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Abstract. A third-order accurate direct Eulerian generalised Riemann problem (GRP)
scheme is derived for the one-dimensional special relativistic hydrodynamical equations.
In our GRP scheme, the higher-order WENO initial reconstruction is employed, and the
local GRPs in the Eulerian formulation are directly and analytically resolved to third-
order accuracy via the Riemann invariants and Rankine-Hugoniot jump conditions, to
get the approximate states in numerical fluxes. Unlike a previous second-order accurate
GRP scheme, for the non-sonic case the limiting values of the second-order time deriva-
tives of the fluid variables at the singular point are also needed for the calculation of
the approximate states; while for the sonic case, special attention is paid because the
calculation of the second-order time derivatives at the sonic point is difficult. Several
numerical examples are given to demonstrate the accuracy and effectiveness of our GRP
scheme.
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1. Introduction

If the fluid velocity is locally close to light speed in a vacuum or the internal energy
density is locally comparable (or larger) than the fluid rest-mass density, a relativistic de-
scription of the fluid dynamics should be adopted. Moreover, the Einstein field theory
of gravity is appropriate whenever the matter is influenced by large gravitational poten-
tials. Relativistic flows arise in numerous astrophysical phenomena, from stellar to galactic
scales — e.g. active galactic nuclei, super-luminal jets, core collapse super-novae, pulsars,
coalescing neutron stars, black holes, micro-quasars, X-ray binaries, and gamma-ray bursts.
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Theoretical relativistic flow dynamics involves solving highly nonlinear equations, where
an analytic treatment is extremely difficult so that numerical studies are important. The
earliest numerical study can be traced to Ref. [16], where the general relativistic hydrody-
namic (RHD) equations in Eulerian form are solved by an explicit finite difference method
using an artificial viscosity. Subsequently, other relevant finite difference methods were
systematically introduced [17]. Various modern shock-capturing methods based on exact
or approximate Riemann solvers have since been developed for the RHD equations — cf.
the review articles [5,13], and more recent overviews of numerical methods for the RHD
equations [18,24]. Second-order accurate direct Eulerian generalised Riemann problem
(GRP) schemes have recently been proposed for both 1D and 2D relativistic hydrodynam-
ics [21,22]. An analytic extension of the Godunov method, the GRP scheme was originally
devised for non-relativistic compressible fluid dynamics [1], by utilising a piecewise linear
function to approximate the initial data and then analytically resolving a local GRP at each
interface to yield numerical fluxes — cf. the comprehensive description in Ref. [2] and
references therein.

The original GRP scheme has two versions, Lagrangian and the Eulerian. The Eulerian
form is always derived using the Lagrangian framework, which has the advantage that the
contact discontinuity in each local wave pattern is always fixed with speed zero and the
nonlinear waves are located on either side. However, the passage from the Lagrangian
framework to the Eulerian form is sometimes quite delicate, particularly for the sonic case
and multi-dimensional applications. To avoid the difficulty, second-order accurate direct
Eulerian GRP schemes were respectively developed for the shallow water equations [8],
the Euler equations [4], the governing equations for the gas-liquid two-phase flow in HTHP
transient wells [20], and a more general weakly coupled system [3] by directly and ana-
lytically resolving the local GRPs in the Eulerian formulation via Riemann invariants and
the Rankine-Hugoniot jump conditions. The GRP scheme has been compared with the
gas-kinetic scheme for inviscid compressible flow simulations [9]. In Ref. [6], the adaptive
direct Eulerian GRP scheme was further developed with improved resolution as well as
accuracy by combining the moving mesh method [15]; and the accuracy and performance
of the adaptive GRP scheme was further studied in simulating 2D complex wave configu-
rations formulated via 2D Riemann problems from compressible Euler equations [7].

The aim of this article is to derive a third-order accurate direct Eulerian GRP scheme
for the 1D special RHD equations analytically, extending the recent second-order accurate
direct Eulerian GRP scheme for the RHD equations [21,22] and the third-order accurate
direct Eulerian GRP scheme for 1D and 2D non-relativistic Euler equations [19]. In pass-
ing, we note that a unified approach for solving the GRP with higher-order accuracy has
been provided for general 1D hyperbolic balance laws [14]. Section 2 introduces the
1D special RHD equations and corresponding Riemann invariants as well as their basic
properties. The third-order accurate GRP scheme for the 1D RHD equations is derived an-
alytically in Section 3. The scheme is first outlined in Section 3.1, and the local GRPs are
resolved in Section 3.2 — with the rarefaction and shock waves respectively discussed in
Subsections 3.2.1 and 3.2.2, the approximate states in numerical fluxes separately for both
non-sonic and sonic cases in Subsection 3.2.3, and the acoustic case in Subsection 3.2.3.
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Several numerical experiments discussed in Section 4 demonstrate the performance and
accuracy of our proposed GRP scheme, and our conclusions are summarised in Section 5.

2. Preliminaries and Notation

This section introduces the 1D special RHD equations and corresponding Riemann in-
variants, and their basic properties.

2.1. Governing equations

The covariant form of the four-dimensional space-time relativistic hydrodynamical (RHD)
equations appear widely in the literature [17] and the RHD equations may be written as
a first-order hyperbolic system that can be advanced forward in time by using the modern
shock-capturing methods in some fixed or rest reference frame, often called the laboratory
frame (the reference frame of the observer). The 1D RHD equations can thus be cast into
the conservative form

U[+F(U)x:01

2.1
U=(D,m,E)", F = (Du,mu+p,m)",

where D = yp, m = Dhyu and E = Dhy — p denote the mass, x-momentum and energy

densities relative to the laboratory frame respectively, while p and p, uand y =1/4/1 — u?
are the rest-mass density, the kinetic pressure, the fluid velocity and the Lorentz factor
respectively. Here h is the specific enthalpy defined by
h=1+e+ P ,
P
where e denotes the specific internal energy. An equation of state, a relation between

thermodynamical variables such as p = p(p,e), is needed to close the system (2.1). For
ideal gases, the equation of state has the form

p=(-1)pe, 2.2)

where T is the adiabatic index.
In a smooth region, the system (2.1) may be recast into the equivalent nonconservative
form

28

gt

9u ucs2 du 1 ap

9t y2(1-— uzcg)ﬁ B phy*(1 - uzcg)ﬁ ’ (2.3)
9p uc? ap phc? du
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9p 1 9p
9t he2 9t
du 5 @u+ 1 9p 2.4)
- = _ u— _— , .
dx T phy?cz gt
dp 5 Qu  9p
—=— hy?—+— |,
= (e 5+ 5e)
and
U o u(w-1)
1-u?c2 h(1-uc2)
(1=¢)
ViHAVIV, =0, AW)=| 0 TEr s | 25
0 phcs2 u(l—csz)
1-u?c? 1-u?c?

where V = (p,u,p)!, 2/2t := 8, + ud, denotes the total derivative operator along the
trajectory of the fluid particle defined by dx/dt = u, c, is the sound speed defined by

CzZEM:l(5P(P,e>+gap(p,e)),

2.6
S h dp h ap p2 e (2.6)

and S denotes the specific entropy related to the other thermodynamical variables through
the thermodynamic relation

T%z@—%@ 2.7)

where T is the temperature.

The RHD equations (2.1) are identical in formal structure to the 1D non-relativistic
Euler equations, and may be reduced to those equations when the fluid velocity is small
(Jul| < 1) and the velocity of the internal (microscopic) motion of the fluid particles is
small. However, relations between the laboratory quantities (D, m, and E) and the quanti-
ties in the local rest frame (e, p, and u) introduce a strong coupling between the equations
and pose additional numerical difficulties than in the non-relativistic case. For example,
the physical constraints E > D and |u| < 1 have to be fulfilled.

2.2. Riemann invariants

Three eigenvalues of the Jacobian matrix d F(U)/dU of the system (2.1) with the equa-
tion of state p = p(p, e) are
u—c u+c

A= , Ao=u, Ay = ,
1 —uc 0 * 1+ uc,

where the first and third characteristic fields are genuinely nonlinear while the second is
linearly degenerate. Associated with those genuinely nonlinear characteristic fields A, the
(generalised) Riemann invariants are

1 1+u P e(w,8)
Yy=—In ¥ dw, S. (2.8)
2 1—u w
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On regarding all the thermodynamic variables as functions of p and S (or p and S), the
total differentials of the Riemann invariants 1), have the forms

dbs = du Csd N P 18c5(co,5)d ds
wi_l—uzq: P P w dS§ @

du 1
S ( dp +K(p,5)ds) , 2.9)
1—u phc
where
K(p,S) = op + g aCS(Q)’S)d (2.10)
b0l =" e, 35 w as ¢ '

The total differential forms dv . in (2.9) reduce to

28
dyp = FK(p,5)dS = F(A5 — 2)K(p,S)Z—dt 2.1

along the characteristic curve dx/dt = A, thanks to the relations

d d
u  dp _
1—u?®  phe

0 dsS=(A l)asdt

along the characteristic dx/dt = A, where the second relation is obtained from the first
equation in (2.3).

