
East Asian Journal on Applied Mathematics Vol. 4, No. 1, pp. 52-68

doi: 10.4208/eajam.280313.061013a February 2014

Fast Exponential Time Integration for Pricing

Options in Stochastic Volatility Jump Diffusion

Models

Hong-Kui Pang1 and Hai-Wei Sun2,∗

1 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, China.
2 Department of Mathematics, University of Macau, Macao, China.

Received 28 March 2013; Accepted (in revised version) 6 October 2013

Available online 24 February 2013

Abstract. The stochastic volatility jump diffusion model with jumps in both return and

volatility leads to a two-dimensional partial integro-differential equation (PIDE). We

exploit a fast exponential time integration scheme to solve this PIDE. After spatial dis-

cretization and temporal integration, the solution of the PIDE can be formulated as

the action of an exponential of a block Toeplitz matrix on a vector. The shift-invert

Arnoldi method is employed to approximate this product. To reduce the computational

cost, matrix splitting is combined with the multigrid method to deal with the shift-

invert matrix-vector product in each inner iteration. Numerical results show that our

proposed scheme is more robust and efficient than the existing high accurate implicit-

explicit Euler-based extrapolation scheme.

AMS subject classifications: 91B28, 62P05, 35K15, 65F10, 65M06, 91B70, 47B35

Key words: Stochastic volatility jump diffusion, European option, barrier option, partial integro-

differential equation, matrix exponential, shift-invert Arnoldi, matrix splitting, multigrid method.

1. Introduction

In 1973, Black and Scholes [4] inytoduced a model to compute the price of a European

option in the finance industry. Later empirical evidence indicated that the model assump-

tions on log-normality of the return of the underlying asset and constant volatility are

usually inconsistent with market prices [24, 29]. Several extensions of the Black-Scholes

model have been proposed. Examples include the jump diffusion [19, 24] or pure jump

Lévy models [2, 6, 7, 11, 23], the stochastic volatility (SV) model [15, 18], the stochastic

volatility with jumps in return (SVJ) model [3], and the stochastic volatility with correlated

and contemporaneous jumps in return and variance (SVCJ) model [10,13]. Of these, the

SVCJ model usually offers a much better match with market prices than the others, since

∗Corresponding author. Email addresses: panghongkui�163.
om (H.-K. Pang), HSun�uma
.mo (H.-W. Sun)

http://www.global-sci.org/eajam 52 c©2014 Global-Science Press

Fast Exponential Time Integration for Pricing Options 53

it allows the volatility to be stochastic and can capture the jumps in both the return and

variance very well. In this article, we consider option valuation in the SVCJ model.

One way to price options involves solving a partial integro-differential equation (PIDE).

For the SVCJ model, the corresponding PIDE is a two-dimensional equation involving

a convolution integral defined over an infinite domain. D’Halluin et al. [9] proposed a

second-order Crank-Nicolson scheme and Rannacher time-stepping to approximate PIDE,

but direct application of the Crank-Nicolson scheme to the PIDE arising in the SVCJ model

would suffer from the inversion of a block dense matrix at each time step. Andersen & An-

dreasen [1] used an operator-splitting approach combined with the fast Fourier transform

(FFT) evaluation of a convolution integral to price European options with jump diffusion,

but their method cannot easily handle the multi-dimensional jump diffusion processes and

processes with state-dependent jump magnitude distributions — cf. [14]. Recently, an

extrapolation scheme based on the implicit-explicit (IMEX) Euler method was proposed

by Feng & Linetsky [14], to deal with the jump-diffusion PIDE, where the differential

term is treated implicitly for stability and the integral term explicitly for numerical effi-

ciency. Combined with the extrapolation approach, this approach is remarkably fast and

can achieve polynomial accuracy in the time direction. Zhang et al. [34] further improved

the efficiency of the extrapolation scheme by coupling quadratic finite elements for spatial

discretization with preconditioning techniques for the resulting systems. It is known that

the IMEX Euler-based extrapolation scheme belongs to the class of time-stepping methods.

When the time interval is large, many time steps may be required in order to achieve a

given accuracy, which is very time consuming. Instead of using a time-stepping scheme,

some other authors have proposed to exploit the exponential time integration (ETI) scheme

to solve PIDEs arising from both the Black-Scholes and Merton models [28, 32]. The ETI

scheme is a one-step method, and we need not consider stability nor temporal discretized

accuracy.

