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Abstract. Multivariate Markov chain models have previously been proposed in for study-

ing dependent multiple categorical data sequences. For a given multivariate Markov

chain model, an important problem is to study its joint stationary distribution. In this

paper, we use two techniques to present some perturbation bounds for the joint sta-

tionary distribution vector of a multivariate Markov chain with s categorical sequences.

Numerical examples demonstrate the stability of the model and the effectiveness of our

perturbation bounds.
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1. Introduction and Notations

In many real world problems, there are situations where one would like to consider a

number of Markov chains {Xt,i}
s
i=1

together at the same time, particularly in the analysis

of multiple categorical data sequences. The state of the i-th chain Xt+1,i at time (t + 1)

often depends not only on X t,i but also on {Xt,1, . . . ,Xt,i−1,Xt,i+1, . . . ,Xt,s}, resulting in a

multivariate Markov chain model. In a conventional model where the multivariate Markov

chain has s chains and each chain has the same set of m states, the total number of states is

O(ms). Consequently, one needs to develop simplified multivariate Markov chain models

that can capture both the inter-relations and intra-relations among the given chains with

a relatively low number of model parameters. A multivariate Markov chain model was

proposed for this purpose in Ref. [2], and applied to demand forecasting. Ref. [3] provides
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a detailed survey of multivariate Markov chain models. The purpose of this paper is to

propose some perturbation bounds on the joint stationary distribution vector for multivari-

ate Markov chain models. To consider the stability of the joint probability distribution of a

multivariate Markov chain, we need to analyse the change of the joint distribution under a

small perturbation of the transition matrix, and there are many results on the perturbation

theories of Markov chains.

Let us denote the transition probability matrix of a finite irreducible homogeneous

Markov chain by P. The stationary distribution vector of P is the unique positive vector π

satisfying π = Pπ and
∑

j π j = 1. Suppose that the matrix P is perturbed to the matrix P̃,

the transition probability matrix of another finite irreducible homogeneous Markov chain.

On denoting the stationary distribution vector of P̃ by π̃, the goal is to describe the change

π̃ − π in the stationary distribution in terms of the change E ≡ P̃ − P in the transition

probability matrix. For some vector norms, we have

‖π̃−π‖ ≤ κ‖E‖

for various different condition numbers κ — e.g. see [5,7,8,10,11,13,15,16]. However,

to the best of our knowledge there is no discussion on perturbation theory for multivariate

Markov chain models.

In this paper, we analyse the effects of a small perturbation to the joint stationary

distributions of a finite irreducible multivariate Markov chain, when Q is the joint transition

probability matrix of such a multivariate Markov chain and

Π= (π(1)T ,π(2)T , . . . ,π(s)T )T

is the joint stationary distribution vector satisfying

QΠ = Π and

m∑

i=1

[π( j)]i = 1, 1≤ j ≤ s .

Our goal is to describe the effect on Π̃ when Q is perturbed by a matrix E such that

Q̃ = Q+ E

is the joint transition probability matrix of another irreducible multivariate Markov chain.

We first propose perturbation bounds for the joint stationary distribution of a multivariate

Markov chain. This is particularly important because the model parameters are different

when different estimation methods are employed. Some condition numbers and interest-

ing numerical measures will also be provided. However, while it is theoretically possible

to compute condition numbers κ, it is usually expensive — and another possibility is to

propose a relative bound that is easy to find without computing Π.

The following notation is used throughout this paper:

• for any ξ ∈ CN , ξi denotes the ith element;

• 1l = (1,1, . . . , 1)T and 0l = (0,0, . . . , 0)T are column vectors with dimension l; and
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• for any M ∈ CN×N , Mi j denotes the element in the ith row and jth column, Mi∗

denotes the ith row of M , and M(i) denotes the submatrix of M on deleting the ith

row.

The rest of the paper is organised as follows. In Section 2, we review multivariate Markov

chain models, and then propose some properties of the joint transition probability matrix.

In Sections 3 and 4, we discuss the perturbation of the joint stationary distribution for

the multivariate Markov chain model, and give both absolute and relative perturbation

bounds on the joint stationary distribution vector. Numerical examples to demonstrate the

effectiveness of our perturbation bounds are presented in Section 5, and brief concluding

remarks in Section 6 address some future research issues.