These Riemann invariants associated with the genuinely nonlinear characteristic fields
A4 and their total differentials (2.11) play a pivotal role in resolving the centred rarefaction
waves in the derivation of the direct Eulerian GRP scheme.

Remark 2.1. For the ideal gas law (2.2), the entropy may be simply written as

S :zpp_r .

In this case, the specific internal energy e and the sound speed ¢, may be expressed explic-
itly as

p 2 _TIp

e=—, i =—

('-=Dp * ph

and the integral fpcs /wdw in the forms (2.8) can be calculated analytically as

P r—1)Y2+
Sdw=(T-1)""In I-D " +c , (2.12)
w (T —1)12 —¢,
so that
d (Pc 1 dp 1 1 9p Cq
K(p,S)==— | Zdw- —= == 2.13
(p.S) asf @ ohe, 88 T—1phe, S (T —1TS (2.13)
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3. Numerical Method

The third-order accurate direct Eulerian GRP scheme for the RHD equations (2.1) is
now obtained analytically. For convenience, the spatial domain 2 and time interval [0, T]
are respectively divided into the uniform mesh {xj =jAxX €N | je Z} and {t,|ty = O,
the1 = tp + At,, n > 0}, where Ax is the spatial step size and the time step size At,
is constrained by the stability requirement

CCﬂAx
max {
j

in which C.q denotes the Courant-Friedrichs-Lewy number and V? 41 an approximation
2

At, =

2:(V},)

of the cell average value of the primitive variable vector V(x,t,) over the cell I i+l =
2

(xj,xj41), calculated from the known conservative vector ﬁ;ﬂr 1 by iteratively solving a
nonlinear equation — cf. Refs. [21,22] for a detailed procedure.

3.1. Outline of the third-order accurate GRP scheme

Taking advantage of the cell-average values {V? +1} and any essentially non-oscillatory
2

technique (e.g. the WENO reconstruction mentioned in Remark 3.1), the “initial” function
V(x,t,) is reconstructed via discontinuous piecewise quadratic polynomial functions

1
n n,(0) n,(1) n,(2) 2 n
— —x. — —X. =: el. . .

vy (x) Vj+% +Vj+% (x xl+%)+2Vj+% (x x]+%) Vj+%(x), x I]+% 3.1
The conservative vector U in (2.1) at time t,,; is approximately evolved by a third-order
accurate Godunov-type scheme
— — At

n+1 n n/a ~

Uj1=U —E(FjH—FJ-), (3.2)
with the numerical flux

. 1 -
Fi=< (F(U;.“Ll’ )+ 4F(U;.1+1/2) + F(Uﬁp’n)) , 3.3)
where U;_1+1,— — U(V;‘H’_) and U;?H/Z = U(V;?H/Z), with US"" the value at x = x; of the

solution to the Riemann problem (RP) for (2.1) and the initial data
Ul =U(Vix;—0)), x<x;,

UCx,t) =4 2 ( ’;( i~ ) !
Uty :ZU(Vh(xj+0)), X > Xj,

with V?H/ % and V;‘H’_ calculated case by case. When the transonic rarefaction wave does
not appear in the local GRP, we have

2
” At2

At
n+1/2 RP,N n GRP,N GRP,N
=V — (V)T = (V)T
j j 2 j 8 j (3.4)

At
n+1,— _ {,RP,n GRP,N n GRP,N
Vit =Vt AL (V) + 3 (Ve); s
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where (Vt)?kp’“ and (Vtt)?kp’" are accurately derived by analytically resolving the local
GRP for (2.1) with the initial data

( i 1/2()()) x <Xxj,

O, tn) = ( ]+1/2(X)) X > Xj.

(3.5)

Since the derivations of UJRP’” and (Vt)JG.RP’" are respectively similar to those in [11] and
[21], the calculation of (VU)GRP "
ements in the current GRP scheme For the sonic case, because (Vtt)

given in Section 3.2 below becomes one of the key el-

KB s difficult to

n+1/2

resolve at the sonic point, a different calculation of the approximate states v; and

VT.1+1

; in Eq. (3.3) will be introduced in Section 3.2.3.

Remark 3.1. The polynomial in Eq. (3.1) is obtained through the WENO reconstruction
for the characteristic variables W(x) of (2.5). Concretely, the coefficients V;I;(el), £=0,1,2

are calculated as follows [10]: ’

WENO WENO 12(vWENe -V 1)
Vn’(o) — EV” L — 1VWENO n(1) VJ‘H Vj n(2) ]+% It
T2V T Vi Ax Vi Ax? ’

where V‘vaf\f = %(V}’.VENO + V}’.V_f“{o), V}’.VENO ‘= Rj4 /ZW‘J’.VENO, Rj.1/2 denotes the right eigen-
2

vector matrix of A(V" i1 /2) and W".VENO is obtained by using the fifth-order accurate WENO

reconstruction to the data {W" =R

jr1/2 J+1/2 J+1/2}

3.2. Resolution of the generalised Riemann problem

We now begin to resolve the local GRP for (2.1) with the initial data (3.5), in order
to get the approximate states V' 12 and V“+1 in (3.3). For convenience, the subscript j
and the superscript n will be ignored, and the local GRP for (2.1) with (3.5) transformed
via a translation transformation {(x —x;, t —t,) — (x, t)} to the “non-local” GRP for (2.1)
with the initial data

U, +xU, +1ix%U”, x<o0,
U(x o):{ Lo L (3.6)

UR+xU1’{+%x2U1’{’, x>0,

where U, Ug, U}, Uy, U] and Uy are corresponding known vectors. The limiting value at
x=jast— t: will be denoted (0);.1, on introducing the notation (e),.

The local wave configuration around the singular point (x,t) = (0,0) of the GRP for
(2.1) with (3.6) only depends on six known vectors in (3.6), and is usually piecewise
smooth with finitely many noninteracting rarefaction or shock waves, or contact disconti-
nuities. A local wave configuration with a left-moving rarefaction wave, a contact disconti-
nuity and a right-moving shock wave is shown schematically in Fig. 1. The initial structure



102 K. L. Wu, Z. C. Yang and H. Z. Tang

of the solution U*(x, t) to the GRP for (2.1) with (3.6) may be determined according to
the relation

lim+ U (tA, t) =U"(A;UL,UR), x=tA,

t—0
where U™(x/t;U;,Ug) can be obtained by using the exact Riemann solver in Ref. [11] for
the (classical) RP of (2.1) with the initial data

U(x,0) = {UL » x<0, (3.7)

UR, x>0.

For a comparison, Fig. 2 displays a local wave configuration of the RP for (2.1) with (3.7).
In Figs. 1 and 2, a and 8 denote characteristic coordinates introduced in Section 3.2.1
within the rarefaction wave.

Similar to the second-order accurate GRP scheme in Ref. [21], the approximate states
V;IH/ % and V?H’_ in (3.3) will be obtained by using the Rankine-Hugoniot jump conditions
or Riemann invariants to resolve the GRP for (2.1) with (3.6) in the Eulerian formulation.
For the non-sonic case, in view of (3.4) and the continuity of u and p across the contact

discontinuity, the calculation of V?H/ % and V?H’_ reduces to forming the system of linear
algebraic equations
9u 9
(28 L Z2) 2 g,
A0 Z%) L ZP) - 4o
R\at), * \9t), R
in the unknowns (2u/2t), and (2p/2t),, and the linear system
2%u 2?
(55) i (55) - o
7t° ), 9t ), (3.9

@2u> (@Zp)
(2) (2) _ (2)
a — ] +5b — | = 4y,

in the unknowns (22u/9t?), and (2°p/2t?),, by respectively resolving the left and right
nonlinear waves in the GRP. Since the derivation of the system (3.8) is similar to that in
Ref. [21], we do not repeat that here, and it remains to derive the system (3.9). Specific
attention will be paid to the local wave configuration in Fig. 1, but other local wave
configurations can be dealt with similarly and are considered in the code.