This article discusses the application of the ETI scheme for pricing options in the SVCJ

model, such that the price of an option involves the product of a matrix exponential and a

vector. In Refs. [28,32], the corresponding matrix exponential was directly computed by a

scaling and squaring algorithm with Padé’s approximation [16], which has O(n3) complex-

ity where n is the matrix size, whereas we need to find the product of a matrix exponential

and a vector but not the exact matrix exponential where the recently developed Krylov

subspace methods often work very well [12, 17, 22, 25, 33]. Quite recently, Lee, Liu &

Sun [20] employed the shift-invert Arnoldi method proposed in Ref. [21], to implement

the ETI scheme for option pricing in the Merton [24] and Kou jump-diffusio [19] models.

By exploiting the Toeplitz structure of the resulting matrix and the Gohberg-Semencul for-

mula (GSF) for inversion of the Toeplitz matrix, the computational cost of the ETI scheme

was reduced dramatically to O(n log n) operations. It is notable that the PIDE arising in

the SVCJ model has two space variables related to the asset price and the volatility, re-

spectively. After the spatial discretization of the PIDE by central differences and the time

integration of the semi-discretized ODE system by the ETI scheme, we obtain a solution

vector as the product of the exponential of a block Toeplitz matrix and a vector. When

the shift-invert Arnoldi method is applied to approximate this resulting solution vector, a

54 H.-K. Pang and H.-W. Sun

shifted and inverted block Toeplitz matrix multiplied by a vector must be dealt with in

each iteration step. In passing, we note that the resulting matrix is block Toeplitz but

not exact Toeplitz, so there is no efficient inversion formula like the GSF for the standard

Toeplitz matrix. Thus an inner-outer iteration is needed, and a matrix splitting technique

combined with a multigrid method is proposed for the inner iteration In order to reduce

the computational burden.

The rest of this paper is arranged as follows. In Section 2, we recall the PIDE formu-

lation for options valuation in the SVCJ model and perform both the spatial discretiza-

tion and time integration. In Section 3, we introduce the shift-invert Arnoldi method and

present an algorithm for fast implementation of the ETI scheme. Numerical comparisons

between the ETI scheme and the IMEX Euler-based extrapolation scheme are discussed in

Section 4, and our concluding remarks are in Section 5.

2. Discretization of the PIDE in the SVCJ Model

Let us first recall the PIDE arising in the SVCJ model — cf. [13,14,34] for more details.

Thus if u(t, x , y) denotes the option price of a European-style option at time T̄ − t, the

underlying asset price is Kex and its instantaneous variance is (1+ y)θ , where T̄ refers

to the maturity time, K the strike price, and θ the long-run variance level. respectively.

The option value function u(t, x , y) in the SVCJ model then satisfies the following two-

dimensional PIDE [14,34]:

ut =A u+Bu , t ∈ (0, T̄] , (x , y) ∈ Ω , (2.1)

where

A u =
1

2
θ
�

y + 1
�

ux x +ρDζ
�

y + 1
�

ux y +
ζ2

2θ

�
y + 1

�
uy y

+

�
µ−

1

2
θ
�

y + 1
��

ux − κyuy − (r +λ)u ,

Bu = λ

∫ ∞

−∞

∫ ∞

0

u
�

t, x + zx , y + z y
�

p(zx, z y)dz y dzx ,

with the joint probability density

p(zx , z y) =
θ

ν
p

2πσ2
J

exp


−

θz y

ν
−

�
zx −µJ −ρJθz y

�2

2σ2
J


 , zx ∈ R, z y ≥ 0 . (2.2)

Here the parameter ρD is the coefficient correlating Brownian shocks in the return and

variance processes, ζ is the volatility-of-volatility parameter,

µ = r − q+λ
�

1− (1− νρJ)
−1 exp(µJ +σ

2
J/2)

�

is the drift parameter, κ is the rate of mean reversion, r is the risk-free interest rate, q is

the dividend rate, λ is the intensity of compound Poisson process, and ν , µJ , ρJ , σJ are

parameters related to jumps in the return and variance.

Fast Exponential Time Integration for Pricing Options 55

As stated in Refs. [14,34], the spatial domain Ω in (2.1) depends on the type of option,

and in this article we consider the European vanilla option and the double barrier option.

Theoretically, the domain is Ω = (−∞,+∞)× (−1,+∞) for the vanilla option and Ω =

(xL, xR)× (−1,+∞) for the double barrier option, with lower barrier L and upper barrier

U where xL = ln(L/K) and xR = ln(U/K). To render the numerical solution feasible, the

spatial domain is restricted to a bounded set (xmin, xmax) × (ymin, ymax) with ymin = −1

and fixed xmin, xmax, and ymax chosen sufficiently large. Specifically, xmin = xL and xmax =

xR for the double barrier option, where for convenience the bounded set (xmin, xmax)×
(ymin, ymax) is still denoted by Ω.