2. A Review of Multivariate Markov Chain Models

A multivariate Markov chain model was proposed by Ching et al. [2, 3] to model the

interdependent behaviour of multiple categorical sequences generated by similar sources.

When there are s categorical sequences and each has m possible states, it is assumed that

the state probability distribution of the j-th sequence at time t + 1 depends on the state

probabilities of all of the sequences (including the j-th) at time t. More precisely, the

following relationship is assumed:

x
(k)
t+1 =

s∑

j=1

λk j P
(k j)x

( j)
t for k = 1,2, . . . , s ,

where

λk j ≥ 0, 1≤ j, k ≤ s and

s∑

j=1

λk j = 1 for k = 1,2, . . . , s (2.1)

and x
( j)

0
is the initial probability distribution of the j-th sequence. The state probability

distribution of the j-th sequence x
( j)

t+1 at the time t + 1 depends on the weighted average

of P( jk), which is a one-step transition probability matrix from the states at time t in the

j-th sequence to the states in the k-th sequence at time t + 1. In matrix form, we write

Xt+1 ≡
�

x
(1)T
t+1 , x

(2)T
t+1 , . . . , x

(s)T
t+1

�T

=




λ11P(11) λ12P(12) . . . λ1sP
(1s)

λ21P(21) λ22P(22) . . . λ2sP
(2s)

...
...

...
...

λs1P(s1) λs2P(s2) . . . λssP
(ss)







x
(1)
t

x
(2)
t
...

x
(s)
t




≡ QXt .

Let N = m× s and consider Q ∈ RN×N . The requirement in Eq. (2.1) guarantees that when

X
(i)
t is a probability vector with sum equal to 1, then X

(i)
t+1

has the same property. In order

to study the model, we first recall the Perron-Frobenius theorem for nonnegative matrices:
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Proposition 2.1. [9] (Perron-Frobenius Theorem) Let M be a non-negative and irreducible

square matrix of order N. Then

(i) M has a positive real eigenvalue ρ, equal to its spectral radius — i.e. ρ =max{|λ|, λ ∈
σ(M)}, where σ(M) denotes the set of eigenvalue of M;

(ii) there corresponds an eigenvector z with real and positive entries such that Mz = ρz,

and z is unique up to a multiplicative constant; and

(iii) ρ is a simple eigenvalue of M.

Thus although the column sum of Q is not equal to 1 (the column sum of P( jk) is equal

to 1), we have the following:

Lemma 2.1. [13,20] Let λ j j P
( j j) be irreducible, j = 1, . . . , s, and the matrix Λ = [λ jk]

s
j,k=1

be irreducible. Then Q is irreducible, and 1 is the maximal eigenvalue of Q in modulus.

Moreover, if there is an index j such that P( j j) is primitive, then

lim
n→∞

Qn = uvT ,

where u and v are positive N-by-1 vectors.

Further, by using a similar technique as in the proof of Proposition 7.2 of Ref. [3], we

obtain:

Corollary 2.1. Under the assumption of Lemma 2.1, there exists a unique vector

Π=
�
π
(1)T , π(2)T , . . . , π(s)T

�T

where

π
( j) ∈ Rm , 1≤ j ≤ s ,

such that

QΠ= Π (2.2)

and
m∑

i=1

[π( j)]i = 1 , 1≤ j ≤ s . (2.3)

Lemma 2.2. Let λ j j P
( j j) be irreducible ( j = 1, . . . , s), and let the matrix Λ = [λ jk]

s
j,k=1

be

irreducible. Then there exists a unique nonnegative vector X such that

XTQ = XT , ‖X‖1 = m . (2.4)

Furthermore, we have

X=
�

a11T
m, a21T

m, . . . , as1
T
m

�T
, (2.5)

where

s∑

i=1

ai = 1 , ai ≥ 0 (i = 1,2, . . . , s) .



Perturbation Bounds for the Joint Stationary Distribution 5

Proof. Since Λ is irreducible, from Proposition 2.1 there is a unique positive vector

a = (a1, a2, . . . , as)
T such that aTΛ = aT and

∑s

i=1 ai = 1. Let X be given by (2.5). Since

1T
mP( jk) = 1T

m for j, k = 1,2, . . . , m, it is easy to check that XTQ = XT .

Lemma 2.3. If Π satisfies Eq. (2.2) and X is given by Eq. (2.5), then

Π
T X= 1. (2.6)

Proof. The result follows immediately from Eq. (2.3).