3.2.1. Resolution of the rarefaction wave

We now resolve the left rarefaction wave shown in Fig. 1 analytically, using the Riemann in-
variants to derive the first equation in (3.9). Similar to Ref. [21], the region of the left rar-
efaction wave in Fig. 1 is described by the set #Z := {(a(x,t), B(x, t)IB € [ B, Ps], —00 <
a < 0}, where ; := A_(U;) and B, := A_(U,), with f = (x, t) the initial value of the
slope A_ at the singular point (x,t) = (0,0) and a = a(x,t) denoting the “transversal”
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rarefactiong =g, ¢ contact
*=a shock
B=8 B
a=a
| U,
. | ul /
A "
b
a ¢ ( ul 0 ur X

Figure 1: Schematic description of a local wave configuration for the GRP, for (2.1) with (3.6) and
0<tx1.

_ contact
- Mx = t
B=p =g
rarefactio
a=a
U
[5 = ﬁL
! U, shock
: : U
! ! U, 2 U,
;s a 0 x

Figure 2: Schematic description of a local wave configuration for the RP with (3.7).

characteristic curves, the x-coordinate of the intersection point with the leading f-curve
— cf. Fig. 1. Concretely, = 5(x,t) and a = a(x, t) are two integral curves with slopes

dx Y dx
e~ 77 e~ 7%
which may be rewritten
8)(_A at 8x_ ot (3.10)
da  Toa’ o~ "%ap’ ‘
on expressing the coordinates (x, t) as
x=x(a,), t=t(af). (3.11)
Differentiation then gives
a2t 1 OA_ 0t 0dAy 0t
= — . (3.12)
dadfp Ag—A_\ 9B da Jda dp

Similarly, in the left rarefaction wave region in Fig. 2 the coordinate transformation de-

noted by x,., = x(a, ) and t, = t(a, ) is also introduced. This coordinate transformation
may be explicitly obtained as

1 b dw
t.u(a, B)=aff; " exp 0.0 o’ Xoo(a, B) = Bt (a, B), (3.13)
By ’
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by solving the initial-value problem

de B t

dg  u(0,p)—p"

which is formed in view of the relation along the f—curve in Fig. 2

sy BN

t(B)=apB; ",

de  dt

Both local coordinate transformations within the rarefaction waves in Figs. 1 and 2
satisfy the properties [4]

W(O B) = (0 B)= aSs( B, %(0 B)=0, Br=p=<p., (314

and the asymptotic relations [2]
t(a, B) = to(a, ) +n(a, Bla*, x(a,f)=x.(a,B)+e(a fla’. (3.15)
Due to (3.14), Eq. (3.12) implies

o 0 ! 3.16
527 °P = o PR 6P 010

Remark 3.2. For the ideal gas law (2.2), comparing (2.13) to S(0,8) = S; gives

K(0,8) = Cs(cof) (3.17)

In order to derive the first equation in (3.9), we need

s 1 at\'as (3.18)
dx A_—2g\da) da’ '
Ap_ 1 Ot YA —AyOY_ Ap—Ag_ 0S

L il 0 Y- Aimho, 08 , (3.19)
dx A_—2p\ da A=Ay da  A_—A, Oda

and the two lemmas given below, where the definitions of the coordinates (a, ) and (2.11)
have been used and the last equation is derived from

oy_ ot (9 aw _ ot w
Ay—2g 0S ataq/;_
_JL_—JLOKé’a A= A)55ax
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Lemma 3.1. For 1 defined in (2.8), the mixed second partial derivatives with respect to a
and f3 are given by

%, 9K 3S

oadf 9P dalsy’
O%p_ Ay —Ag Ot (Ot M 3. O Kas ot Lo%t foy_ KES
dadp A —A_0B\da da? dal\ da da da?\ Jda da
Ay —2Ay 02t d (AL —2Ap)\ Ot ot oy_ as
{0 2 (e A\ FLL(OEN (29 05 50
Ap—A_dadfp Jda\A, —A_J)3pB Jda da da

For the ideal gas (2.2), at the point (0, ) the above equations reduce to

(3.20)

o> dc, K, 3S
Ve 06K 05 (3.22)
Jdadf OB ¢ dal
0%_  y*(1—uc)*(10vy_ K, 38S
Yo _rU-uel (10 K 0S| 323)
dadp 2 ¢ da ¢ dal;
which further yield
a¢+ CSKL 35
=- — 3.2
da ¢ daf,’ (3.24)
o_ Ay p
—_— = b, d
Jda Jda Lexp (JL o) co)
K, 3s| [F o
- Go(w)cs(0, w)exp Go(P)dp | dw (3.25)
ol Jg ©

on integrating Eq. (3.23) with respect to 3, where 6o(8) = (y2(1 — uc,)?/(2c))(0, B).
Proof. (1). The first equation of (2.3) gives

ok+lg ok (35) ok (3t(35+ 35)) 0 View
A *am Ak An =3 =z An A, u—— = > >
dakdB dak\ 9B dak\ap\at dx

whence
7S @)=L ap, kew (3.26)
—\Q, = ——\q, s 5 .
2 ak dak L
and hence from (2.11) we obtain
0 a8
P kP apy). (3.27)
Jda Jda

Differentiating this equation with respect to § gives Eq. (3.20); and for ideal gases, taking
a — 0 in Eq. (3.20) and using Eq. (3.17) gives Eq. (3.22). Eq. (3.27) also yields Eq. (3.24)
on setting a = 0 and using Eq. (3.17).
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(2). Using Egs. (2.11), (3.18) and (3.19) we obtain

dy_ dt(oy_ Y.\ ot as o
¥ 3/5( +7toa ) 8[5((A+ 2o)K 5+ (o - /mﬁ)

Ay — Ay Ot 8111_ _x a8
Ay — A 8[5 da da )’
and differentiating this equation with respect to a gives Eq. (3.21). Taking a — 0 in

Eq. (3.21) and using Egs. (3.14) ,(3.16) and (3.17) yields Eq. (3.23).
(3). Finally, we solve the ordinary differential equation (3.23) for %(O, B) using the

initial data %(0, Br)= %I 1, to complete the proof. O

Lemma 3.2. For t(a, 3) defined in (3.11), the limiting value of its second partial derivative
with respect to a can be expressed as

82t(o B) (a% +JﬁA(/3)d/3)e Uﬁ db ) (3.28)
— Y, = e X = = .
a2 2,7, P\ Jj, 20, B =20, )

da
where A(3) is defined by
A(B) = exp ( _ Jﬁ do ) F(0,5) , (3.29)
5, 70(0,@) — 2_(0,0) ) 7(0, ) — A_(0, )
with

o t 2A_ ot

8 dpda
and the respective calculations of 8%t /8 a?|; and ﬁzk_ / dad 3 are presented in Appendices A
and B for the ideal gas law (2.2).

Vol
F(0,B) = (u_ o) o=(2h - ) )(o B, (330

Proof. Differentiating Eq. (3.12) with respect to a gives

(o2 Pt pap)y s =2 (3.31)
0~ 28[5 /5 3[5 da P .
where
(21— A_) 2%t 8210 at 9%A_ Ot
F(a,B):=— - —_— . (3.32)

Jda dadf da? I JadPda
Letting @ — 0 in Eq. (3.32) gives the expression of F(0, 8) in Eq. (3.29) with Egs. (3.14)
and (3.16). Thus as a — 0, Eq. (3.31) becomes
a3t
2a?dp

0,8)= ( (0, /5)+ (0 /3’)) (3.33)

1
20(0,8) — (0, 8)
which can be considered a first-order ordinary differential equation of 82E(O B) with the

initial data (0 Br) = aa2| .- Solving Eq. (3.33) gives Eq. (3.28) and completes the
proof. O

With the help of Lemmas 3.1 and 3.2, the first equation in (3.9) derived as follows.
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Proposition 3.1. The limiting values (2°u/92t*), and (2°p/2t?), satisfy

P“u @Zp
@ (2) (2)
a +b —_ —d 5
L (@tz)* L (@tz)* L

d@=1, B

where

* >

in which dgz) depends on the initial data U;,U’, U7 and the limiting values V,, (3V/dt),,
(0V/dx), (as expressed in the following proof) and ® := 1/(phy>c,).

