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Abstract. A non-semisimple matrix loop algebra is presented, and a class of zero cur-

vature equations over this loop algebra is used to generate bi-integrable couplings. An

illustrative example is made for the Dirac soliton hierarchy. Associated variational iden-

tities yield bi-Hamiltonian structures of the resulting bi-integrable couplings, such that

the hierarchy of bi-integrable couplings possesses infinitely many commuting symme-

tries and conserved functionals.
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1. Introduction

Zero curvature equations on semi-direct sums of loop algebras generate integrable cou-

plings [1, 2], and the associated variational identities [3, 4] furnish Hamiltonian struc-

tures and bi-Hamiltonian structures of the resulting integrable couplings [5–7]. It is an

important step in generating Hamiltonian structures to search for non-degenerate, sym-

metric and ad-invariant bilinear forms on the underlying loop algebras [8, 9]. Special

semi-direct sums of loop algebras bring various interesting integrable couplings [8–12],

including higher dimensional local bi-Hamiltonian ones [13–16] that greatly enrich multi-

component integrable systems.

A zero curvature representation of a system of form

ut = K(u) = K(x , t,u,ux ,ux x , · · · ) , (1.1)
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where u is a column vector of dependent variables, means there exists a Lax pair [17]

U = U(u,λ) and V = V (u,λ) belonging to a matrix loop algebra such that

Ut − Vx + [U , V ] = 0 (1.2)

generates the system [18]. An integrable coupling of the system (1.1) is an integrable

system of the following form [13,14]:

ūt = K̄1(ū) =

�
K(u)

S(u,u1)

�
, ū =

�
u

u1

�
, (1.3)

where u1 is a new column vector of dependent variables. Further, an integrable coupling

(1.3) is called nonlinear if the supplementary sub-vector field S(u,u1) is nonlinear with

respect to the sub-vector u1 [19,20], and an integrable system of the form

ūt = K̄(ū) =




K(u)

S1(u,u1)

S2(u,u1,u2)


 , ū =




u

u1

u2


 , (1.4)

is called a bi-integrable coupling of (1.1). In (1.4), it is notable that S2 depends on the

second column sub-vector u2 but S1 does not. We now proceed to use zero curvature

equations in order to explore the generation of bi-integrable couplings and Hamiltonian

structures for the resulting integrable couplings, through variational identities associated

with enlarged Lax pairs.

One class of important integrable couplings consists of the so-called dark equations,

motivated by the mysterious dark energy and dark matter envisaged in astronomy and

cosmology [21]: (
ut = K(x , t,u,ux ,ux x , · · · ) ,

ψt = A(u,∂x )ψ ,
(1.5)

where A(u,∂x) ia a linear differential operator. Dark energy is an hypothetical form of en-

ergy that is said to permeate all space, proposed to account for a missing part of the total

mass in the entire universe (not in the form of visible stars and planets) in order to explain

the observed increased rate of expansion of the universe [22,23]. Dark equations are lin-

ear extensions of the original system, which can extend the original equation further and

further like general integrable couplings do. Importantly, they represent the large majority

of integrable equations that we can readily consider, particularly in the study of integrable

systems with multi-components, whereas nonlinear extensions are less amenable. In the-

ory, they generalise the symmetry problem, and the first-order perturbation equations are

special examples of dark equations with solutions that solve the original physical models

to higher precision [13].

A soliton hierarchy is usually associated with a spectral problem

φx = Uφ , U = U(u,λ) ∈ g̃ , (1.6)
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where λ is a spectral parameter and g̃ is a matrix loop algebra associated with a given

matrix Lie algebra g, often simple. Let us assume that the corresponding stationary zero

curvature equation

Wx = [U ,W ] (1.7)

has a solution of the form

W =W (u,λ) =
∑

i≥0

W0,iλ
−i , (1.8)

where W0,i ∈ g, i ≥ 0. We introduce a sequence of temporal spectral problems

φtm
= V [m]φ = V [m](u,λ)φ , m ≥ 0, (1.9)

involving the Lax matrices defined by

V [m] = (λmW )++∆m ∈ g̃, m ≥ 0 , (1.10)

where Q+ denotes the polynomial part of Q in λ and the modification terms ∆m are in-

tended to guarantee that the zero curvature equations

Utm
− V [m]x + [U , V [m]] = 0, m ≥ 0, (1.11)

generate a soliton hierarchy with Hamiltonian structures — viz.