The above results are useful in the construction of the multivariate Markov chain model

in Ref. [2]. The matrix P(i j) can be estimated by first counting the transition frequencies

of states from the sequence (chain) j to the sequence (chain) i, followed by a column

normalisation. Under some conditions on λi j, the model converges to a stationary vector

Π, which can be estimated by obtaining the proportion of the states occurring in each of

the sequences. The model parameters can then be obtained by minimising ||Π̃− Q̃Π̃|| for

some vector norms such as ||.||1, ||.||2 or ||.||∞. Here Q̃ is obtained by replacing all of the

P(i j) by their respective estimates P̃(i j), since the optimal value of ||Π̃−Q̃Π̃|| can be positive

when Q̃ is obtained by replacing P(i j) with P̃(i j) and λi j with λ̃i j. In that case, the estimated

stationary vector Π̃ is not equal to the stationary vector of Q̃, so it is both interesting and

important to obtain the perturbation of Π̃.

3. Perturbation Bounds (I)

Suppose the matrix Q = [λ jkP( jk)] describes the transitions of a multivariate Markov

chain, and

Q̃ = [λ̃ jk P̃( jk)] = Q+ E

is a perturbed matrix of Q. Let matrices Q and Q̃ satisfy the condition of Lemma 2.1. Then

there exist vectors Π and Π̃ such that

QΠ= Π and Q̃Π̃= Π̃ , (3.1)

where
m∑

i=1

[π( j)]i =

m∑

i=1

[π̃( j)]i = 1 , 1≤ j ≤ s ;

and there exist vectors X and X̃ such that

XT = XTQ and X̃T = X̃T Q̃ , (3.2)

where X is given in (2.5). In this section, we discuss the change (Π̃−Π) in terms of the

change E = Q̃−Q. For some norms, we have

‖Π̃−Π‖ ≤ κ‖E‖
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for various different condition numbers κ. For given vectors Π and XT as in (2.2) and (2.5)

respectively, we set

B =
�

B : BΠ = 0, XT B = 0, (B+ΠXT )−1 exists
	
.

First we show that B 6= ;.

Lemma 3.1. Under the same assumption as Lemma 2.1,

lim
n→∞

Qn = ΠXT .

Proof. From Lemma 2.1 we have limn→∞Qn = uvT , where u and v are the right and

left positive eigenvectors of Q corresponding to the maximal eigenvalue one. From Prop-

erty 2.1(ii), we can set

u = kΠ v= lX , k, l > 0 ,

so that

lim
n→∞

Qn = klΠXT ; (3.3)

and from (3.1)

uvT = klΠXT = klQΠXT = klQn
ΠXT .

Thus from Lemma 2.3 we have

uvT = lim
n→∞

klQn
ΠXT

= ( lim
n→∞

Qn)klΠXT

= klΠXT · klΠXT

= (kl)2ΠXT

— i.e. klΠXT = (kl)2ΠXT , hence kl = 1, which together with (3.3) gives the result.

Lemma 3.2. The setB is nonempty.

Proof. A simple computation gives

(Q−ΠXT )2 = Q2−QΠXT −ΠXTQ+ΠXT
ΠXT

= Q2−ΠXT ,

whence

(Q−ΠXT )n = Qn−ΠXT ,

and it follows from Lemma 3.1 that

lim
n→∞
(Q−ΠXT )n = lim

n→∞
Qn−ΠXT = 0 .

This implies that

ρ(Q−ΠXT )< 1 , (3.4)
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so
∞∑

k=0

(Q−ΠXT )k

exists and
∞∑

k=0

(Q−ΠXT )k =
�

I − (Q−ΠXT )
�−1

.

Letting A= I −Q, we have that (A+ΠXT )−1 exists, and hence XT A= 0 and AΠ = 0 from

Eqs. (2.2) and (2.4). Thus A∈B — i.e. B is not empty.

Lemma 3.3. B is a group under the operation of matrix multiplication.

Proof. (i) (Existence of the identity element) Let B0 = I −ΠXT . Obviously, B0 is the

identify element of B .

