25, 26]. A singular convolution is defined in the context of distribution theory

as

F(t) = (T ∗ g)(t) =

∫ ∞

−∞
T (t − x)g(x)d x , (2.1)
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where T is a singular kernel. In this article, only singular kernels of delta type are required

— i.e. such that

T (x) = δ(q)(x) , (q = 0, 1, 2, · · · ) , (2.2)

where q denotes the qth-order derivative. However, since these singular kernels cannot

be digitised directly in a computer, we construct a sequence of approximations δα to the

distribution δ(x) such that

lim
α→α0

δα(x)→δ(x) , (2.3)

where α0 is a generalised limit.†

Here we are interested in Shannon’s delta kernel [30–32]

δα(x) =
sin(αx)

πx
, (2.4)

one of the most important examples of the delta sequence kernel of Dirichlet. When α= π,

δπ(x) is called Shannon’s wavelet scaling function.The most important property of the

Shannon delta kernel is that it provides an orthonormal basis in Hilbert space:

f (x) =
∑

k∈Z

δα(x − xk) f (xk), ∀ f ∈ B2
α, (2.5)

where B2
α [20] is the Paley-Wiener reproducing kernel Hilbert space, and ∀ f ∈ B2

π indicates

the function f ∈ L2 in its Fourier representation vanishes outside the interval [−α, α]. The

α is usually set equal to π/∆, so

f (x) =
∑

k∈Z

sin(π(x − xk)/∆

π(x − xk)/∆
f (xk) , ∀ f ∈ B2

π , (2.6)

where {xk} is an appropriate set of discrete points centred around the point x .

Unfortunately, Shannon’s delta kernel decays slowly and leads to substantial errors.

Indeed, strictly speaking the computation for Eq. (2.6) requires an infinite number of sam-

pling points. In order to improve the localisation and asymptotic behaviour of Shannon’s

delta sequences kernel, a regularisation procedure has therefore been proposed, where the

regularised orthogonal scaling function is defined as [27]

δα,σ(x) = δα(x)Rσ(x) , (σ > 0) . (2.7)

In particular, we choose Rσ(x) to be a Gaussian regulariser such that

Rσ(x) = exp(−x2/2σ2) , σ > 0 , (2.8)

lim
σ→∞Rσ(x) = 1 , (2.9)

†Dirac first discussed the properties of the distribution δ(x) in his work on quantum mechanics (cf. his classic

text “Principles of Quantum Mechanics" 4th Edition, Clarendon Press, Oxford 1958), so δ(x) is often called the

Dirac delta function. Reference may also be made to Walter and Blum [33], for a discussion of the general

orthogonal series analysis of the delta distribution and the numerical use of delta sequences as probability

density estimations.
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and

∫ ∞

−∞
lim
σ→∞δa(x)Rσ(x)d x = Rσ(0) = 1 . (2.10)

Here σ determines the width of the Gaussian envelope that is often varied according to

the grid spacing ∆ (i.e. σ = r∆), and the parameter r is chosen between 2.2 and 4.0 to

generate good results. Combining Eqs. (2.6), (2.7) and (2.8), the regularised Shannon’s

delta kernel on an arbitrary grid in its discrete form is given by

δ∆,σ(x − xk) =
sin(π(x − xk)/∆)

π(x − xk)/∆
exp

�

− (x − xk)
2

2σ2

�

. (2.11)

We thus obtain a Schwartz class function to generate the quasi-wavelet to produce good

numerical performance, and call this Gaussian regularised sampling function δ∆,σ(x) a

quasi-scaling function. In summary, an arbitrary continuous function f and its nth-order

derivative are approximated by the discrete form

f (n)(x)≈
W
∑

k=−W

δ
(n)
∆,σ(x − xk) f (xk) , δ

(n)
∆,σ(x − xk) =

dn

d xn
δ∆,σ(x − xk) , (2.12)

where 2W + 1 is the computational bandwidth centred around x (usually smaller than

the whole computational domain). We follow the choice of W , ∆, σ given in Ref. [30].