utm
= Km(u) = J

δH m

δu
, m≥ 0 . (1.12)

The Hamiltonian functionalsHm are generally furnished by applying the variational iden-

tity [3,9]
δ

δu

∫
〈W, Uλ〉 d x = λ−γ

∂

∂ λ
λγ〈W, Uu〉 , (1.13)

where W is a solution of (1.7), Uλ = ∂ U/∂ λ and Uu = ∂ U/∂ u, the constant γ is deter-

mined by

γ= −
λ

2

d

dλ
ln |〈W,W 〉| , (1.14)

and 〈·, ·〉 is a bilinear form on the matrix loop algebra g̃ that is non-degenerate, symmetric

and ad-invariant [9]. The soliton hierarchy (1.12) has the commutativity properties:

[Km, Kn] := K ′m(u)[Kn]− K ′n(u)[Km] = 0 , (1.15)

{Hm,Hn}J :=

∫ �
δHm

δu

�T
J
δHn

δu
d x = 0 , (1.16)

where m, n ≥ 0. These properties imply that the hierarchy (1.12) possesses infinitely many

commuting symmetries {Kn}
∞
n=0 and conserved functionals {Hn}

∞
n=0.

The rest of this article is structured as follows. In Section 2, a non-semisimple matrix

loop algebra consisting of 3× 3 block matrices is introduced, and used as a starting point



174 W. X. Ma, H. Q. Zhang and J. H. Meng

to formulate a practical way of constructing integrable Hamiltonian couplings of given

integrable systems. In Section 3, an application to the Dirac soliton hierarchy is discussed,

and nonlinear bi-integrable couplings are constructed for the equations derived from a

spectral problem posed by Dirac’s equation for relativistic spinors in a spherical symmetric

potential. The corresponding variational identity furnishes Hamiltonian structures for the

resulting integrable couplings. While generating these Hamiltonian structures, a crucial

step is to search for non-degenerate, symmetric and ad-invariant bilinear forms on the

underlying loop algebra. In the final section, a few concluding remarks are made.

2. Matrix Loop Algebra yielding Bi-Integrable Couplings

2.1. Matrix loop algebra

Let us fix an arbitrary non-zero constant α from a given field of numbers Γ. To construct

bi-integrable couplings, we introduce triangular block matrices

M(A1,A2,A3) =




A1 A2 A3

0 A1 αA2

0 0 A1


 , (2.1)

where A1,A2 and A3 are arbitrary square matrices of the same order. Obviously, the matrix

product of two such block matrices may be written

M(A1,A2,A3)M(B1, B2, B3) = M(C1, C2, C3) , (2.2)

where 



C1 = A1B1 ,

C2 = A1B2 + A2B1 ,

C3 = A1B3 + A3B1 +αA2B2 .

(2.3)

Such an essential closure property under matrix multiplication ensures that all block ma-

trices defined above constitute a Lie algebra over the field Γ (e.g. see [24]), under the

matrix commutator

[M1, M2] = M1M2 −M2M1 . (2.4)

The associated loop matrix algebra ḡ(λ) is formed by all block matrices of the type

(2.1) — i.e.

ḡ(λ) = {M(A1,A2,A3) |M defined by (2.1), entries of Ai Laurent series in λ}, (2.5)

and its Lie bracket is defined by (2.4). The loop algebra ḡ(λ) is non-semisimple, due to the

semi-direct sum decomposition

ḡ(λ) = g̃ A g̃c , (2.6)
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where g̃ and g̃c are two loop subalgebras of ḡ(λ)— viz.

(
g̃ = {M(A1, 0,0) |entries of A1 Laurent series in λ} ,

g̃c = {M(0,A2,A3) |entries of A2,A3 Laurent series in λ} .

It follows directly from the semi-direct sum property that g̃c is a nontrivial ideal Lie subal-

gebra of ḡ(λ).

