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Abstract. In this short note, we study a relation between the tensor product of matrices

and a multilinear map defined by the optimal operator. In this particular case, the linear

transform (mediating morphism) hidden in the abstract definition of the general tensor

product can be determined explicitly.
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1. Introduction

Many preconditioners have been proposed in structured matrix computations since

1986 [13]. Among them, the most famous ones are Strang’s circulant preconditioner [13],

the optimal preconditioner [3] and the superoptimal preconditioner [14]. In this note, we

concentrate on the study of a multilinear operator defined by the optimal preconditioner.

Thus given a unitary matrix U ∈ Cn×n, let

M U ≡
�

U∗ΛU | Λ is any n× n diagonal matrix
	

. (1.1)

For an arbitrary matrix A ∈ Cn×n, the optimal preconditioner cU(A) is defined to be the

solution of

min
W∈MU

‖A−W‖F , (1.2)

where ‖ · ‖F is the Frobenius norm and W runs over MU [1, 3]. Computational and

mathematical properties of the optimal preconditioner cU (A) have been studied exten-

sively [1,2,4,5,11], and it has also been considered from an operator viewpoint [8,10].
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In this short note, we study a relation between a multilinear map f defined by the

operator cU and the tensor matrix product ⊗, and seek an exact form of the mediating

morphism g such that f = g ◦ ⊗. Matrices with tensor structure can be solved efficiently

by the optimal preconditioner [9], and such matrices have many practical applications

— e.g. see [6] for an application to the inverse heat problem. We believe the result in

this paper may give some insights for designing preconditioners for these matrices. Some

preliminaries related to the concepts involved are reviewed in the next section, and our

main results are given in the subsequent section.

2. Preliminaries

Some important properties of the optimal preconditioner cU (A) defined by (1.2) are

first summarised. We use δ(A) to denote the diagonal matrix with diagonal the same as

the diagonal of the matrix A — i.e. if A= (apq), then

δ(A) =













a11

a22

. . .

ann













.

The following result can be found in Refs. [1,8,10].

Theorem 2.1. For arbitrary A= (apq) ∈ C
n×n, the optimal preconditioner cU(A) is uniquely

determined by A and given by

cU(A) = U∗δ(UAU∗)U . (2.1)

Proof. For the completeness of this note, we include the following brief proof. Noting

that the Frobenius norm is unitary invariant,

‖W − A‖F = ‖U
∗ΛU − A‖F = ‖Λ− UAU∗‖F .

Since Λ can only affect the diagonal entries of UAU∗, the minimizer of ‖Λ− UAU∗‖F over

all diagonal matrices is Λ = δ(UAU∗), so cU(A) = U∗δ(UAU∗)U .

Suppose now that the Banach algebra of all n× n matrices over the complex field is

equipped with a matrix norm ‖ · ‖ and denoted by (Cn×n,‖ · ‖); and let (MU ,‖ · ‖) be the

sub-algebra of (Cn×n,‖ · ‖), whereMU is defined by (1.1). Then obviously, cU is a linear

operator from (Cn×n,‖ · ‖) into (MU ,‖ · ‖). We call cU the optimal operator, and there is

the following theorem on properties involving the operator norms of cU — cf. Refs. [1,8]):

Theorem 2.2. We have

(i) ‖cU‖F ≡ sup
‖A‖F=1

‖cU(A)‖F = 1 ; and

(ii) ‖cU‖2 ≡ sup
‖A‖2=1

‖cU (A)‖2 = 1, where ‖ · ‖2 is the l2 norm of the matrix.
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We now turn to review some basic concepts for the tensor product. Suppose that

V1, · · · ,Vk and W are vector spaces. A function f : V1× · · ·×Vk→W is called multilinear

if it is linear in each coordinate separately — i.e. if

f (v1, · · · ,v j−1,αu1 +βu2,v j+1, · · · ,vk)

= α f (v1, · · · ,v j−1,u1,v j+1, · · · ,vk) + β f (v1, · · · ,v j−1,u2,v j+1, · · · ,vk)

for all j = 1, · · · , k. The general definition of the tensor product is given via its universal

property.

Definition 2.1. (cf. Refs. [7, 12]) A pair (X ,h : V1 × · · · × Vk → X ) is universal for

multilinearity if for every multilinear map f : V1 × · · · × Vk → W there is a unique linear

transformation g : X → W for which f = g ◦ h. The map g is called the mediating

morphism for f . If (X ,h) is universal for multilinearity, thenX is called the tensor product

or Kronecker product of V1, · · · ,Vk and denoted by

X ≡ V1⊗ · · · ⊗ Vk .

The map h is called the tensor map — cf. the following graph:

V1× · · · × Vk

W

X = V1 ⊗ · · · ⊗ Vk

f g

h

When the vector spaces under consideration are spaces of matrices, the tensor product

can be obtained more concretely. In fact, if A= (ai j) ∈ C
p×q and B ∈ Cp′×q′ then

A⊗ B =













a11B a12B · · · a1qB

a21B a22B · · · a2qB
...

...
...

ap1B ap2B · · · apqB













, (2.2)

which is a pp′ × qq′ matrix.