(ii) (Existence of inverse) For any B ∈ B ,

(B+ΠXT )−1−ΠXT ∈ B

and

(B+ΠXT )(I −ΠXT ) = (I −ΠXT )(B+ΠXT ) = B ,

whence �
(B+ΠXT )−1 −ΠXT

�
B = B

�
(B+ΠXT )−1−ΠXT

�
= I −ΠXT

— i.e. (B+ΠXT )−1 −ΠXT is the inverse of B inB .

(iii) (Closure) For any B1, B2 ∈ B , we have B2B1 ∈ B . In fact, it is easy to see that

B2B1Π = (X
T B2B1)

T = 0. Since

(B2B1 +ΠXT ) = (B2 +ΠXT )(B1 +ΠXT ) ,

we know that (B2B1 +ΠXT )−1 exists.

(iv) (Associative property) For any B1, B2, B3 ∈B ,

(B1B2)B3 = B1(B2B3) .

From Lemma 3.2, B is not empty. Therefore B is a group under the operation of matrix

multiplication.

Since A∈B , from the proof of Lemma 3.3 we identify the inverse of A in the groupB
as A♯ = (A+ΠXT )−1−ΠXT , which is called the group inverse of A.

Theorem 3.1. Let

Q = [λ jkP( jk)] and Q̃ = [λ̃ jk P̃( jk)] = Q+ E ,
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where λ j j P
( j j) and λ̃ j j P̃

( j j) are irreducible ( j = 1, . . . , s), and let the matrices Λ = [λ jk]
s
j,k=1

and Λ̃ = [λ̃ jk]
s
j,k=1

be irreducible. If there are indices j and k such that P( j j) and P̃(kk) are

primitive, then Eqs. (3.1) and (3.2) hold. Furthermore, we have

Π̃−Π = A♯EΠ̃ , (3.5)

Π̃i −Πi = (A
♯)i∗EΠ̃ , i = 1,2, . . . , N , (3.6)

where A= I −Q.

Proof. From Corollary 2.1 and Lemma 2.2, we have (3.1) and (3.2), and thus AΠ = 0

and (A− E)Π̃= 0. This implies that

A(Π̃−Π) = EΠ̃ , (3.7)

so multiplying both sides of (3.7) by A♯ on the left we have

A♯A(Π̃−Π) = A♯EΠ̃ . (3.8)

We may show that (3.7) and (3.8) are equivalent, but here we need only show that (3.8)

implies (3.7). Since ÃΠ̃= 0 and XT A= 0, from (3.8) and the group inverse

A(Π̃−Π) = AA♯A(Π̃−Π)

= AA♯EΠ̃

= (I −ΠXT )EΠ̃

= EΠ̃−ΠXT EΠ̃

= EΠ̃−ΠXT (A− Ã)Π̃

= EΠ̃ ,

which proves that (3.8) implies (3.7). Since AA♯ = I −ΠXT , from (3.8)

(I −ΠXT )(Π̃−Π) = A♯EΠ̃ . (3.9)

Using the same technique as in the proof of Lemma 2.3, we have XT
Π̃= 1 such that

(I −ΠXT )Π̃= Π̃−Π (3.10)

and

(I −ΠXT )Π= 0 . (3.11)

From (3.10) and (3.11) we have

(I −XΠT )(Π̃−Π) = Π̃−Π ,

which together with (3.9) yields (3.5), and hence (3.6).

By taking the norm on both sides of (3.5), it is easy to obtain the following corollary:
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Corollary 3.1. In the notation of Theorem 3.1, for any operator norm ‖ · ‖ we have

‖Π̃−Π‖

‖Π̃‖
≤ ‖A♯E‖, (3.12)

where A= I −Q.

Remark 3.1. The 1-norm, 2-norm and∞-norm are our operator norms of interest, and on

writing ∆Π= Π̃−Π we have

‖∆Π‖1
‖Π̃‖1

≤ ‖A♯E‖1 , (3.13)

‖∆Π‖∞
‖Π̃‖∞

≤ ‖A♯E‖∞ , (3.14)

‖∆Π‖2
‖Π̃‖2

≤ ‖A♯E‖2 . (3.15)

In particular, on noting that ‖Π̃‖1 = s we find the bound (3.13) reduces to an absolute

bound — i.e.

‖∆Π‖1 ≤ s‖A♯E‖1 ≤ s‖A♯||1||E‖1 ≡ κ1‖E‖1. (3.16)

Remark 3.2. For the perturbation matrix E = (∆λ jkP( jk)), if there is no perturbation on

P( jk) we have

‖E‖1 = ‖(∆λ jkP( jk))‖1 = ‖∆Λ‖1 ,

whence from (3.16)

‖Π̃−Π‖1 ≤ κ1‖∆Λ‖1 .