This matrix loop algebra ḡ(λ) provides an underlying mathematical structure for for-

mulating nonlinear bi-integrable Hamiltonian couplings, in a similar way to the one pro-

posed in Ref. [25]. The first matrix block A1 corresponds to the initial integrable system as

required, and the second and third matrix blocks A2 and A3 generate the supplementary

sub-vector fields S1 and S2 in (1.4). The sub-commutators [A2, B2], [A2, B3] and [A3, B2]

generally engender nonlinear terms in the resulting systems of bi-integrable couplings.

2.2. Bi-integrable couplings

Let us introduce an enlarged spectral matrix Ū from the above matrix loop algebra ḡ(λ)

— i.e.

Ū = Ū(ū,λ) = M(U , U1, U2) = M(U(u,λ), U1(u1,λ), U2(u2,λ)) , (2.7)

where ū consists of three column sub-vectors of dependent variables u, u1 and u2 defined

as in (1.4). Then an enlarged zero curvature equation

Ūt − V̄x + [Ū , V̄ ] = 0 (2.8)

with an enlarged Lax matrix V̄ from ḡ(λ),

V̄ = V̄ (ū,λ) = M(V, V1 , V2) = M(V (u,λ), V1(u,u1,λ), V2(u,u1,u2,λ)) , (2.9)

yields the following triangular system:





Ut − Vx + [U , V ] = 0,

U1,t − V1,x + [U , V1] + [U1, V ] = 0 ,

U2,t − V2,x + [U , V2] + [U2, V ] +α[U1, V1] = 0 .

(2.10)

From the zero curvature representation (1.2) of the system (1.1), this produces a bi-

integrable coupling of (1.1) that is usually nonlinear with respect to the supplementary

variables u1 and u2, and thus candidates for nonlinear bi-integrable couplings.

To generate a hierarchy of integrable couplings of (1.1), given ḡ(λ) we seek a solution

W̄ = W̄ (ū,λ) = M(W,W1,W2) = M(W (u,λ),W1(u,u1,λ),W2(u,u1,u2,λ)) (2.11)

to the enlarged stationary zero curvature equation

W̄x = [Ū ,W̄ ] , (2.12)
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equivalent to requiring





Wx = [U ,W ] ,

W1,x = [U ,W1] + [U1,W ] ,

W2,x = [U ,W2] + [U2,W ] +α[U1,W1] .

(2.13)

We can often obtain a solution of the type (e.g. see [18,26])

W1 =

∞∑

i=0

W1,iλ
−i , W2 =

∞∑

i=0

W2,iλ
−i , (2.14)

together with a solution for W defined by (1.8). We then take a set of enlarged matrix

modifications ∆̄m ∈ ḡ(λ) , m ≥ 0, and introduce the enlarged Lax matrices

V̄ [m] = (λmW̄ )++ ∆̄m , m ≥ 0 , (2.15)

where the subscript “+" denotes the polynomial part, such that the enlarged zero curvature

equations

Ūtm
− V̄ [m]x + [Ū , V̄ [m]] = 0 , m ≥ 0 , (2.16)

engender a soliton hierarchy of bi-integrable couplings for the system (1.1). Generally,

integrable couplings obtained this way commute with each other, and therefore form in-

finitely many common symmetries for the whole hierarchy of integrable couplings.

Hamiltonian structures of such bi-integrable couplings can be constructed through us-

ing the associated variational identities [3, 9], including the trace identity [18] and the

component-trace identity [10] as particular examples. A crucial step is to find bilinear

forms over the underlying loop algebra that should satisfy the non-degenerate property,

the symmetric property and the ad-invariant property. Then on applying the correspond-

ing variational identity

δ

δū

∫
〈W̄ , Ūλ〉 d x = λ−γ

∂

∂ λ
λγ〈W̄ , Ūū〉 , (2.17)

with the constant γ determined by

γ = −
λ

2

d

dλ
ln|〈W̄ ,W̄ 〉| , (2.18)

we can generate Hamiltonian structures for the resulting bi-integrable couplings. In this

variational identity, 〈·, ·〉 denotes a required non-degenerate, symmetric and ad-invariant

bilinear form over the underlying loop algebra consisting of square matrices of the form

(2.7) — cf. [3, 8, 10] for details. The Hamiltonian structures link the symmetries and

conservation laws together, and thus ensure the existence of infinitely many conservation

laws.