Proof. Differentiating Eq. (3.21) with respect to a and then setting a = 0 gives

2% 1 0%
aazap P =Pt 0B -7 0.p) da2
with
325

G(B) = 1 Y- Kas v 2%t\ 0K ads
ﬁ_lo—l_ da da  dal, da2) Odadal, P

where Egs. (3.14), (3.16), (3.33) and (3 26) have all been used here. Referring to (3.26)
and Lemma 3.2, we have 2—2‘2(0,/:3) IL, so G(f3) depends on the initial data U}, U’

U} and the values V(0,8) and %(O,/s’). Integrating Eq. (3.34) with respect to 3 then
gives

0,B) (3.34)

}(0,/5),
L

1
0o

2¢_

B d[;
0 = C d ~ — 3.35
7 0h)= ( L+J (8) ﬁ)e"pUﬁLAo(o,ﬁ)—x_(o,ﬁ)) (5:3%)

with

C = — — — |G s
) exp( LL Ao(o,ﬁ)—a_m,/s)) )

depending on the initial data U;,U},U7 and the limiting values V(0, 8), %(0,/5), and

2
hence %(0, B) as well.
On the other hand, from (2.9) the second-order derivatives of 1 _, u and p with respect
to a can be expressed as

o _ 0 au+ ! ap+KaS = o +<I>82 += (3.36)
62 oa\! da phc, da da =7 802 da2) TV '

and

u 2 ot\*( 2°u +<1>'@2 e 3.37)
da> (1-uc)*\2a) \2e2 " 92 ) "W '

%p 2 at\? @_1@2u+@2p e (3.38)
a2 (1—uc)?\ da gt2  gt2) TP’ '
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where

k23
f=p, da?

_ oy?>du @ 1 \dp OJKIS
By =——=—+— —+—— ,
Jda da Jda Jda Jdada B=p,

_ 1 9%t dtd(1—uc)™! @u+¢@p 1 ot \29% 9p
ol 1—uc, da?  da da 9t 9t 1—uc, \da) 2t 9t

+AO—A_ at)? 8<I>9p+ du 2+¢8u8p
1—uc \da dx 9t dx dx dx
2(y* 2(phyH\ 2 2(phc2)™  2(v*uw)\ 2
+((YU)+¢ (py))_qu((p D s (YU))_P’
gt gt 9t 9t gt gt

= _p-lz 4 1 ot)? a<1>+7L 0% @u+¢@p
PO T 1 —ue, \ da ot “ox )\ 9t 9t )’

Substituting Egs. (3.35), (3.37) and (3.38) into Eq. (3.36) and setting a = 0 and 8 = 3,
gives

pheg

a@=1, P=0,

i = %(ﬁ)—z(y_z(azw_ —Ew) —E,—®E ) ,
4 da ), da? L

with (921 _/da?), obtained by setting 8 = B, in Eq. (3.35). Since (8%t/da?), only
depends on the initial data U;, U}, U} and the limiting values V, and (dV/da),, diz)
depends on the initial data U;, U}, U} and the limiting values V,, (V,),, (V,),, so the
proof is complete. O

and

Remark 3.3. If the right rarefaction wave associated with the eigenvalue A, appears in
the GRP then under the “reflective symmetry” transformation

P(x:t):ﬁ(_x,t): u(x,t)z—ﬂ(—x,t), P(X;t):f)(_x:t):

where (p,u,p)T and (p,i,p)T denote the respective primitive variables before and after
the reflective transformation, the above derivation can be used. (The “reflective symmetry”
transformation maps the “real” right rarefaction wave into a “virtual” left rarefaction wave,
so Proposition 3.1 is directly applied to the “virtual” left rarefaction wave, and finally the
inverse transformation gives the linear equation in (2°%u/2t?), and (2%p/2t?), for the
right rarefaction wave.)

3.2.2. Resolution of the shock waves

In this section, we resolve the right shock wave in Fig. 1 analytically using the Rankine-
Hugoniot jump conditions, and obtain the second equation in (3.9).

Let the shock trajectory associated with the eigenvalue A, be denoted by x = x,(t)
with the positive speed s := d/dtx(t) > 0 (for convenience), and the left and right states
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of the shock wave by U(t) and U(t), respectively — i.e. U(t) = U(x,(t) —0,t) and U(t) =
U(x,(t)+0,t). Obviously, U(0) = Ui, and the left and right states satisfy

— 2
u—u
(1 ) =¥(p,u;p,4), p>p, (3.39)
—uu
with u := p + pe and
(p—p)u—q)
\I/ 5 ;_,_ e T
(p.pi:p. 1) (@ +p)(u+p)

derived from the Rankine-Hugoniot jump conditions across the right shock wave, where
p > p and u > ii. Introducing the directional derivative operators along the shock trajectory

7 G, 0 9 o u— pryi
= —fs—=—+(—u)—, szu,
Dt at  Idx 9t dx PY —PY
one has
P2%u 2’y u-— 2%p
ﬁ:ﬁ |:(1—us)2+c5_2(u—s)2:| 70 +2 P 2}fz(l—us)——l-l'[ (3.40)
2 92U 2
P _ 2°p
20 —2phy6(1—us)(u—s)—+y [(1—us)2+cS 2(u—s)zJ 70 +11, (3.41)

where (2.4) has been used within the smooth region at the right-hand or left-hand side of
the shock wave, and

—us 9

Z%(Y )+ - (p Y4)}
1—us 9

2
1—u? 9t hzﬁt(y)}

1—us8u+u—s8p 8u+@5 u-—s @u+@5 @p
1-u?dx phc?dx|dx 1-u?) 9t phc

H“:(u_s)[ h2@t

2)—1

+(u—5)[ —(ph

—(u—S)[

1, =(u - 5)y? [phyz(u—s)—(y W+ —us)—(phy‘*)] =

9p

+(u—s)y? [ph}’ (u—S)—(phcz) 1+(1—us)—(Y )} o

du

—(u—s)y? |:phy2(u —s)— +(1- us)—} -—
dx

+2(ph 4(u—s))@—+z( (1—us))@p
gt \P" gt \/ 9t

The second equation in (3.9) may be derived as follows.

Proposition 3.2. The limiting values of (2°u/2t?), and (2°p/2t?), satisfy

2%u 2%p
) ) (2)
a +b =d;”, 3.42
8 ( @tz ) * . ( @tz ) * 8 ( )



110 K. L. Wu, Z. C. Yang and H. Z. Tang

where the coefficients ag), bg) depend on the initial data Uk and the limiting values V,, d}gz)
dependent on the initial data Ug, Uy, Uy and the limiting values V,, (V,),, (V,),. Their
expressions are given in the following proof.

Proof. The operation 22/9t> on the shock relation (3.39) gives

g2\ 1—-au)  9t2

where the left-hand and right-hand sides can be respectively expanded as follows:

22 (a—u\? 2?
> ( ) = —=W(p,u,p, ), (3.43)

2(a—u)(@? - 1) 22u
(1—-au)® 9t?

LHS(3.43) = g, (3.44)

with

GO ] 51— LS (@1 \Gu| M9 (a-u)]®

and

22U 92p D200 92p
RHS(3.43) =¥, ozt v, ozt v, ozt v; v
N 2V, D N 2%y Dsp N 2V, D, N 2,%5 9D

9t Dt 9t Dt 9t Dt gt gt’

(3.45)

where
2%,  (p-pP* 2@, (p—p)u—@)— phph 9;p
ot (h+pP(u+p)? ot (+p)u+p? 9t
2ph(p —p)  Dip PR ap
(G+p)u+p)? 2t  (a+p>u+p? at’
2%, _(p—p)u— @) — phph 2, (w—p? 2.
9t~ (a+pPu+p) 9t (@+pPu+p) 9t

(ph)> 9w 2ph(a—-p) 9p
(G+p2u+p)y* 2t (a+pPu+p) 7t °
2V 2ph(p—p) Dl (ph)? P,p
9t (G+pPu+p) 2t (p+p)*(u+p) ot
(®-p» 24 (p—p)u—@)—phph 2p

(@+p)*(u+p) ot (@+pPw+p)  2t’
DV (ph)? 20 | 2ph(u—p) 92p
2t (+pPw+p? 2t (A+p)(u+p)? ot

(p —p)(u— @) — phph D (B-u)?  9p

@+p)u+p2 2t  (a+p)2+p)? ot
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On considering h as a function of p and p (i.e. h = h(p, p)), we have [21]

90 _Co2 20 Cpo3 2P Cps 9P
9t  Cpp 9t Cypy 9t Cpyy @t >

pl
2:h @%_’_ 8h 5p+ 8h p3 D +%@ (3.46)
7t \9pCpr p 9p\Cpy 2t ' C,y 9t

where
g i __oh
Cor=p(h" =) =h(p =) +p2ph=p+P) 77,

oh
o2 =(hp+hp)+p(p—p— 2ph)—

) 1o oh
Co3=—p(h*—h®)+h(p —p)+p(2ph+p—p)=— R

oh
Cpa=—(hp +hp)+p(2ph+p—p)== .
op

The relation yu = p + pe = ph — p yields
4 _ h@fp p@fh 2@sp 9h  D%p
Pt2 Pt2 2t2 9t 9t 92
The differential operator 2,/%t applied to the two equations in (3.46) yield the respec-

tive expressions of 22p/9t* and 9?h/9t*, and then substituting these expressions into
Eq. (3.47) gives