The initial condition for (2.1) is given by

u(0, x , y) =ψ(x , y) , (x , y) ∈ Ω

with ψ(x , y) being the payoff function. For a European call option ψ(x , y) = K(ex −
1)+, whereas for a put option ψ(x , y) = K(1− ex)+, where x+ = max{x , 0}. Dirichlet

boundary conditions are imposed on the complement of the bounded setΩ = (xmin, xmax)×
(ymin, ymax) [14,34]:

u(t, x , y) = φ(x , y), (x , y) ∈ Ωc,

where Ωc represents the complement of Ω in the whole plane. In general, φ = ψ for the

European vanilla option and φ = 0 for the double barrier option — cf. [14, 34] for more

details.

In the following, we show how to discretise the PIDE (2.1) and transform it into a

matrix exponential problem.

2.1. Spatial discretization

Let the spatial domain of (2.1) be restricted to Ω = (xmin, xmax)× (ymin, ymax) and

define a computational grid Ωhx ,hy
= {(x i, y j), 0≤ i ≤ m, 0≤ j ≤ n} with





x i = xmin+ ihx , hx =
xmax− xmin

m
, i = 0,1, · · · , m ,

y j = ymin+ jhy , hy =
ymax − ymin

n
, j = 0,1, · · · , n .

We approximate the differential term A u in (2.1) by second-order central differences.

Let ui, j(t) denote the approximation to u(t, x i , y j), and u(t) = [u1(t), · · · ,um−1(t)]
⊺ with

ui(t) = [ui,1(t), · · · ,ui,n−1(t)] for i = 1, · · · , m− 1. Then the differential term A u has the

discretization form

Au(t) + fA ,

where A is a block tri-diagonal Toeplitz matrix

A=




A(0) A(1) 0

A(−1) A(0)
. . .

. . .
. . . A(1)

0 A(−1) A(0)



∈ R(m−1)(n−1)×(m−1)(n−1) (2.3)

56 H.-K. Pang and H.-W. Sun

with tri-diagonal blocks A(−1), A(0), A(1) ∈ R
(n−1)×(n−1) given respectively by

A(−1) = Dn−1 · tridiag

�
ρDζ

4hxhy

,
θ

2h2
x

+
θ

4hx

,−
ρDζ

4hxhy

�
−
µ

2hx

I ,

A(0) = Dn−1 · tridiag

ζ2

2θh2
y

+
κ

2hy

,−
θ

h2
x

−
ζ2

θh2
y

,
ζ2

2θh2
y

−
κ

2hy

!

+ tridiag

�
−
κ

2hy

,−(r +λ),
κ

2hy

�
,

A(1) = Dn−1 · tridiag

�
−
ρDζ

4hxhy

,
θ

2h2
x

−
θ

4hx

,
ρDζ

4hxhy

�
+
µ

2hx

I ,

Dn−1 = diag(y1 + 1, · · · , yn−1 + 1), I is the identity matrix, and fA is the load vector. For

the barrier option, we note that fA is zero due to the zero boundary condition.

For the integral term Bu, at each inner grid point (x i, y j), i = 1, · · · , m− 1 and j =

1, · · · , n− 1, we first change variables and then split the integral into two parts:

Bu(t, x i , y j) = λ

∫ ∞

−∞

∫ ∞

0

u
�

t, x i + zx , y j + z y
�

p(zx , z y)dz y dzx

= λ

∫ ∞

−∞

∫ ∞

y j

u
�

t,ω,η
�

p(ω− x i,η− y j)dηdω

= λ

∫ xmax

xmin

∫ ymax

y j

u
�

t,ω,η
�

p(ω− x i,η− y j)dηdω

+λ

∫∫

Ω∗
j

u
�

t,ω,η
�

p(ω− x i,η− y j)dηdω , (2.4)

where Ω∗
j
= (−∞,∞) × (y j ,∞)\(xmin, xmax)× (y j , ymax). For the first part of (2.4), we

use the composite trapezoidal rule with step sizes hx and hy in the x and y directions