In the next section, an illustrative example is produced by applying the above gen-

eral computational paradigm, and nonlinear Hamiltonian bi-integrable couplings are then

computed for the Dirac equations.
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3. Bi-Integrable Couplings of the Dirac Equations

3.1. The Dirac soliton hierarchy

Let us recall the Dirac soliton hierarchy [27], for which the well-known spectral prob-

lem is

φx = Uφ , U = U(u,λ) =

�
p λ+ q

−λ+ q −p

�
∈ esl(2) , (3.1)

where

u=

�
p

q

�
, φ =

�
φ1

φ2

�
,

and esl(2) is the special matrix loop algebra — i.e.

g̃ = esl(2) = {A∈ sl(2) |entries of A Laurent series in λ} . (3.2)

The stationary zero curvature equation

Wx = [U ,W ] (3.3)

determines 



ax = −2λ c+ 2pb ,

bx = −2qc+ 2pa ,

cx = 2λ a− 2qb ,

(3.4)

if we assume that W is of the form

W =

�
c a+ b

a− b −c

�
=
∑

i≥0

W0,iλ
−i =
∑

i≥0

�
ci ai + bi

ai − bi −ci

�
λ−i ∈ esl(2) . (3.5)

The system (3.4) equivalently generates




ai+1 =
1

2
ci,x + qbi ,

ci+1 = −
1

2
ai,x + pbi ,

bi+1,x = −2qci+1 + 2pai+1 ,

i ≥ 0 . (3.6)

So assuming the initial values

b0 = −1 , a0 = c0 = 0 , (3.7)

and that the constant of integration as zero, we can work out the first few sets:

a1 = −q , c1 = −p , b1 = 0 ,

a2 = −
1

2
px , c2 =

1

2
qx , b2 = −

1

2
p2 −

1

2
q2 ,

a3 =
1

4
qx x −

1

2
p2q−

1

2
q3 , c3 =

1

4
px x −

1

2
p3 −

1

2
pq2 , b3 =

1

2
(pqx − px q) .
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The zero curvature equations

Utm
− V [m]x + [U , V [m]] = 0 with V [m] = (λmW )+ (3.8)

where m≥ 0, then provide the well-known Dirac hierarchy of soliton equations — viz.

utm
= Km =


 2am+1

−2cm+1


= Φm


 −2q

2p


= J

δHm

δu
(3.9)

where m ≥ 0, and the Hamiltonian operator J , the hereditary recursion operator Φ and

the Hamiltonian functions are defined as follows:

J =


 0 1

−1 0


 , Φ =



2q∂ −1p −1

2
∂ + 2q∂ −1q

1

2
∂ − 2p∂ −1p −2p∂ −1q


 , Hm =

∫
2bm+2

m+ 1
d x , (3.10)

in which m≥ 0, and ∂ = ∂ /∂ x .

3.2. Hamiltonian bi-integrable couplings

We now proceed to construct Hamiltonian bi-integrable couplings for the Dirac soliton

hierarchy (3.9). An enlarged spectral matrix from ḡ(λ) defined by (2.5) is chosen as

Ū = Ū(ū,λ) = M(U , U1, U2) , ū= (p,q, r, s, v, w)T , (3.11)

where U is defined as in (3.1) and the supplementary spectral matrices U1 and U2 are

given by

U1 = U1(u1) =


 r s

s −r


 ∈ esl(2) , u1 =


 r

s


 , (3.12)

U2 = U2(u2) =


 v w

w −v


 ∈ esl(2) , u2 =


 v

w


 . (3.13)

As usual, in order to solve the enlarged stationary zero curvature equation (2.12), we take

a solution of the following type:

W̄ = W̄ (ū,λ) = M(W,W1,W2) ∈ ḡ(λ) , (3.14)

where W defined by (3.3) solves Wx = [U ,W ], and W1 and W2 are assumed to be

W1 =W1(u,u1,λ) =


 g e+ f

e− f −g


 ∈ esl(2) , (3.15)