One problem is that f (xk) may locate outside of the computational domain [a, b] near the

computational boundary, so we must carefully choose the undefined function values — e.g.

for Dirichlet boundary conditions f (xk)= f (a) or f (b), for periodic boundary conditions by

periodic mapping from the corresponding values inside the computational domain [a, b],

and for Neumann boundary conditions f (xk) = f ′(a) or f ′(b). We adopt

δ
(1)
∆,σ(x) =



















−cos(πx/∆)

x
exp
�

− x2

2σ2

�

− sin(πx/∆)

πx2/∆
exp
�

− x2

2σ2

�

− sin(πx/∆)

πσ2/∆
exp
�

− x2

2σ2

�

(x 6= 0)

0 (x = 0)

(2.13)

and

δ
(2)
∆,σ(x) =







































− sin(πx/∆)

x∆/π
exp
�

− x2

2σ2

�

− 2
cos(πx/∆)

x2
exp
�

− x2

2σ2

�

−2
cos(πx/∆)

σ2
exp
�

− x2

2σ2

�

+ 2
sin(πx/∆)

πx3/∆
exp
�

− x2

2σ2

�

+
sin(πx/∆)

xπσ2/∆
exp
�

− x2

2σ2

�

+ x
sin(πx/∆)

πσ4/∆
exp
�

− x2

2σ2

�

(x 6= 0)

−3+π2σ2/∆2

3σ2
(x = 0) .

(2.14)
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3. Proposed Algorithms

We consider the numerical solution for the problem

∂ u(x , t)

∂ t
+

∫ t

0

k0(t − s)u(x , s)ds =△u(x , t) + f (x , t) , x ∈ R, t ∈ [0, T] , (3.1)

u(x , 0) = u0(x) , x ∈ R , (3.2)

u→ 0 as |x | →∞ , (3.3)

where k0(t − s) = e−(t−s), △u = ∂ 2u/∂ x2 and the function f (x , t) is assumed sufficiently

smooth.

3.1. Discretisation in time: the Crank-Nicolson scheme

Let ∆t be the time step, such that tk = k∆t for k = 0,1, · · · , N . Let uk denote the

corresponding approximation to u(x , tk), and f k the value of f (x , tk). The Crank-Nicolson

discretisation scheme is

uk − uk−1

∆t
=

1

2

�

△uk+ f k−
∫ tk

0

k0(tk−s)u(s)ds+△uk−1+ f k−1−
∫ tk−1

0

k0(tk−s)u(s)ds

�

,

(3.4)

where the integral may be approximated by the second-order quadrature rule — i.e.

∫ tk

0

k0(tk − s)u(x , s)ds =

k−1
∑

i=0

∫ ti+1

ti

k0(tk − s)u(x , s)ds

≈
k−1
∑

i=0

∫ ti+1

ti

e−(tk−s)

�

u(x , t i)
s− t i+1

t i − t i+1

+ u(x , t i+1)
s− t i

t i+1 − t i

�

ds

=
e−tk

∆t

k−1
∑

i=0

∫ ti+1

ti

es
h

ui+1(s− t i)− ui(s− t i+1)
i

ds

=
e−tk

∆t

k−1
∑

i=0



ui+1

∫ ti+1

ti

es(s− t i)ds− ui

∫ ti+1

ti

es(s− t i+1)



 ds

=
e−tk

∆t

k−1
∑

i=0

h

ui+1(eti+1∆t − eti+1 + eti ) + ui(−eti∆t + eti+1 − eti )
i

.