respectively, and obtain the approximation

λ

∫ xmax

xmin

∫ ymax

y j

u
�

t,ω,η
�

p(ω− x i,η− y j)dηdω

≈λ
hxhy

4

�
p−i,0u0, j + pm−i,0um, j + p−i,n− ju0,n + pm−i,n− jum,n+ 2

m−1∑

k=1

pk−i,0uk, j

+ 2

m−1∑

k=1

pk−i,n− juk,n+ 2

n−1∑

l= j+1

p−i,l− ju0,l + 2

n−1∑

l= j+1

pm−i,l− jum,l + 4

m−1∑

k=1

n−1∑

l= j+1

pk−i,l− juk,l

�
,

where pk−i,l− j = p(xk − x i, yl − y j) for k = 0,1, · · · , m and l = 0,1, · · · , n. Rewriting all

these approximations in matrix form yields the vector

Bu(t) + fB1
,

Fast Exponential Time Integration for Pricing Options 57

where the matrix B is a block Toeplitz matrix with Toeplitz blocks (BTTB) given by

B =




B(0) B(1) · · · B(m−2)

B(−1) B(0)
. . .

...
...

. . .
. . . B(1)

B(−(m−2)) · · · B(−1) B(0)



∈ R(m−1)(n−1)×(m−1)(n−1) , (2.5)

in which each block B(k) has the form

B(k) =




bk
0 bk

1 · · · bk
n−2

0 bk
0

. . .
...

...
. . .

. . . bk
1

0 · · · 0 bk
0



∈ R(n−1)×(n−1)

with bk
0 =

1

2
λhxhy pk,0 and bk

l
= λhxhy pk,l , k = 0,±1, · · · ,±(m− 2), l = 1, · · · , n− 2, and

fB1
is the load vector. Again, for the double barrier option the vector fB1

is zero given the

zero boundary condition.

The value of the second part in (2.4) completely depends on the option contract to be

priced. If it is the double barrier option, then the value is naturally equal to zero because

of the zero boundary condition φ = 0; but If it is the vanilla put option, then the option

price u(t, x , y) over Ω∗ is given by φ(x , y) = K(1− ex)+, and thus

λ

∫∫

Ω∗
j

u
�

t,ω,η
�

p(ω− x i,η− y j)dηdω

=λ

∫ xmin

−∞

∫ ∞

y j

K(1− eω)p(ω− x i,η− y j)dηdω

+λ

∫ 0

xmin

∫ ∞

ymax

K(1− eω)p(ω− x i,η− y j)dηdω . (2.6)

On substituting the probability density function (2.2) into (2.6), after some calculations

we obtain

λ

∫ xmin

−∞

∫ ∞

y j

K(1− eω)p(ω− x i,η− y j)dηdω

=
λKθ

ν

�∫ ∞

0

e−
θξ

ν N (χi(ξ))dξ − exi+
σ2

J
2
+µJ

∫ ∞

0

e(ρJ−
1

ν
)θξN (χi(ξ)−σJ)dξ

�

58 H.-K. Pang and H.-W. Sun

and

λ

∫ 0

xmin

∫ ∞

ymax

K(1− eω)p(ω− x i,η− y j)dηdω

=
λKθ

ν



∫ ∞

ymax−y j

e−
θξ

ν
�
N
�
χi(ξ)−

xmin

σJ

�
−N (χi(ξ))

�
dξ

− exi+
σ2

J
2
+µJ

∫ ∞

ymax−y j

e(ρJ−
1

ν
)θξ�N

�
χi(ξ)−

xmin+σ
2
J

σJ

�
−N (χi(ξ)−σJ)

�
dξ


 ,

where N (·) is the standard normal cumulative distribution function and

χi(ξ) =
xmin− x i −µJ −ρJθξ

σJ

, i = 1,2, · · · , m− 1 .

Since the integrands in above integrals decay rapidly as the variable of integration ξ ap-

proaches infinity, we can evaluate these integrals efficiently using a numerical integration

method such as the adaptive Gauss-Kronrod quadrature method [31]. The value of (2.6)

obtained is taken as the ((i − 1)(n− 1) + j)-th element of a vector fB2
. For the vanilla call

option, the second part in (2.4) can also be computed similarly.

After collecting all these discretization terms together, we obtain the semi-discretized

form of (2.1) as the ODE system

du(t)

dt
= Au(t) + Bu(t) + f , t ∈ (0, T̄] , (2.7)

where A and B are respectively given by (2.3) and (2.5), and f= fA+ fB1
+ fB2

.