W2 =W2(u,u1,u2,λ) =


 g′ e′ + f ′

e′ − f ′ −g′


 ∈ esl(2) . (3.16)



A Block Matrix Loop Algebra and Bi-Integrable Couplings of the Dirac Equations 179

The second and third equations in (2.13) then equivalently generate





ex = 2 p f − 2λ g + 2 r b ,

fx = 2 pe− 2 qg + 2 ra− 2 sc ,

gx = 2λ e− 2 q f − 2 sb ,

(3.17)

and





e′x = 2 p f ′− 2λ g′+ 2 v b+ 2α r f ,

f ′x = 2 pe′ − 2 qg′+ 2 va− 2 wc + 2α re− 2α sg ,

g′x = 2λe′− 2 q f ′− 2 wb− 2α sg ,

(3.18)

respectively. Trying a formal series solution W̄ by setting





e =

∞∑

i=0

eiλ
−i , f =

∞∑

i=0

fiλ
−i, g =

∞∑

i=0

giλ
−i,

e′ =

∞∑

i=0

e′iλ
−i, f ′ =

∞∑

i=0

f ′i λ
−i , g′ =

∞∑

i=0

g′iλ
−i,

(3.19)

we arrive at 



ei+1 =
1

2
gi,x + q fi + sbi ,

gi+1 = −
1

2
ei,x + p fi + r bi ,

fi+1,x = 2 pei+1 − 2 qgi+1 + 2 rai+1− 2 sci+1 ,

e′i+1 =
1

2
g′i,x + qf ′i +wbi +α s fi ,

g′i+1 = −
1

2
e′i,x + pf ′i + v bi +α r fi ,

f ′i+1,x = 2 pe′i+1 − 2 qg′i+1 + 2 vai+1− 2 wci+1

−2α rei+1− 2α sgi+1 ,

(3.20)

where i ≥ 0. We take initial data as

f0 = −1 , e0 = g0 = 0 ; f ′0 = −1 , e′0 = g′0 = 0 ; (3.21)

and suppose that (
ei|ū=0 = fi |ū=0 = gi|ū=0 = 0 , i ≥ 1 ,

e′i |ū=0 = f ′i |ū=0 = g′i |ū=0 = 0 , i ≥ 1 .
(3.22)
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Then the recursion relation (3.20) uniquely generates the sequence of ei, fi , gi and e′i , f ′i ,

g′i , i ≥ 1, recursively. From the recursion relation, one therefore obtains




e1 = −q− s ,

g1 = −p− r ,

f1 = 0 ;




e2 = −
1

2
(px + rx) ,

g2 =
1

2
(qx + sx) ,

f2 = −
1

2
(p2 + q2)− (pr + qs) ;





e3 =
1

4
(qx x + sx x)−

1

2
(p2 + q2)(q+ s)− (pr + qs)q ,

g3 =
1

4
(px x + rx x )−

1

2
(p2 + q2)(p+ r)− (pr + qs)p ,

f3 =
1

2
(pqx + psx − px q− px s− qrx + qx r) ;

and 



e′1 = −q−w −α s ,

g′1 = −p− v−α r ,

f ′1 = 0 ;




e′2 = −
1

2
(px + vx + α rx ) ,

g′2 =
1

2
(qx +wx + α sx ) ,

f ′2 = −
1

2
(p2 + q2)−

1

2
α (r2+ s2)− (α r + v)p− (α s+w)q ;





e′3 =
1

4
(qx x + α sx x +wx x )−

1

2
(q+w + α s)(p2 + q2)

−
1

2
α (r2 + s2)q− (qw + pv)q− α (pr + qs)(q+ s) ,

g′3 =
1

4
(px x + α vx x + rx x )−

1

2
(p+ v+ α r)(p2 + q2)

−
1

2
α (r2 + s2) p− (qw + pv) p− α (pr + qs)(p+ r) ,

f ′3 =
1

2
[−(q+α s+w) px + (p+α r + v)qx

−α (q+ s)rx +α (p+ r)sx − qvx + pwx ] .
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The above functions are all differential polynomials in the six variables p,q, r, s, v, w.