(3.47)

22u [ Cpo dh dh 2p
=|—|h+p=—|+p=——-1|==+11,, 3.48
s [Cpl( pap) Pap }@tz ! (5:48)
where
2,0 9.h 9, (C 7 2, [CosD,p Cra 9P
HM —9 s0 s Th= ~p2 sp+h_s ~p3 sp_'_ﬁ sD
9t 9t 9t\C, ) 9t 9t | Cp1 9t Cpy 9t

Jh sz oh Jh p3 @sp Cp4 @sl_)
P_ Py + = p— e 2t Tc9: ) |
dpCy1  9p ap 19t Cy 9t

Substituting Egs. (3.44) and (3.45) into Eq. (3.43), from Eq. (3.48) for @Sz,u/ 9t2 we have

22u 22p
HuO% + I, = Hpow + Iy, (3.49)
where
_2@-w)(@®-1)
W (1 —qu)d
I1,, = C h+ ah + oh 1(¥v,+¥

932.‘1 95213 D5V, D DY) @ DV D DV @

My =W,11, + ¥, i .
v Pgez " P2 g gt | gt 9t | 9t 9t @ 9t Dt
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Finally, substituting (3.40) and (3.41) into (3.49) and then taking x = 0 and t — 0™, we
obtain the identity (3.42) with the coefficients

aéz) = (y“ ((1- us)® + cs_z(u — s)Z)Huo — 2phy6(1 —us)(u-— s)l'[po)* R
@ _ [ %S 200 AT N2 =200 2

by = (thcszy (1—us)yy—vy [(1 us)“+c; “(u—s) J Hpo) ,
2

dl({ ) :(HpHpO - 1_IuHuO + H\If - Hﬂu)* >

*

to complete the proof. O

Remark 3.4. For the ideal gas, we have explicitly

oh r p oh T 1

3p T'—1p2° 3p TI'—-1p°

when the coefficients al(zz), blgz) and dlgz) in the above lemma can be calculated readily.

Remark 3.5. If the left shock wave associated with the eigenvalue A_ appears in the
GRE Proposition 3.2 may first be applied to the “virtual” right shock wave obtained by
again using the “reflective symmetry” transformation given in Remark 3.3, and then the
corresponding inverse transformation to obtain the linear equation of the limiting values
(2%u/2t?), and (2°p/2t?),.

3.2.3. Approximate flux states in the GRP scheme

Let us now complete the calculation of v"1/2 and V?H’_ in (3.3), case by case. For the

non-sonic case, we require (V,,), due to (3.4), given in Theorems 3.1 and 3.2. For the
n+1/2 and Vn+1,—

sonic case, V j j will be derived differently, without using (V ;).

I. Non-sonic case

The rarefaction wave in Fig. 1 is non-sonic — i.e. A_(V,) < 0. The calculation of the
time derivatives (u,,), and (p,.), is via the following theorem for the values (@Zu/ 9 tz)*
and (22p/2t?),, which are the solutions of the linear system (3.9) derived from Proposi-
tions 3.1 and 3.2.

Theorem 3.1. Assume that the shock speed s is greater than 0. The limiting values of time
derivatives (u,,), and (p,,), are calculated from the 2 X 2 linear system

2%u
Ag(uee)s +Au(pee)s = — | =Dy,
9t* ),

2°p
Ap(utt)*+A0(ptt)>k: @tz _Dp )
*

(3.50)
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where the coefficients

Ag=((1+u0p)? +u*0,0,),, A,=(2u6,(1+ud)),, A,=(2u0,(1+udy)),
depend on V,,

©p:=—CAA) Ay +22), 0, =222 ) (A —21)®, ©,: =029,

D = 28®0+ 6 3@p+® 8®0+3®0 du
u Tt | ST T B TP Tax )1\ Bt ),

[ 00, ®8®0+e 3@u+8@u 1 (9p N Pu du
ot “ ot ©a9c " ox )] \at), \atox),’

s 23@ 0 9% 99, 26, (ou
P‘”*[ +“( e T ax)L(E)

[ 00O 00 20 009\ (9 Pu d
tu, 2= 4ul @, =L+ Og—— + —— L) (=22
| ot L\ 0t /. Pt dx

P ot ot Ox
rely on V,, (V,),, and (V,),. Here V, and (V,), can be obtained using a procedure for the
second-order accurate GRP scheme similar to that in Ref. [21], while (V ), can be calculated
using (2.5).

and

+u,

Proof. The second and third equations of (2.3) can be rewritten as

du _o 8u+® op
ax gt var’
p _du__dp

-0,—+0
ax  rgr T 9%

Taking partial derivatives with respect to t and x respectively gives

d%u d%u %p 0©,0u 0©,0p
260—+@u + - -,
otdx ot? ot>2  dt 9t  Jt It 3.51)
d%p _6 82u+® 82p+3@p 8u+8®0 op '
dtdx  Poar2 ' °ae2 ' 9t dt  at at
and
d%u 5 d%u 22 a°p
522 =(05+0,8,)5 5 +2008, 73
@ _P Y @ u u _r
+(u8t+08t a) (u8t+08t+8x)8t’
2 2 (3.52)
2<p 8 u

P ot at ax ot P ot 5t " ox )ot’
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Multiplying Egs. (3.51) and (3.52) by 2u and u? respectively, then summing using

@2_82+2 a° +282 Pu 0
22 a2 Motox Y ox2 " rox

and setting x = 0 and t — 0", we obtain the 2 x 2 linear system (3.50), to complete the
proof. O

Once the limiting values (u,,), and (p,.). are obtained by solving the system (3.50),
the evaluation of (u;y)s, (Prx)s> (Usx)s> and (py,)s follows from Egs. (3.51) and (3.52),
and (p,.)s can then be obtained as follows.

Theorem 3.2. The limiting value (p,), is given by

1 {azp d(hc?)op  3%p 3p3ds

hoc2, | 22 ot ot 08Sdp dt ot
2%p (3S\? Odp[(du  du)as 22s
_ 2 2
= —u——| == ol Bl Bl el Bl e ) 0,
(Preds = 4 “ 882(8)() +8S|:(8t uax)ax . 3x2j| i} e
1 9s50p D%p
—152 2. —1 S
m(((l—su )—1).//[1—511 .ﬁz—%a—i‘@stz)*, u, <0,
(3.53)
where S and s denote the entropy and the shock speed respectively, and
2%\ 1 ot\ 2ra%s 0 0%t 9s ny s 554
dx? *_(l_—u)ﬁ da da? 6=p, -T2 ax Sox *’ '
20\ _ @@szPJr%(@)@ser%(%@@+%@J’) , (3.55)
9t ), [ Co1 2t 2t\Cp ) 9t  Dt\Cpy 9t  Cpy Dt ) |,
with
M= 6’(u—7t_)_'_}L d(u—A1_) (w2 )8u
AT - ox T
- d(he)™? @p+ 1 d 9p Qdudp
YT 9t 9t h2dtot 3t dx’
d(hc?) 9 1 0 9p 0ud
20D o 1 2 9p augp

3x ot hZox gt dxdx
and (8%t/da?), given in Lemma 3.2.

Proof. (1). Let us first assume that u,, > 0 — i.e. the contact discontinuity is located at
the right-hand side of the t-axis (cf. Figs. 1-2). Since 2S/%t = 0, we have

05 _at(ds 35\ _ . . 0ds
da Jdal\ dt “ox) "V TH x
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Then on taking the partial derivative with respect to a and making use of (3.26), we have

2% _325_(7L )82t asﬂ/1 2 at 2825+ at 2//[ as
da? ﬁ:ﬁL_aaZ_ -T2 ax "W\ 5a) 3x2 da Sox’

leading to Eq. (3.54) on setting x = 0 and t — 0. Applying the chain rule to p = p(p,S),

we have
dp 9dpdp 8p85_h28p dp dS

ot dpdt Tasar Sar “Fsox
and

%p 282p 8(hc52)8p op du Jdu)dS 2825

— =hc?— —+—((u—-=— | —+*—

ot? S ot? adt ot 08S dx dt )ox dx?
d2%p 9p ds Zazp(aS)z

_— — — 3.56
T asaparar TV as2\ax (3.56)

The first case in (3.53) is thus proven, on reforming (3.56) and setting x =0 and t — 0™

(2). Let us now consider the case that u, < 0. When the differential operator 2,9t is
applied to the first equation in (3.46), on taking x = 0 and t — 0" we obtain Eq. (3.55).
On the other hand, since 22p /2t* may be expanded to