The above bound is useful, because different model parameters λi j in Ref. [2] can be

obtained by different methods.

Remark 3.3. In Ref. [18], Wei presented the perturbation bound for the singular linear

system as follows. Let A be a singular matrix with index one. If ‖A♯E‖ < 1, then for any

solution y to (A+ E)y = b+∆b there is a solution x to Ax = b such that

‖y − x‖

‖x‖
≤
‖A♯‖‖E‖

1−‖A♯E‖
+
‖A‖‖A♯‖‖∆b‖

(1−‖A♯E‖)‖b‖
.

The multivariate Markov model and its perturbed model can be rewritten as

AΠ= 0,(A+ E)Π̃= 0 .

Thus on taking ∆b = 0, by Wei’s technique we also obtain the following bound:

‖Π̃−Π‖

‖Π‖
≤
‖A♯‖‖E‖

1−‖A♯E‖
. (3.17)

However, for the 1-norm the bound in (3.17) is not as sharp as that in (3.12), which also

holds without the assumption ‖A♯E‖ < 1.
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Corollary 3.2. Under the same assumption as in Theorem 3.1, we have

κ1 ≤
s‖I −ΠXT‖1

1−‖Q−ΠXT‖1
.

Proof. On noting that

A♯ = (A+ΠXT )−1−ΠXT

= (A+ΠXT )−1(I −ΠXT )

= (I − (Q−ΠXT ))−1(I −ΠXT ) ,

from (3.4), we have

‖(I − (Q−ΠXT ))−1‖ ≤
1

1−‖Q−ΠXT‖

and hence

‖A♯‖1 ≤
‖I −ΠXT‖1

1−‖Q−ΠXT‖1
.

Our next perturbation bound is derived from Eqs. (3.5) and (3.6), by making use of

the following results.

Lemma 3.4. [8,11] For any vector d and for any vector c such that cT 1= 0,

|dT c| ≤ ‖c‖1

�
dmax − dmin

2

�
. (3.18)

Theorem 3.2. Under the same assumption as Theorem 3.1,

‖Π̃−Π‖∞ ≤s‖E‖1 max
j

(
maxi(A

♯)i j −mini(A
♯)i j

2

)

≡κ2‖E‖1 .

Proof. Let c = EΠ̃ and d = (A♯)k∗, k = 1, . . . , N . Since ET 1N = 0, we have cT 1N = 0,

and hence from Theorem 3.1 and Lemma 3.4

|π̃k −πk|= |(A
♯)k∗EΠ̃|

≤ ‖EΠ̃‖1

�
maxi(A

♯)ki −mini(A
♯)ki

2

�

≤ ‖Π̃
T
‖1‖E‖1

�
maxi(A

♯)ki −mini(A
♯)ki

2

�
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such that

‖Π̃−Π‖∞ ≤ s‖E‖1 max
j

( 
maxi(A

♯)i j −mini(A
♯)i j

2

!)
.

From Theorem 3.2, we also have:

Theorem 3.3. Under the same assumption as Theorem 3.1,

‖Π̃−Π‖∞ ≤ s max
i j
|(A♯)i j|‖E‖1 ≡ κ3‖E‖1 .

Remark 3.4. When s = 1, the multivariate Markov chain reduces to the standard Markov

chain — and then the bounds in (3.16) and in Theorem 3.2 reduce to the corresponding

bounds in Refs. [15] and [11], respectively.

4. Perturbation Bounds (II)

Although we have found some perturbation bounds for the joint stationary distribution

vector of the multivariate Markov chain, it is difficult to compute A♯ and therefore also

worthwhile to look for other bounds. In this section, we discuss the variation of the joint

stationary probability distribution vector further.

First of all, we have:

Lemma 4.1. [12] Let Ã= I − Q̃, where Q̃ is given by Theorem 3.1. The matrix
� Ã(i)

1T
N

�
is

nonsingular for i = 1,2, . . . , N.

Next, we present a perturbation bound of the joint stationary distribution of the chain:

Theorem 4.1. Under the same assumption of Theorem 3.1, let

∆Π= Π̃−Π.