For each integer m≥ 0, let us further introduce an enlarged Lax matrix

V̄ [m] = (λmW̄ )+ = M(V [m], V
[m]

1
, V
[m]

2
) ∈ ḡ(λ) , (3.23)

where V [m] is defined as in (3.8) and V
[m]

i
= (λmWi)+ ∈ esl(2), i = 1,2, when the enlarged

zero curvature equation

Ūtm
− (V̄ [m])x + [Ū , V̄ [m]] = 0 (3.24)

yields 



U1,tm
− V

[m]
1,x + [U , V

[m]
1 ] + [U1, V [m]] = 0 ,

U2,tm
− V

[m]
2,x + [U , V

[m]
2 ] + [U2, V [m]] +α[U1, V

[m]
1 ] = 0 ,

together with the m-th Dirac system in (3.9). The above two equations then present the

supplementary systems

v̄tm
= Sm = Sm(ū) =

�
S1,m(u,u1)

S2,m(u,u1,u2)

�
, m≥ 0 , (3.25)

where v̄ = (r, s, v, w)T and

S1,m(u,u1) =


 2em+1

−2gm+1


 ,

S2,m(u,u1,u2) =


 2e′m+1

−2g′m+1


 .

The enlarged zero curvature equations thus generate a hierarchy of bi-integrable couplings:

ūtm
=




p

q

r

s

v

w




tm

= K̄m(ū) =




2am+1

−2cm+1

2em+1

−2gm+1

2e′m+1

−2g′m+1




, m ≥ 0 (3.26)

for the Dirac soliton hierarchy (3.9).

Except the first two, all bi-integrable couplings defined by (3.26) are nonlinear, since

the supplementary systems (3.25) with m ≥ 2 are nonlinear with respect to the four de-

pendent variables r, s, v, w. This implies that (3.26) provides a hierarchy of nonlinear

bi-integrable couplings for the Dirac soliton hierarchy. The first nonlinear bi-integrable

coupling system reads
(

pt2
= 2a3 , qt2

= −2c3 , rt2
= 2e3 ,

st2
= −2g3 , vt2

= 2e′3 , wt2
= −2g′3 ,

(3.27)

where b3, c3, f3, g3, f ′3 , g′3 are defined as before.
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3.3. Hamiltonian structures

In order to generate Hamiltonian structures for the resulting bi-integrable couplings in

(3.26), we apply the following variational identity over the enlarged matrix loop algebra

ḡ(λ) [8,9]:
δ

δū

∫
〈W̄ , Ūλ〉 d x = λ−γ

∂

∂ λ
λγ〈W̄ , Ūū〉 , γ = constant . (3.28)

To construct symmetric and ad-invariant bilinear forms on ḡ(λ) conveniently, we first trans-

form the semi-direct sum ḡ(λ) into vector form. Define a mapping

σ : ḡ(λ)→ R9, A 7→ (a1, · · · , a9)
T , (3.29)

where

A= M(A1,A2,A3) ∈ ḡ(λ) , Ai =


 a3i a3i−2 + a3i−1

a3i−2 − a3i−1 −a3i


 , 1≤ i ≤ 3 . (3.30)

As usual, this mapping σ induces a Lie algebraic structure on R9, isomorphic to the en-

larged matrix loop algebra ḡ(λ). The corresponding Lie bracket [·, ·] on R9 can be com-

puted as

[a, b]T = aT R(b) , (3.31)

where a = (a1, · · · , a9)
T , b = (b1, · · · , b9)

T ∈ R9 and

R(b) = M(R1,R2,R3) , (3.32)

with

Ri =




0 −2b3i −2b3i−1

−2b3i 0 2b3i−2

2b3i−1 2b3i−2 0


 , 1≤ i ≤ 3 .

This Lie algebra (R9, [·, ·]) is isomorphic to the enlraged matrix loop algebra ḡ(λ) defined

in Section 2, and the mapping σ defined by (3.29) is a Lie isomorphism between those two

Lie algebras.