2.2. Time integration

Rather than employ a time-stepping method for (2.7), as previously mentioned we

consider the ETI scheme used in Refs. [20, 28, 32] for option pricing problems in one-

dimensional models. Thus on integrating (2.7) over the time interval (0, T̄], we obtain the

solution

u(T̄) = eT̄ (A+B)u(0)+

∫ T̄

0

e(T̄−t)(A+B)fdt

at the maturity time T̄ , where u(0) is the initial vector containing the discrete values of the

payoff function ψ(x , y). From the assumptions on the boundary conditions, we see that

the vector f is independent of the time t, so the solution can be explicitly written as

u(T̄) = eT̄ (A+B)
�

u(0) + (A+ B)−1f
�
− (A+ B)−1f . (2.8)

Unlike a time-stepping method, the ETI scheme is exact and does not require discretization

in the time direction.

Fast Exponential Time Integration for Pricing Options 59

With reference to (2.8), in order to evaluate the option price u(T̄) at the maturity time

T̄ one has to compute both the term (A+ B)−1f and the product of the matrix exponential

eT̄ (A+B) and a vector. From (2.3) and (2.5) we know that both matrices A and B in (2.8) are

block Toeplitz matrices, and therefore so is A+B. Thus the term (A+B)−1f can be computed

using preconditioned Krylov subspace methods with block circulant preconditioners [8],

or other fast solvers such as the multigrid method [5]. Moreover, this term vanishes (f= 0)

for the double barrier option. Consequently, the main workload in (2.8) is to compute the

product of a block Toeplitz matrix exponential and a vector. As mentioned in Section 1,

direct computation of the matrix exponential is prohibitive given its cubic operation cost

with respect to the matrix size [16], so to improve the performance of the ETI scheme

we adopt the shift-invert Arnoldi method coupled with a multigrid solver to efficiently

approximate the product eT̄ (A+B)v for some vector v.

3. Shift-Invert Arnoldi Method

3.1. Summary of the shift-invert Arnoldi method

Over the past two decades, the class of Krylov subspace methods to deal efficiently

with the product of a large matrix exponential and a vector have been investigated inten-

sively [12, 17, 22, 25, 33]. The standard approach to approximate the product eTnv with

Tn ∈ R
n×n and v ∈ Rn is to first establish an orthonormal basis Vm = [v1,v2, · · · ,vm] of

the Krylov subspace Km(Tn,v) = span{v , Tnv , · · · , T m−1
n v}, which can be done using the

Arnoldi process for a non-symmetric matrix or the Lanczos process for a symmetric matrix.

The result is summarised in the matrix formulation

TnVm = VmHm+ hm+1,mvm+1e∗m ,

where Hm is the m-by-m projected matrix, em is the m-th canonical basis vector and vm+1

is a unit vector that satisfies V ∗mvm+1 = 0. Thus the vector eTn
v is approximated by [30]

eTn
v ≈ βVmeHm e1 , β = ‖v‖2 ,

where ‖ · ‖2 is the spectral norm. It is clear that the Krylov subspace method reduces the

problem of approximating the vector eTn
v where Tn is a large n-by-n matrix to that of

computing the vector eHm e1 where Hm is a smaller m-by-m matrix. Moreover, only the

matrix-vector product is needed during the whole process.

When the Krylov subspace method is implemented, one naturally hopes that the iter-

ation number m is as small as possible, in order to achieve an acceptable accuracy. How-

ever, theoretical analyses [17, 30] show that the error decay is generally related to the

norm ‖Tn‖2, so the number of iterations m can become quite large as ‖Tn‖2 increases.

To accelerate the approximation process of the Krylov subspace method, in Ref. [25, 33]

the authors proposed to use the shift-invert preconditioning technique. The motivation for

this comes from the observation that the exponential function is quickly decaying and the

vector eTnv is mostly determined by small eigenvalues and their corresponding invariant

60 H.-K. Pang and H.-W. Sun

subspaces, provided the spectrum of Tn is contained in the left half-plane. Implementation

of this preconditioning technique is as follows. Firstly, the product eTn
v is rewritten as

eTn
v = e

− 1

γ
(((I−γTn)

−1)−1−I)
v ,

where I is the identity matrix and γ > 0 is a shift parameter. We then construct an or-

thonormal basis bVm = [v̂1, v̂2, · · · , v̂m] of the Krylov subspace Km((I − γTn)
−1,v) using the

Arnoldi (or Lanczos) process, which leads to the following relations:

(I − γTn)
−1bVm = bVm

bHm + ĥm+1,mv̂m+1e∗m, bV ∗mv̂m+1 = 0 .