Then for any operator norm ‖ · ‖, we have

‖∆Π‖

‖Π‖
≤ min

1≤i≤N
‖ fA −1

(i)
E(i)‖ , (4.1)

where

fA =
�

Ã

1T
N

�
, E =

�
E

0T
N

�
.
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Proof. From Corollary 2.1, the following systems of linear equations have unique solu-

tions Π and Π̃, respectively:

¨
QΠ= Π ,∑m

i=1[π
( j)]i = 1, 1≤ j ≤ s ,

(4.2)

¨
Q̃Π̃= Π̃ ,∑m

i=1[π̃
( j)]i = 1, 1≤ j ≤ s .

(4.3)

Clearly,

Ã∆Π= −ÃΠ = −(A+ E)Π= −EΠ (4.4)

and
m∑

i=1

[∆π( j)]i = 0, 1≤ j ≤ s , (4.5)

and on combining (4.4) and (4.5) we have

�
Ã

1T
N

�
∆Π= −

�
E

0T
N

�
Π . (4.6)

Letting fA =
� Ã

1T
N

�
and E =

� E

0T
N

�
, we then obtain

fA(i)∆Π= −E(i)Π, 1≤ i ≤ N , such that ∆Π = fA −1
(i)
E(i)Π .

On taking the norm on both sides of the above equality, we then have

‖∆Π‖= ‖ fA −1
(i)
E(i)Π‖ ,

and hence ‖ fA −1
(i)
E(i)Π‖ ≤ ‖ fA −1

(i)
E(i)‖‖Π‖, which together with the above equality gives the

desired bound (4.1).

We also have the following corollary from Theorem 4.1:

Corollary 4.1. In the notation of Theorem 4.1, we have

‖∆Π‖1
‖Π‖1

≤ min
1≤i≤N

n
‖ fA −1

(i)
E(i)‖1

o
, (4.7)

‖∆Π‖∞
‖Π‖∞

≤ min
1≤i≤N

n
‖ fA −1

(i)
E(i)‖∞

o
, (4.8)

‖∆Π‖2
‖Π‖2

≤ min
1≤i≤N

n
‖ fA −1

(i)
E(i)‖2

o
. (4.9)
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Remark 4.1. It is notable that A can be regarded as the perturbed matrix of Ã, and hence

‖∆Π‖1
‖Π̃‖1

≤ min
1≤i≤N

n
‖A −1

(i)
E(i)‖1

o
, (4.10)

‖∆Π‖∞
‖Π̃‖∞

≤ min
1≤i≤N

n
‖A −1

(i)
E(i)‖∞

o
, (4.11)

‖∆Π‖2
‖Π̃‖2

≤ min
1≤i≤N

n
‖A −1

(i)
E(i)‖2

o
, (4.12)

where

A =

�
A

1T
N

�
.

Since ‖Π‖1 = s, the relative bound (4.7) reduces to the absolute one, so we may compare

(4.10), (4.11) and (4.12) with (3.13), (3.14) and (3.15), respectively.

From a numerical example, we found that neither of these Sections 3 and 4 results

are superior. We used Example 1 in Section 5, with the perturbation matrix E a sparse

random matrix generated by the MATLAB function ‘sprand ’ when the density is set equal

to 0.1, and then multiplied by 10−8. We tested four times and obtained the results shown

in Table 1, where we omit the factor 10−7 in all of the results due to space constraints.Table 1: Numeri
al 
omparison of the bounds in Se
tions 3 and 4.
Times (3.13) (4.10) (3.14) (4.11) (3.15) (4.12)

1 0.1864 > 0.1360 0.1821 > 0.1300 0.1157 > 0.0843

2 0.1707 < 0.1932 0.1303 < 0.1853 0.0967 < 0.1098

3 0.2417 > 0.1695 0.2916 < 0.3065 0.1588 < 0.1735

4 0.1051 < 0.1123 0.2081 > 0.1857 0.0973 < 0.1093

Remark 4.2. We have the following simple bounds from (4.10), (4.11) and (4.12):

‖∆Π‖1
‖Π̃‖1

≤ min
1≤i≤N

‖A −1
(i)
‖1||E‖1, (4.13)

‖∆Π‖∞
‖Π̃‖∞

≤ min
1≤i≤N

‖A −1
(i)
‖∞||E‖∞, (4.14)

‖∆Π‖2
‖Π̃‖2

≤ min
1≤i≤N

‖A −1
(i)
||2||E‖2. (4.15)

Finally, it is notable that for our bounds we needed to only compute min1≤i≤N ‖A
−1
(i)
‖, and

it is clearly more difficult to compute the group inverse of a matrix than the inverse of a

matrix.
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5. Numerical Examples

In this section, we use two multivariate Markov chain models for different applications

given in Refs. [2] and [13], to illustrate the results of our perturbation approach. All the

runs were done using MATLAB 7.9.0 on a computer with a 2.66GHZ CPU and a 3.48GB

memory.