(3.5)
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Invoking Eqs. (3.4) and (3.5) in Eq. (3.1) produces

uk − ∆t

2
△ uk=uk−1+

∆t

2
△ uk−1 +

∆t

2
( f k + f k−1)

− ∆t

2

e−tk

∆t

k−1
∑

i=0

h

ui+1(eti+1∆t − eti+1 + eti )+ ui(−eti∆t + eti+1 − eti )
i

− ∆t

2

e−tk−1

∆t

k−2
∑

i=0

h

ui+1(eti+1∆t − eti+1 + eti ) + ui(−eti∆t + eti+1 − eti )
i

=uk−1+
∆t

2
△ uk−1+

∆t

2
( f k + f k−1)

− 1

2
(e−tk+e−tk−1)

k−2
∑

i=0

h

ui+1(eti+1∆t−eti+1+eti ) + ui(−eti∆t + eti+1 − eti )
i

− e−tk

2
uk−1(−etk−1∆t + etk − etk−1)− e−tk

2
uk(etk∆t − etk + etk−1) ,

hence we obtain the temporal semi-discrete form

uk

�

1

2
+

1

2
∆t +

1

2
e(tk−1−tk)

�

− ∆t

2
△ uk

=uk−1

�

1

2
+

1

2
e(tk−1−tk)∆t +

1

2
e(tk−1−tk)

�

+
∆t

2
△ uk−1+

∆t

2
( f k + f k−1)

− 1

2
(e−tk + e−tk−1)

k−2
∑

i=0

h

ui+1(eti+1∆t − eti+1 + eti ) + ui(−eti∆t + eti+1 − eti )
i

,

k = 2, · · · , N . (3.6)

In passing, we note that the first step of the Crank-Nicolson scheme is

u1

�

1

2
+

1

2
∆t +

1

2
e−t1

�

− ∆t

2
△ u1

=u0

�

1

2
+

1

2
e(t0−t1)∆t +

1

2
e(t0−t1)

�

+
∆t

2
△ u0 +

∆t

2
( f 1 + f 0) . (3.7)

3.2. Discretisation in space: the quasi-wavelet method

Given x0 ∈ R and p ∈ (0,+∞), we will now proceed to a detailed description of the

spatial-temporal discretisation on an interval [x0− p, x0+ p]. Consider a uniform grid

x j = x0− p+ j∆x, ∆x = 2p/M , j = 0,1, · · · , M

where M is a even number, so x j − x j+p = −p∆x . Let uk
j

denote an approximation to the

value of u(x j, tk). In the quasi-wavelet numerical method, only 2W grid points near the
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point x are needed to approximate any function — e.g. the value of u(n)x (x j, tk) can be

approximated by

u(n)x (x j, tk)≈
j+W
∑

m= j−W

δ
(n)
∆,σ(x j − xm)u

k
m

=

W
∑

s=−W

δ
(n)
∆,σ(−s∆x)uk

j+s, j = 0,1, · · · , M . (3.8)

The relevant theorem on L∞ error estimates for the quasi-wavelet scheme is as follows.

Theorem 3.1 (cf. [34]). If the function f (x) ∈ L∞
⋂

L2(Ω)
⋂

C s(Ω) is band-limited to B

(i.e. B < α = π/∆ where ∆ is the grid spacing), s ∈ Z+, σ = r∆ > 0 and W ∈ N is such that

W ¾ sr/
p

2, then
















f (s)−
W
∑

k=−W

δ
(s)
∆,σ(x − xk) f (xk)
















L∞(Ω)

≤ βex p

�

− γ
2

2r2

�

.

Combining Eq. (3.6) and Eq. (3.8), the full discretisation of the problem (3.1)-(3.3) is

uk
j

�

1

2
+

1

2
∆t +

1

2
e(tk−1−tk)

�

− ∆t

2

 

W
∑

s=−W

δ
(2)
∆,σ(−s∆x)uk

j+s

!