92 02 02 92 9.5 0
sP_2P 25— P + 52 Lt b ,
9t2  Ot? otdx dx%2 9t dx

from the first equation of (2.5) and the first equation in (2.4) we obtain

%’ ’p\ 9*p . 3%p
Fiax (’”‘W) .2 ! VZ‘“ (’”‘K”

Combining the above three equations and setting x = 0 and t — 0" give the second case
of (3.53), and thus completes the proof. O

Remark 3.6. For the ideal gas, dp/3S, 9%p/2p3S and d2p/dS? in (3.53) can be written
explicitly as

ap _ o°p _ 1 @—O

os P Gsep TP o 52T

II. Sonic case

Let us now consider that the left rarefaction wave is transonic, so that the t-axis is within
the rarefaction wave — cf. Fig. 3. In this case, the local characteristic coordinate § €
[, B1] where B, := A_(U,) is still needed, but the results in Propositions 3.1 and 3.2
are no longer available. Moreover, the Jacobian matrix A(V) in (2.5) is singular at the
sonic point u = ¢, so that the limiting value (V,), or (V,,), cannot be calculated in the
same way as in the non-sonic case. To avoid this difficulty, alternative third-order accurate
approximations of V(:,t, + At/2) and V(-, t, + At) are introduced to replace ytl2 op
V™1~ in (3.4) to resolve the GRP (3.6) as follows.
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0 P

Figure 3: Schematic description of a local wave configuration for the GRP in the sonic case.

Theorem 3.3. The directional derivatives of V along the characteristic curve A_ = f3 at the
point (0, ) are

2+ _(0,8) —K(0,6)2-5(0,5)

2_u(0,B) = 27200.6) , (3.57)
2_p(0,8) = (phr?c;) 4o 2-u(0, ), (3.58)
9_p(0, ) — 2£(0, $)2_5(0, )
7-p(0.F)= 70, )220, B) ’ (3:59)
with
at 1/;_ at -1 3s
L

where 2_V(0, ) := (8, + A_0,)Vv(0, [3’), aa ——(0, B) is given by (3.25), and f5 € [B;, 1]

Proof. Using relation (2.9) and the first equation of (2.3) gives

7 _ 2 + 1 2p (3.61)
Pt =7 9t  phe, 9t '
Combining this identity with the second and third equations of (2.4) we obtain
9u ou 9u  c(1-u? 9u 1 9p
DI u=—+(A_- —:—+5—2 —_—t —
T ( u) ox 9t 1—uc ’ (u@t phy?c? @t)
1—u? 2 9u 1 9 1—u? o_
_ 22t = TP 7%~ i (3.62)
1 —uc; 9t  phe, Dt 1—uc, 9t
9p op 9p Cq 5 9u 9p
9 p=—+A_—u)=—=— — tu—
P= g T AT = o T T (P g T
hc 9u 1 9 he, 2 _
= P 2 4 ZP) - P _@L’ = phy®c,?2_u, (3.63)
1 —uc 9t  phe, 9t 1—uc, 9t
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where the second equation yields (3.58) on setting @ = 0. Then combining Egs. (3.62)
and (3.63) and using the relation (2.9), we obtain

1 _
DAY =v*P_u+ D p+KP_S= L+K@ S,
phc 1—uc, 9t
or equivalently
2¢Y_ 1 —uc
— = 2 Y_—K92_5), 3.64
71 5 (2 ) (3.64)

and substituting this equation into (3.62) and setting a = 0 gives (3.57). Applying the
chain rule to p = p(p, S), we obtain
9p=29 0+ Pg s—hto p+La s, (3.65)
P=5,7P T 55 7P T 55 '
which can be reformed to give (3.59) on setting a = 0. Consequently, the first equation in
(3.10) yields

aw__at@ 88__8t@ (3.66)
da da ¥, da da )
and we have (3.60) to complete the proof. O

The following results may likewise be obtained.

Theorem 3.4. The second-order directional derivatives of V along the characteristic curve
A_ = f3 at the point (0, 3) can be calculated by

2%u(0, B) =2 L (1_“5 (2__—K9 s))(o B)
- "\ 1 —uc 2 T - ’
_—92_K2_S—-K%2%5)(0,8)
)
+ﬁ@ (1 —uc)(2__ —K2_5)(0,B), (3.67)

2?p(0, 8) =2_(phy*¢;)(0, B2 _(0, B) + (phr?c;) 4o 2> u(0, ) , (3.68)
2%p(0 [J’)Zi(@zp 9_(he¢)2_p—9 (8p)@ 5_8_@2 )(0 B), (3.69)

7T he? “\as s '

with

2 _(ot Zw_
224_(0,p) = 8a(0’ﬁ) ——5(0.8) - (o BI2-1(0, ) (3.70)

) ot -2 825 2%t
2°5(0,B) = (%(O,ﬁ)) ( 72| @(O,ﬁ)Q_S(O,ﬁ)) , (3.71)
L

where 22V (0, B) := (3, + A_3,)?v(0, [3) 2(0 B) and a 1!) —(0, ) are given by (3.28) and
(3.35) respectively, and 8 € [B;, B1]-
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Proof. Taking the directional derivatives of (3.62) and (3.63) respectively along the
characteristic curve A_ gives

1—-u?\ 2v9_ 1—u? DY _
P*u=9_ v + D_ v , (3.72)
1 — uc 9t 1 — uc 9t

9_p =9_(phy*c)2_u+ phy*c,2%u,, (3.73)

where the second equation leads to (3.68) on setting a = 0. Applying the differential
operator Z_ to Eq. (3.64) gives
2_(1 —uc,)

DY _ 1—-uc , , 9 _
_ = _—9_K9_S—K%P28
2 (@t) (929~ 9.K9_5 ~K9?5) + T

(92y_—-K92_S),

and substituting this equation and Eq. (3.64) into Eq. (3.72) and setting a = 0 yields
(3.67). Similarly, from Eq. (3.65) we have

G} i
2*°p=9_(he2)D_p+he?P*p+9D_ (—p) 9_S+ —p@ﬁs ,

as a8

which can be reformed to give Eq. (3.69) on setting a = 0. Taking the partial derivatives
of the two identities in (3.66) with respect to a and using the first relation of (3.10) gives

2% 9%t at\?

Fr ﬁ@—lp + (%) 27,

a%s :325232t@5+(ﬁ)2@25
da? . da?  da? da -’

whence Egs. (3.70) and (3.71) respectively on rearranging and setting o = 0, to complete
the proof. O

At the point (xg(7), ) on the characteristic curve A_ = 3, § € [8;,4;] and 7 = At/2,
the value of V can be approximated to third-order accuracy by

2
V(xg(1),7) ~ V(0, B) + 2_V(0, )7 + 22 V(0, /5)% —V(B,7).

On the other hand, integrating dxg(t)/dt = A_(xg(t), t) with respect to t yields

xﬁ(r)zfo A_(xp(1), 1) dt:f0 (A-(0,8)+2_2_(0,B)t) dt + 0(7>)

2
~2_(0,B)T + @_A_(O,ﬁ)% —: %(B,7).

Consequently, for T = At/2 and At, employing respectively the Lagrange interpola-
tion to the three-point set {(X¥(3,7),V(f, 7)), 8 = fB;,0, B} gives corresponding quadratic
polynomials approximating V(x, ) — providing third-order accurate approximations for
the values V(x, 7) at x = 0, as alternatives of V**/2 and v"*1~ in (3.4).
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III. Acoustic case

Let us now consider the acoustic case of the GRP (3.6) — i.e. Uy = Ug, and U} # U]i2 or
U’L’ # Ug. It is simpler than the general case previously discussed, because U; = U, = Uy
and only linear waves emanate from the origin (x,t) = (0,0). For simplicity, we omit
the ubscripts L, R, * to the variables U or V etc., because U; = U, = Ugi. Without loss
of generality, assume we have the limiting value (V,),, and A_(U) < 0 and A,(U) > 0
corresponding to the local wave configuration — cf. Fig. 4.

Since the solution U(x, t) is continuous across the characteristic curves A, the k—order
total derivatives along the trajectory x’(t) = A4 of the variable u or p satisfy

{ (3 +2-8)u), =HO~(W, (B +2,8)u), =HP* W), (3.74)

(@ +2-8)¢p), =H®(p), ((8,+ 2430 p), =H®(p),
where,k = 1,2, and
H®OF (@) := ((6, + A, 8) @), H® (@) := ((6, + A_3)®@), ,

in which @ = u or p. The time derivatives in H*»*(@) may be replaced with correspond-
ing spatial derivatives by using (2.5) in the left and right smooth regions shown in Fig. 4,
so that H®~ (@) (resp., H®)"* (@) ) for k = 1,2 may be calculated directly according to
the initial data Uy, U’ ,U7 (resp., Ug, Uy, Up).

t

Ul
U2

ur

Upr

3 "
Figure 4: Schematic description of a local wave configuration for the GRP (3.6) in the acoustic case.
From (3.74) with k = 1, we have the limiting values (u, ), and (p, ), as follows:
(). =(HDT @) - HDO W) /(A4 - 2),
(P)s =(HDF(p) = HD=(p)) /Ay — 2.