Example 1. For the following two categorical data sequences from Ref. [2],

S1 = {4,3,1,3,4,4,3,3,1,2,3,4} and S2 = {1,2,3,4,1,4,4,3,3,1,3,1} ,

the transition probability matrices are given by

P(11) =




0 0 2

5
0

1

2
0 0 0

1

2
1 1

5

2

3

0 0 2

5

1

3




, P(12) =




1

2
0 2

5
0

0 0 0 1

3

0 1 3

5
0

1

2
0 0 2

3




,

P(21) =




0 1 1

4
0

0 0 1

4
0

2

3
0 1

4

2

3
1

3
0 1

4

1

3




, P(22) =




0 0 1

2

1

3
1

3
0 0 0

1

3
1 1

4

1

3
1

3
0 1

4

1

3




.

On solving the corresponding linear programming problems, we obtained

Λ =

�
0.5000 0.5000

0.8858 0.1142

�
.

Example 2. This example was taken from the two criterion networks constructed in

Ref. [13], by considering papers that belong to the category of “Information Search and

Retrieval” and “Computing Methodologies” respectively. We collected the papers from both

conferences, for which reference lists are provided in DBLP — more precisely, we collected

papers from 1999 to 2010 for KDD, and papers in 2000 and from 2002 to 2009 for CIKM.

We considered 317 papers belonging to the category “Information Search and Retrieval”

and 320 belonging to “Computing Methodologies”. There were 56 common papers that

appeared in both networks. The parameter matrix Λ was estimated to be

Λ =

�
0.8678 0.1322

0.1437 0.8562

�
.

We describe the absolute perturbation bounds given in (3.16) and Theorem 3.2 by κ1 and

κ2 in Table 2.

In Figs. 1 and 2, we show the change in the relative bounds (4.7)–(4.9) with respect

to the change of ‖E‖1, ‖E‖∞, and ‖E‖2 for Examples 1 and 2. The results are consistent
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Example 1 Example 2

κ1 6.1662 20.7352

κ2 2.6784 7.9666

−12 −10 −8 −6 −4
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

log
10

|| E||
1

Th
e 

re
la

tiv
e 

pe
rtu

rb
at

io
n 

bo
un

ds

The relative perturbation bounds of example1

 

 

−12 −10 −8 −6 −4
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

log
10

||E||∞

Th
e 

re
la

tiv
e 

pe
rtu

rb
at

io
n 

bo
un

ds

The relative perturbation bounds of example1

 

 

−12 −10 −8 −6 −4
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

log
10

|| E||
2

Th
e 

re
la

tiv
e 

pe
rtu

rb
at

io
n 

bo
un

ds

The relative perturbation bounds of example1

 

 
(4.7)
(3.17)

(4.8)
(3.17)

(4.9)
(3.17)

Figure 1: The relationship between ‖E‖1, ‖E‖∞, and ‖E‖2 and relative perturbation bounds (4.10)�(4.12)of Π of Example 1.
with the relative perturbation bounds given in (4.7)–(4.9), and the (3.17) relative bounds

obtained from Wei’s technique [18]. We observe that the relative bounds depend almost

linearly on log10‖E‖∗, where ∗ = 1,2,∞; and that that our bounds are better, except for

the bound in Example 2 with the 2-norm.

6. Concluding Remarks

In this paper, we considered the absolute and relative perturbation for the joint sta-

tionary distribution vector of multivariate Markov chain models. We give some pertur-

bation bounds, and numerical calculations demonstrate the effectiveness of our bounds.

In our future research, we intend to extend our method to derive perturbation bounds

for the high-order Markov chain model [3] and the high-order multivariate Markov chain

model [4].
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Figure 2: The relationship between ‖E‖2 and relative perturbation bound of Π of Example 2.
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