=uk−1
j

�

1

2
+

1

2
e(tk−1−tk)∆t +

1

2
e(tk−1−tk)

�

+
∆t

2

W
∑

s=−W

δ
(2)
∆,σ(−s∆x)uk−1

j+s
+
∆t

2
( f k

j + f k−1
j
)

− 1

2
(e−tk + e−tk−1)

k−2
∑

i=0

h

ui+1
j
(eti+1∆t − eti+1 + eti ) + ui

j(−eti∆t + eti+1 − eti )
i

,

j = 0,1, · · · , M , k = 2, · · · , N . (3.9)

The first step is

u1
j

�

1

2
+

1

2
∆t +

1

2
e−t1

�

− ∆t

2

W
∑

s=−W

δ
(2)
∆,σ(−s∆x)u1

j+s =
∆t

2
( f 1

j + f 0
j ),

j = 0,1, · · · , M . (3.10)

Since some values of uk are outside the spatial interval [x0− p, x0 − p] and the boundary

condition is Dirichlet type, we set

uk
j =

¨

uk
0 if j < 0,

uk
M if j > M .
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4. Numerical Examples

Two numerical examples are considered, where we have set the parameters T = 1,

W = 35 and r = 3.2.

Notes:

(1). Since the values at some points (such as u0, uM ) are approximated, we only use

the value of u(x) in the interval I = [uW ,uM−W ] when we calculate the relative ǫ2 and ǫ∞
errors. In particular, if M < 2W we choose the interval I = [uM/4,u3M/4] where M is a

multiple of four.

(2). Because a very small time increment makes u feasible and the Shannon kernel

decays exponentially with an increased number of spatial sampling points [34], the time

step ∆t must be chosen sufficiently small.

(3). We denote the computational solution and the exact solution by ucomput and uexact ,

respectively. The ǫ2 and ǫ∞ errors are thus

ǫ2 =
‖ucomput − uexact‖L2(I)

‖uexact‖L2(I)

, ǫ∞ =
‖ucomput − uexact‖L∞(I)
‖uexact‖L∞(I)

. (4.1)

Example 4.1 (cf. [20]).

∂ u(x , t)

∂ t
+

∫ t

0

k0(t − s)u(x , s)ds =△u(x , t) + f (x , t) , x ∈ R, t ∈ (0, T]] ,

u|t=0 = 0 , x ∈ [0, +∞) ,

u|x=0 = t , t ∈ [0, T] ,

where k0(t) := e−t and f (x , t) := e−β x (2− e−t − te−t − β2t), β > 0. The exact solution

is u(x , t) = e−β x t.

To illustrate the resulting method, we choose β = 5 and show in Table 1 the resulting

numerical values of ǫ2 and ǫ∞ in the interval [0.5, 1.5] at the grid point k = 100, for

two different grid sizes ∆t = 0.0001 and ∆t = 0.00001. Table 2 shows the errors in the

interval [35/20, 20− 35/20]. We make the following observations.

(1). When ∆t = 0.00001 and ǫ∞ = 3.67941e− 014, the numerical results have high

accuracy.

(2). Comparing the results in Table 1 to the results in [20], we can see the computa-

tional solution in this paper is much better. For example, when M = 32 the ǫ∞ error in

Ref. [20] is 3.0881e−3, whereas the ǫ∞ error here is 1.44126e−004. Furthermore, we

find that the ǫ2 and ǫ∞ errors at M = 64− 256 become progressively smaller.

(3). Due to the variability of of x0 and p, we can calculate over any arbitrary interval

in R.

The surfaces of the computed and exact solutions are shown in Fig. 1(a) and in Fig. 1(b),

respectively.



Crank-Nicolson Quasi-Wavelet 291Table 1: ǫ2 and ǫ∞ errors of Example 4.1 at x0 = 1, p = 1, k = 100.
∆t = 0.0001 ∆t = 0.00001

M ǫ2 ǫ∞ ǫ2 ǫ∞
4 1.72294e-001 2.12874e-001 1.80674e-002 2.24194e-002

8 8.34190e-002 9.43483e-002 1.26794e-002 1.55367e-002

16 1.36000e-002 1.34246e-002 5.38253e-003 6.60299e-003

32 1.37275e-004 1.44126e-004 1.19279e-004 8.65788e-005

64 2.67228e-006 4.66597e-006 2.50752e-007 2.07273e-007

128 1.11370e-006 1.86357e-006 2.38569e-011 4.06843e-011

256 4.81763e-007 8.04026e-007 2.37875e-011 4.06072e-011Table 2: ǫ2 and ǫ∞ errors for Example 4.1 at x0 = 10, p = 10, k = 100.
∆t = 0.0001 ∆t = 0.00001