On the other hand, differentiating p = p(p,S) with respect to x, using (2.6), and then
setting x =0 and t — 0™ leads to

op 1 (dp JpadS
) ==(=-==]. 3.75
(ﬁx)* hcf(ax 853)()* (3.75)
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Because 25/%t = 0 and the entropy S is continuous across the A, characteristic curve,
we have

1 CR— (S +2-8) =(Sx)p, u>0,
(S, )*_ (S +2A:8,), = - (3.76)

:I:

7 (St+7t+S )r=(S¢)r, w<O.
+

Substituting into (3.75) then gives
1
P ((px)* _pS(Sx)L) s Up > 0 5
(px)* = 1s
F ((px)* - pS(Sx)R) s Uy < 0.
S
Using the known values V,, (V,),, and (V, ), gives the limiting values (V,,), as follows.

Theorem 3.5. If A_ < 0 and A+ > O, then (u;,), and (p;.), can be obtained by solving a
6 X 6 linear algebraic system:

1 Aj_ 0 0 24 0 \ [ ().
1 22 0 o0 21 O (),
0 0 1 AZ— N (Pee)x
0 o0 1 /12 0 22, (Pyy), | = Brbs> (3.77)
Ap+A A xx )%
0 +2 0 === CI) 1 0 (utx)*
Ay—A_ A +7L
N 0o 1 )\ (e

where the six-dimensional vector By, depends on the initial data Uy, U}, U7}, Ug, Uy, Uy and
the known limiting values V,, (V,),, (V,),. The limiting value (p,,), is calculated as

1 1
(pu)*—hz{ ] (0 =107 =1 Sy + 5750 (@ =) ) |

2

+(Peeds — ((hcsz)tpt)* 950,

8
53PS S5 (S, )Z} , (3.78)

where the subscript Z and Y are respectively taken as L and — if u, > 0, R and + otherwise.

Proof. (1). Using (3.74) with k = 2 and the relation

o2 N
(8, + 220,)% = 8% + 2282 +22,.8,0, +( ati As ai)a
X

gives

(82 +220u), +225(ty), =HPF (1) = (8,25 + Az 0, A). (),

(3.79)
(02 +22020p) , + 227 (ue)e =HPF(p) = (8,27 + A0 25) (P
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Utilizing the second and third equations in (2.5) gives

Jtax | 2 ax2' 2 Yax- 2 ax ox ox\ 2 ax’

’p A +A_0%p A —A_0% 10(A,+A_)dp 0O (A+—A_)3u

dtox | 2 ax2 7 206 ax2 2 ox ax oax\ 20 Jax

0% A +A 0% A —A_ 3%  10(A,+A)du @ 7L+—A_¢)8p

Combining the above equations at x = 0,t — 0" with (3.79) yields the 6 x 6 linear system
(3.77).

(2). Applying the chain rule to p = p(p, S), using (3.56) and setting x =0 and t — 0"
gives

(82p) 1 {82p d(hc?)dp  3%p 0p3dS 282p(85)2
« h

o2 ot 9t dt 0Sdp dt ot - 0s?\ ax

+8p du  du\ods ,0%S (3.80)
as[\at "ox)ox " o], '

and (92S/0x?), may be calculated as follows. Assume that 1, > 0. Since the entropy S is
continuous across the characteristic curve A_, we have

T2
CS,*

(B, +2_3,)*S), = ((6,+A_08,)%S), .

Inserting the relation

, as
(8, + A_08,)%S =(8, + 1_3,) ((A_ - u)a)

=((8, + 2_3.)(A o3 A 3, +A_0 o3
=((8; +2_3,) _—u))awt( O CRRCN

22s ]

S a8
=0 WP W= A5+ (6 280 —w) 3

u
Jox dx

into the previous identity, and using (3.76) and the continuity of c, across the characteristic
curve A_, therefore gives

(Sxx)* = (Sxx)L + (A'— - u)_l(sx)L ((ux)* - (ux)L) .

Similarly, for the case of u, < 0 one has

(Sxx)* = (Sxx)R + (A+ - u)_l(sx)L ((ux)* - (ux)R) .

Then substituting into (3.80) and using (3.76) gives (3.78), so the proof is complete. [
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Table 1: Example 4.1: I? errors in the density and convergence rates at t = 0.5 for GRP3, where p =1,
2, 00.

N [®—error [®-order I!'-error I'-order [’-error [’-—order

10 1.6917e-03 - 8.9413e-04 - 1.0517e-03 -

20 7.0977e-05 4.5750 3.5562e-05 4.6521 4.1823e-05 4.6523

40 3.2126e-06 4.4655 1.8519e-06 4.2632 2.0813e-06 4.3287

80 2.5675e-07 3.6453 1.5598e-07 3.5696 1.7319e-07 3.5871
160 2.7270e-08 3.2350 1.7154e-08 3.1847 1.9052e-08 3.1844
320 3.2629e-09 3.0631 2.0734e-09 3.0485 2.3029e-09 3.0484
640 4.5562e-10 2.8402 2.5738e-10 3.0100 2.8634e-10 3.0077
1280 5.3119e-11 3.1005 3.3817e-11 2.9281 3.7561e-11 2.9304
2560 6.3823e-12 3.0571 4.0583e-12 3.0588 4.5077e-12 3.0588

4. Numerical Experiments

We have solved several cases of the 1D RHD equations (2.1), to verify the accu-
racy and the discontinuity-resolving capability of the proposed third-order accurate GRP
scheme (henceforth abbreviated “GRP3”), in comparison with the second-order accurate
GRP scheme (abbreviated by “GRP2”) [21]. Unless specifically stated, all computations
were restricted to the equation of state (2.2) with the adiabatic index y = 5/3, and the
CFL number C.f = 0.4 for GRP3, while the parameters in GRP2 are the same as those in
Ref. [21]. The numerical solutions obtained via GRP2 and GRP3 respectively are annotated
by the symbols “x” and “o” below, while the exact or reference solutions are represented
by the solid lines.

Example 4.1 (Accuracy test). This example is used to check the accuracy of the GRP3 for
the smooth solution

V(x,t) = (1+0.2sin (27(x —ut)),0.2,1) ",

which describes a sine wave propagating periodically within the domain Q = [0,1]. The
computational domain (Q is divided into N uniform cells and periodic boundary conditions
are specified. Table 1 gives the [P errors in the density and corresponding convergence
rates for GRP3, where p = 1, 2, co. The data show that the convergence rate can be almost
of third-order.

Example 4.2 (Riemann problem I). The initial conditions of the first Riemann or (rela-
tivisitc) shock tube problem are

(10,0,40/3)Y, x<0.5,

(4.1)
(1,0,107°9T,  x>0.5,

V(x,0) = {

which will evolve as a left-moving rarefaction wave, a constant discontinuity, and a right-
moving shock wave.
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Figure 5: Example 4.2: density p, the velocity u, the pressure p and internal energy e at t = 0.4 with
400 uniform cells.

Fig. 5 displays numerical solutions at t = 0.4, obtained using GRP3 and GRP2 with 400
uniform cells, seen to be in good agreement with the exact solutions. Evidently, GRP2 and
GRP3 can well resolve discontinuities.

Example 4.3 (Riemann problem II). This is a ultra-relativistic (i.e. y > 1) shock tube
problem similar to Example 4.2, but more extreme and difficult. The initial conditions are

(10,0,109)T, x<o0.5,

V(x,0)=
(x,0) (1,0,1072)T, x>0.5.

4.2)

Fig. 6 shows the numerical solutions at t = 0.4, obtained using GRP3 and GRP2 with
400 uniform cells, and again showing good agreement with the exact solutions. Due to
the appearance of the ultra-relativistic regime, the initial discontinuity evolves a heavily
curved profile for the rarefaction fan and two strong discontinuities. It is seen in Fig. 6(a)
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Figure 6: Example 4.3: density p, the velocity u, the pressure p and internal energy e at t = 0.4 with
400 uniform cells.

that GRP3 has a better resolution for the sharp solution p near the right-hand side of the
contact discontinuity. The CFL number C.¢; = 0.3 for GRP3 in this computation.