A bilinear form on R9 can be provided by

〈a, b〉 = aT F b , (3.33)

where F is a constant matrix (actually, F = (〈ei,e j〉)9×9, where e1, · · · ,e9 are the standard

basis of R9). The symmetric property 〈a, b〉 = 〈b, a〉 requires that

F T = F . (3.34)

Under this symmetric condition, the ad-invariance property

〈a, [b, c]〉 = 〈[a, b], c〉
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requires that

F(R(b))T = −R(b)F , b ∈ R9 . (3.35)

This matrix equation involves an arbitrary vector b, and thus leads to a linear system of

equations on the elements of the matrix F . On solving the resulting system, we obtain

F =




η1 η2 η3

η2 αη3 0

η3 0 0


⊗ F0 (3.36)

with

F0 =




1 0 0

0 −1 0

0 0 1


 ,

where ηi, 1 ≤ i ≤ 3, are arbitrary constants. The corresponding bilinear form on the

semi-direct sum ḡ(λ) of the two Lie subalgebras g̃ and g̃c is then defined as

〈A, B〉ḡ(λ)=〈σ(A),σ(B)〉R9

=(a1, · · · , a9)F(b1, · · · , b9)
T

=(a1 b1 − a2 b2 + a3 b3)η1 + ( a1 b4 − a2 b5+ a3 b6+ a4 b1 − a5 b2 + a6 b3)η2

+ (a1 b7− a2 b8 + a3 b9 +α a4 b4−α a5 b5 +α a6 b6 + a7 b1− a8 b2+ a9 b3)η3,

(3.37)

where A and B are two matrices in ḡ(λ)— viz.

(
A= σ−1((a1, · · · , a9)

T ) ∈ ḡ(λ) ,

B = σ−1((b1, · · · , b9)
T ) ∈ ḡ(λ) .

(3.38)

Due to the isomorphism of σ, the bilinear form (3.37) is also symmetric and ad-

invariant — i.e.

〈A, B〉ḡ(λ) = 〈B,A〉ḡ(λ) , 〈A, [B, C]〉ḡ(λ) = 〈[A, B], C〉ḡ(λ) ,

where A, B, C ∈ ḡ(λ). However, this kind of bilinear form is not of Killing type, since the

enlarged matrix loop algebra ḡ(λ) is not semisimple. A bilinear form, defined by (3.37), is

non-degenerate if and only if the determinant of F is not zero — i.e.

det(F) = η3
9α3 6= 0 . (3.39)

We can therefore choose η1,η2 and η3 such that det(F) is non-zero, to obtain non-degenerate

bilinear forms over the enlarged matrix loop algebra ḡ(λ).
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We can now compute

〈W̄ , Ūλ〉ḡ(λ) = −bη1 − f η2 − f ′η3 ,

and

〈W̄ , Ūū〉ḡ(λ) =




cη1 + g η2 + g′η3

aη1 + eη2 + e′η3

cη2 +α g η3

aη2 +α eη3

cη3

aη3




.

Moreover, the formula (2.18) for the constant γ directly yields γ = 0, and so the corre-

sponding variational identity is

δ

δū

∫
bm+1η1 + fm+1η2 + f ′m+1η3

m
d x =




cmη1 + gmη2 + g′mη3

amη1 + emη2 + e′mη3

cmη2 +α gmη3

amη2 +α emη3

cmη3

amη3




, m≥ 1 .

Consequently, we obtain a Hamiltonian structure for the hierarchy (3.26) of bi-integrable

couplings — viz.

ūtm
= J̄

δH̄m

δū
, m≥ 0 , (3.40)

with the Hamiltonian functionals

H̄m =

∫
2 bm+2η1 + 2 fm+2η2 + 2 f ′m+2η3

m+ 1
d x , (3.41)

and the Hamiltonian operator

J̄ =




η1 η2 η3

η2 αη3 0

η3 0 0




−1

⊗ J , (3.42)

where J is defined as in (3.10). In passing, we remark that a condition in defining J̄ is that

det(F) 6= 0.
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3.4. Symmetries and conserved functionals

Checking the recursion relation

K̄m = Φ̄K̄m−1 , m ≥ 0 , (3.43)

we have a recursion operator Φ̄ (cf. [28])

Φ̄ = M T (Φ,Φ1,Φ2) (3.44)

where Φ is given by (3.10) and

Φ1 =


 2q∂ −1r + 2s∂ −1p 2q∂ −1s+ 2s∂ −1q

−2p∂ −1r − 2r∂ −1p −2p∂ −1s− 2r∂ −1q


 , (3.45)