M ǫ2 ǫ∞ ǫ2 ǫ∞
100 2.35827e-002 4.97121e-002 8.01143e-005 1.34096e-004

200 4.45337e-008 6.12512e-008 2.50891e-011 3.20006e-011

400 9.52259e-011 1.11937e-010 1.52735e-013 2.44454e-013

800 2.39996e-011 4.08519e-011 4.19038e-014 5.86386e-014

1600 2.38076e-011 4.06331e-011 2.24628e-014 3.67941e-014

Figure 1: (a) The numeri
al solution at x0 = 10, p = 10, k = 100, ∆t = 0.0001, M = 800 for Example 4.1;(b) exa
t solution e−β x t.
Example 4.2 (cf. [22]). Let us now consider the problem (1.1)-(1.3) when k(t) := 1 and

x ∈ R, where the exact solution u(x , t) = te−x2

.

In Table 3 we show the relative ǫ2 and ǫ∞ errors at x0 = 0, p = 1 (and domain [−0.5, 0.5]).

Table 4 shows the error in the interval [−10+ 35/20,10− 35/20] for ∆t = 0.0001 and

∆t = 0.00001, respectively. Fig. 2(a) shows the computed solution for x0 = 0, p = 10,

M = 800, k = 100 and ∆t = 0.0001, and in Fig. 2(b) the exact solution is depicted. In

comparison with the results in Ref. [22], the ǫ∞ error here (2.39340e−10) is much smaller
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∆t = 0.0001 ∆t = 0.00001

M L2 L∞ L2 L∞

4 1.56820e-03 1.87821e-03 1.78261e-04 2.19369e-04

8 6.37213e-04 6.69075e-04 1.12543e-04 1.33797e-04

16 5.40021e-05 2.85448e-05 3.48775e-05 3.12997e-05

32 3.83397e-07 1.48567e-07 4.64002e-07 2.36856e-07

64 8.03188e-08 6.23181e-08 8.56738e-10 2.39340e-10Table 4: L2 and L∞ of Example 4.2 at x0 = 0, p = 10, k = 100.
∆t = 0.0001 ∆t = 0.00001

M L2 L∞ L2 L∞

100 1.37744e-13 1.51986e-13 1.36936e-14 1.47076e-14

200 5.16220e-15 5.48709e-15 2.89574e-15 3.10414e-15

400 5.23657e-15 5.48360e-15 6.84575e-15 6.68195e-15

800 7.19299e-15 8.74289e-15 3.58389e-15 4.20345e-15

1600 2.57970e-14 3.29171e-14 2.23716e-15 2.14314e-15

Figure 2: (a) Numeri
al solution at x0 = 0, p = 10, k = 100, ∆t = 0.0001, M = 800 and (b) exa
tsolution u(x , t) = te−x2 for Example 4.2.
than the value 6.55e− 6 in Ref. [22]. Furthermore, we can calculate any interval in R in

constructing Table 3 and Table 4.

5. Conclusion

The quasi-wavelet based numerical method for solving parabolic Volterra-type integro-

differential equations on one-dimensional unbounded spatial domains was discussed. We

use the Crank-Nicolson method to discretise the time derivative, and then applied the

quasi-wavelet method to discretise the spatial derivative. The efficiency and accuracy of
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this approach was demonstrated in two examples. To the best of our knowledge, this

is the first article where this class of problems has been tackled with the quasi-wavelet

numerical method. Future work to solve the problem involving the integro-differential

equation (1.1) on two-dimensional unbounded spatial domains via the Crank-Nicolson

method is envisaged.
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