We see that the main differences between the solution of relativistic shock tube prob-
lems and their non-relativistic counterparts are due to the nonlinear addition of velocities
and the Lorentz contraction — the first feature yields a curved profile for the rarefaction
fan, as opposed to a linear one in the non-relativistic case; the second latter narrows the
shock plateau. These effects, especially the narrowed shock plateau, become particularly
noticeable in the ultra-relativistic regime.

Example 4.4 (Riemann problem III). Another Riemann problem involved the initial data

(1,-2,0.4)", x<o0.5,

V(x,0)=
(x,0) (1,2,0.4)7, x>0.5,

(4.3)

growing into both left- and right-moving rarefaction waves such that the low density region
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Figure 7: Example 4.4: density p, the velocity u, the pressure p and internal energy e at t = 0.4 with
400 uniform cells.

appears around x = 0.5. Fig. 7 presents the density, velocity, pressure and internal energy
at t = 0.4 obtained using GRP3 and GRP2 with 400 uniform cells. We see that both GRP
schemes can well preserve the positivity of the density and the pressure. Although there
exists serious undershoots in the density at x = 0.5 for the two schemes, GRP3 produces a
relatively good approximation. The CFL number C.g = 0.3 for GRP3 in this computation.

Example 4.5 (Density perturbation problem). This is a more general Cauchy problem ob-
tained by including a density perturbation in the initial data of the corresponding Riemann
problem [23] in order to test the ability of the shock-capturing schemes to resolve small-
scale flow features, which may give a good indication of the numerical (artificial) viscosity
of the scheme. The initial data taken were

(5,0,50)7, x<0.5,

V(x,0)=
(x,0) (24 0.35in(50x),0,5)T, x>0.5.

(4.4
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Figure 8: Example 4.5: density p (and its close-up), the velocity u, and the pressure p at t = 0.35 with
400 uniform cells.

Fig. 8 shows the numerical results at t = 0.35 obtained using GRP3 and GRP2 with 250
uniform cells, where the reference solutions (solid lines) obtained by GRP2 with 2000
uniform cells are also displayed for comparison. It can be seen that GRP3 resolves the high
frequency waves much better than GRP2.

Example 4.6 (Collision of two relativistic blast waves). The last example simulated the col-
lision of two strong relativistic blast waves [12]. The initial data for this initial-boundary-
value problems were consisting of three constant states of an ideal gas with I' = 1.4, at
rest in the domain [0, 1] with outflow boundary conditions at x = 0 and 1. The density
is everywhere unity, and the pressure is 1000 for 0 < x < 0.1, 100 for 0.9 < x < 1, and
0.01 in the intervening interval. Two strong blast waves develop and collide, producing a
new contact discontinuity. Fig. 9 gives a close-up of the numerical solutions obtained at
t = 0.43 using GRP3 and GRP2 with 2000 uniform cells, where the solid lines denote the
exact solutions. We see that both GRP schemes can well resolve the discontinuities, and
clearly capture the relativistic wave configurations generated by the interaction of the two
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Figure 9: Example 4.6: close-up of the numerical solutions at t = 0.43 with 2000 uniform cells.

strong relativistic blast waves, with GRP3 exhibiting a little better resolution than GRP2.
The CFL number C.g = 0.3 for GRP3 in this computation.

5. Conclusions

Relativistic hydrodynamics (RHD) plays a major rule in many fields of modern physics
such as astrophysics, high-energy or nuclear physics and its numerical simulation is in-
dispensable. In this article, a third-order accurate direct Eulerian generalised Riemann
problem (GRP) scheme is analytically derived for the 1D special RHD equations. The
higher-order WENO initial reconstruction is employed, and the local GRPs in the Eulerian
formulation are directly and analytically resolved to third-order accuracy via the Riemann
invariants and Rankine-Hugoniot jump conditions, to get the approximate states for the
fluxes. In comparison to the second-order accurate GRP scheme proposed in Ref. [21], in
the non-sonic case the limiting values of the first-order and second-order time derivatives
of the fluid variables at the singular point are derived for the calculation of the approximate
states. Unfortunately, for the transonic case where a rarefaction wave appears in the local
GRE the Jacobian matrix in (2.5) is not always nonsingular within the transonic rarefac-
tion wave, so that the first-order spatial derivatives and the second-order time derivatives
of fluid variables cannot be calculated. For this reason, the approximate states in the nu-
merical fluxes are obtained differently, based on the analytical resolution of the transonic
rarefaction wave and quadratic polynomial interpolation within the transonic rarefaction
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wave. Several numerical examples are provided to demonstrate the accuracy and effec-
tiveness of the proposed GRP scheme, in comparison to the earlier second-order accurate
GRP scheme [21]. Our results show that the proposed third-order accurate GRP scheme
is more accurate, with higher resolution but with a more technical derivation than the
second-order accurate GRP scheme.
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Appendices

A. Derivation of j—ig(o, B.) in (3.28)

Due to (3.15), one can derive the asymptotic expressions of dx/da and dt/da for
substitution into the first equation of (3.10), to get

. b dw de 5
BB, " exp Jmm +2ae(a,[5)+%(a,/5)a

1 p dw an 5
:A_(a,/a’)(ﬁL exp 0.0 —w +2an(a, f) + 7 (o, fa ) :
B ?

Introducing Taylor expansions of A_(a, 3), e(a, ) and n(a, ) aboyt a = 0 and neglecting
the 0(a?) terms, we have

2¢(0,8) = 2Bn(0 6’)L‘o -1 ’ deo Al
€(0,8) =2fn( ,/5)"‘%( ,B)B, " exp ﬁLm . (A1)

On setting 8 = f8;, and considering e(a, 3;) = 0 obtained by comparing the second equa-
tion at (a, ;) in (3.15) to x(a, B;) = x,(a, ;) = a, one has

. 1,00 1 oA
n(0,B,) = B3, E(O’ﬁL)_EﬁL E(O’ﬁL):_EﬁL %(0,/50- (A.2)

Thus from the first equation of (3.15), it follows that

9%t _, o A
52008 =20(0.8,) = B2 S =(0.6,). (a3)
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B. Calculation of m(o B) in (3.30)

For the ideal gas law (2.2), using (2.8) and (2.12) we have

wizéln(if ):F(r 1)_1/21n(—g:31j2f:), (B.1)
yielding
W +1/)+—1n( J”‘) W —p, = 2T — 1)1 (H—iifz) (B.2)
and
o 1 2 o,
:W( ﬁ)_Tfa’)aﬁ( /5)+ 1_652(0,[3,)%(0,/5), (B.3)

on setting a = 0 and taking partial derivative of vy_ with respect to . On the other hand,
using

u(0,8) — (0, 8)

e Y DTN
or equivalently,
_ B+¢(0,8)
OB = e 0.5)
one has
LT P 1) N ol L 1038 8.4
""" (1+Pc(0,8)%  (1+Bc(0,8))? 0B '
Combining (B.3) and (B.4) gives
du B 1-c? dcg B -1 .
ap )= (14 o y? 4 o0 ° ap 0F)= | - p2 4 2B P (B-5)

2(1-u?) r-1—c2

where the values of u and ¢, are taken at the point (0, ).
Taking partial derivative of the first equation in (B.2) with respect to a then gives

ou_ 1. o (0% Oy
%_2( )( da 8a)’

which yields

d%u _ 1 2 52¢+ 521.[’— oY,  IdyY_
3a3/5(0’ﬁ)_(§(1_u)(3a3[3’+8a8ﬁ) 8/3( t o0 ))(Oﬁ) (B-6)
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on considering its partial derivative with respect to 8 and setting a = 0. Similarly, consid-
ering the second equation in (B.2) we have

F—l—cs2 32¢_ 821/)-1- 2, dc, e,
_( 4 (3a3ﬁ_3aaﬁ)_r_1 250(3[5)(0/3) (B.7)

S o
dadp "’

, ZL(0,p) and 2 (o B), 55(0,8) in (B.6)-

d2c,
25.(0,8)
can be calculated from (B.6) and (B.7), respectively. Based on these limiting values, the

(B.7) were given in Lemma 3.1 and Eqs. (B.5) respectively, s

calculation of —(0 f) in (3.30) may be completed using
%_ _ 1 (1- - d2¢, 9 du dc N du dc
0adf  (1—uc,)? da 5/5 Yoo " ““opoa “oadp

T ((1 2)——(1_u2)a%)(@ a%)
(1 - uc,)? ap ap da

derived by taking the mixed second partial derivative of the first equation in (2.2) with
respect to a and § and using of the chain rule.
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