Φ2 =


 2 q∂ −1r + 2 w∂ −1p+ 2α s∂ −1r 2 q∂ −1w + 2 w∂ −1q+ 2α s∂ −1s

−2 p∂ −1v− 2 v∂ −1p− 2α r∂ −1r −2 p∂ −1w − 2 v∂ −1q− 2α r∂ −1s


 . (3.46)

One may show by computer algebra systems that Φ̄ is a hereditary operator [29,30]. Thus

the quantity

Φ̄′(ū)[Φ̄T̄1]T̄2 − Φ̄Φ̄
′(ū)[T̄1]T̄2

is symmetric with respect to T̄1 and T̄2, and the two operators J̄ and M̄ = Φ̄J̄ constitute a

Hamiltonian pair [31] — i.e. J̄ , M̄ and J̄ + M̄ are all Hamiltonian. The hierarchy (3.26)

of bi-integrable couplings therefore possesses a bi-Hamiltonian structure (e.g. see [31,

32]), and hence is Liouville integrable. Further, it follows that there are infinitely many

commuting common symmetries and conserved functionals

[K̄m, K̄n] = 0 , m, n ≥ 0 (3.47)

and

{H̄m,H̄n}J̄ = {H̄m,H̄n}M̄ = 0 , m, n ≥ 0 . (3.48)

4. Concluding Remarks

We presented a matrix loop algebra consisting of 3 × 3 block matrices to construct

bi-integrable couplings, and successfully generated a hierarchy of nonlinear bi-integrable

couplings for the Dirac soliton hierarchy. The hierarchy of bi-integrable couplings possesses

a bi-Hamiltonian structure, and thus infinitely many commuting common symmetries and

conservation laws. The matrix loop algebra serves as a starting point of the formulation of

constructing bi-integrable couplings, and the generating procedure can be applied to the

other soliton hierarchies.

There are other interesting questions on integrable couplings. A crucial task in gen-

erating integrable couplings is to compute semi-direct sums of matrix loop algebras, but

the issue is how to do so generally. Hamiltonian structures arise naturally in perturba-

tion systems [15,33–35], but some enlarged spectral matrices are not associated with any
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non-degenerate bilinear forms over the underlying matrix loop algebras required in the

variational identities [36, 37]. We are curious about criteria that can be used to generate

Hamiltonian structures for integrable couplings — e.g. Hamiltonian structures for

ut = K(u) , u1,t = K ′(u)[u1] , u2,t = K ′(u)[u2] .

Can other matrix loop algebras, for example those obtained from the Kronecker prod-

uct [38, 39], help in formulating Hamiltonian structures? The construction of groups of

solutions for integrable couplings by symmetry constraints similar to the theory for the

perturbation systems [40, 41], or by Darboux transformations generated through moving

frames [42], also remains an open question. The problem is also related to the represen-

tation of solutions for linear partial differential equations with variable coefficients via the

matrix exponential — e.g. see [43] for the case of ordinary differential equations.

Moreover, integrable couplings can inherit various other integrable characteristics [44],

such as Hirota bilinear forms — e.g. see [45]. Another interesting property is whether the

linear superposition principle can apply on subspaces of solutions of integrable couplings,

and if the closure property for such subspaces of exponential wave solutions should contain

different soliton solutions [46, 47]. In particular, it is of interest to see what kinds of

subspaces of solutions the above intriguing bi-integrable coupling can possess, or what

relations there could exist between the system and Bell type polynomials. In order to

develop the theory of multi-component integrable systems (e.g. see [48–54]), another

future task is to explore distinct integrable properties for multi-integrable couplings from

other points of view.

Finally, we mention our future intention to explore soliton phenomena that integrable

couplings possess, with diverse intriguing structures in solution sets to nonlinear differen-

tial equations corresponding to dark energy and dark matter. Local bi-Hamiltonian models

in (2+1)-dimensional integrable theories have been shown to exist, through studying bi-

integrable couplings [13, 35]. Particularly important solitons include resonant cases [55]

carried by models of bi-integrable couplings.
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