In the next section, we consider a multilinear map defined by the optimal operator cU

on the Cartesian product of Cn×n, and explicitly determine the corresponding mediating

morphism that is guaranteed in Definition 2.1.
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3. The Mediating Morphism of the Multilinear Optimal Map

In this section, we consider the tensor product on V = Cn×n. For simplicity, we first

consider the tensor product of two matrix spaces. Let f denote a bilinear map from V ×V
toMU defined by

f (A, B) ≡ cU(A)cU(B) . (3.1)

We call f the bilinear optimal map, and now seek the mediating morphism (a linear map)

g from V ⊗V toMU such that f = g ◦ ⊗— cf. the following graph:

V ×V

MU

V ⊗V

f g

⊗

To construct this corresponding mediating morphism g, we start with a general stan-

dard approach. For i, j ∈ {1, · · · , n} let Ei j = eie
T
j , where {e j | j ∈ {1, · · · , n}} is the

standard basis of Cn×1 = Cn (column vector space). Then {Ei j | i, j ∈ {1, · · · , n}} is a basis

of V and {Ei j ⊗ Est | i, j, s, t ∈ {1, · · · , n}} a basis of V ⊗V , respectively. In this setting, for

arbitrary A= (ai j), B = (bst) ∈ V one has

f (A, B) =cU

� n
∑

i=1

n
∑

j=1

ai j Ei j

�

· cU

� n
∑

s=1

n
∑

t=1

bst Es,t

�

=

n
∑

i=1

n
∑

j=1

n
∑

s=1

n
∑

t=1

ai j bstcU (Ei j) · cU(Es,t)

and

A⊗ B =

n
∑

i=1

n
∑

j=1

n
∑

s=1

n
∑

t=1

ai j bst Ei j ⊗ Est ,

so if we define the linear map g̃ from V ⊗V toMU by

g̃(A⊗ B) ≡
n
∑

i=1

n
∑

j=1

n
∑

s=1

n
∑

t=1

ai j bst

�

cU (Ei j) · cU(Est)
�

(3.2)

then we immediately get f (A, B) = g̃(A⊗ B).

Theorem 3.1. For arbitrary matrices A, B ∈ V , consider the bilinear optimal map f defined

by (3.1). Then the mediating morphism g̃ for f is given by (3.2).
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Although Theorem 3.1 has provided the mediating morphism g̃ of f in terms of the

basis of V ⊗ V , it is more desirable to find an exact form of this linear map using matrix

operations, because the linear space under consideration consists of matrices. Instead of

deducing the exact form of the linear map from (3.2), we construct the linear map exactly

using matrix notation in the following theorem.

Theorem 3.2. For arbitrary A, B ∈ V , consider the bilinear optimal map f defined by (3.1).

Then the mediating morphism g for f is given exactly by

g(A⊗ B) ≡ U∗
� n
∑

j=1

e j ⊗ e j · e
T
j

�T

δ
�

(U ⊗ U)(A⊗ B)(U∗ ⊗ U∗)
�

� n
∑

j=1

e j ⊗ e j · e
T
j

�

U .

Proof. For B1, B2 ∈ V , from (2.2) it is easy to see that

δ(B1 ⊗ B2) = δ(B1)⊗ δ(B2) .

We can use this property to obtain

g(A⊗ B) =U∗
� n
∑

j=1

e j ⊗ e j · e
T
j

�T

δ
�

(UAU∗)⊗ (UBU∗)
�

� n
∑

j=1

e j ⊗ e j · e
T
j

�

U

=U∗
� n
∑

j=1

e j ⊗ e j · e
T
j

�T

δ(UAU∗)⊗ δ(UBU∗)

� n
∑

j=1

e j ⊗ e j · e
T
j

�

U

=U∗
� n
∑

j=1

e j ⊗ e j · e
T
j

�T







n
∑

j=1

δ(UAU∗)⊗ δ(UBU∗) · e j ⊗ e j · e
T
j





U

=U∗
� n
∑

ℓ=1

eℓ · e
T
ℓ ⊗ eT

ℓ

�







n
∑

j=1

(UAU∗) j je j ⊗
�

(UBU∗) j je j

�

· eT
j





U

=U∗







n
∑

j=1

(UAU∗) j j(UBU∗) j je j · e
T
j






U

=U∗δ(UAU∗)δ(UBU∗)U

=U∗δ(UAU∗)U · U∗δ(UBU∗)U

=cU(A)cU(B) = f (A, B) ,

where we have used (2.1) and (3.1) in the last line. This yields the given result.

For a tensor product involving more than two matrix spaces, with slight modifications

of the proof for Theorem 3.2 one can show that the following theorem holds:

Theorem 3.3. For arbitrary matrices A1, · · · ,Ak ∈ V , suppose the multilinear optimal map

is defined by

f(A1, · · · ,Ak)≡ cU (A1) · · · cU(Ak) .
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Then the mediating morphism g for f is given by

g(A1 ⊗ · · · ⊗ Ak) = R∗δ
�

(U ⊗ · · · ⊗ U)(A1 ⊗ · · · ⊗ Ak)(U
∗⊗ · · · ⊗ U∗)
�

R ,

where

R=







n
∑

j=1

e j ⊗ · · · ⊗ e j · e
T
j





U .
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