Finally, the vector e
− 1

γ
(((I−γTn)

−1)−1−I)
v is approximated by

e
− 1

γ
(((I−γTn)

−1)−1−I)
v ≈ β bVme

− 1

γ
(bH−1

m −I)
e1 , β = ‖v‖2 . (3.1)

The whole process is summarised in the following algorithm:

Algorithm 3.1: Shift-invert Arnoldi method for eTn
v .

1. Initialize: Compute β = ‖v‖2 and v̂1 = v/β

2. Iterate: Do j = 1, · · · , m

(a) Compute w := (I − γTn)
−1
v̂ j

(b) Do k = 1, · · · , j

i. Compute ĥk, j := (w, v̂k)

ii. Compute w := w − ĥk, jv̂k

(c) Compute ĥ j+1, j := ‖w‖2 and v̂ j+1 := w/ĥ j+1, j

3. Approximation: eTn
v ≈ β bVme

− 1

γ
(bH−1

m −I)
e1

Both theoretical analyses and numerical experiments in show that this shift-invert pre-

conditioning technique can speed up the approximation process dramatically, provided

that the matrix Tn is a sectorial operator [25, 33]. However, it is not easy to prove theo-

retically that the semi-discrete matrix A+ B is a sectorial operator. In Fig. 1, we plot the

eigenvalues of A+ B with the grid numbers m = 16 and n = 128 for the European vanilla

put option, where model parameters are taken from Table 1. We can see from Fig. 1 that

all the eigenvalues are located in the left half plane. Numerical experiments in Section 4

also show the efficiency of the shift-invert Arnoldi method for our problems.

According to Algorithm 3.1, we have to compute the product (I − γTn)
−1
v̂ j in each

iteration step. If Tn is a Toeplitz matrix, then the computation of this product via the

celebrated Toeplitz inverse formula GSF [20, 21, 26] by FFT is very fast. However, in our

case the matrix Tn is the sum of block Toeplitz matrices A and B but not an exact Toeplitz

matrix, so the GSF cannot be used and we have to solve the linear system

�
I − γ(A+ B)

�
w = v̂ j (3.2)

in each iteration step. In the following subsection, we employ matrix splitting combined

with a multigrid method to solve this system efficiently.

Fast Exponential Time Integration for Pricing Options 61

−800 −700 −600 −500 −400 −300 −200 −100 0
−500

−400

−300

−200

−100

0

100

200

300

400

500

Figure 1: Eigenvalues of matrix A+ B with m= 16 and n= 128.
3.2. Matrix splitting technique combined with a multigrid method

We recall that the matrix A in (3.2) is a block tri-diagonal Toeplitz matrix with tri-

diagonal blocks, and B is a BTTB dense matrix. To avoid the inversion of a large dense

matrix, we put B in the right-hand side of (3.2) and construct the iteration scheme

(I − γA)wk+1 = γBwk + v̂ j , k = 0,1, · · · , (3.3)

where w0 is an initial guess. Next, we exploit a multigrid method to solve these systems.

Multigrid methods are a class of very efficient algorithms for solving linear systems

arising from PDE, where the basic idea is to employ relaxations on a fine grid to damp

oscillatory errors and approximations on a coarser grid to smooth errors. For a general

linear system

AN w = b (3.4)

with AN ∈ C
N×N and b ∈ CN , a commonly used procedure in the multigrid method is

the V-cycle. Thus suppose we have provided a sequence of coarse grid operators ANs
with

1 ≤ s ≤ l, the relaxation operators GNs
: CNs → CNs with ν1 and ν2 being the numbers of

pre- and post-relaxation steps respectively, the restriction operators I s+1
s : CNs → CNs+1, the

interpolation operators I s
s+1: CNs+1 → CNs , as well as the coarsest grid number Nl . Here l is

the total number of grid levels, with s = 1 being the finest level — i.e. for s = 1, AN1
= AN .

Then the V-cycle multigrid algorithm can be described as below [5]:

62 H.-K. Pang and H.-W. Sun

Algorithm 3.2: V-cycle.

Procedure MG(ν1, ν2) (ws , bs)

If s = l

wl := A−1
Nl

bl ;

else

for j = 1 : ν1

ws := GNs
ws + (I − GNs

)A−1
Ns

bs;

end

ds+1 := I s+1
s (bs − ANs

ws);

e0
s+1 := 0;

es+1 :=MG(ν1, ν2) (e0
s+1, ds+1);

ws := ws + I s
s+1es+1;

for j = 1 : ν2

ws := GNs
ws + (I − GNs

)A−1
Ns

bs;

end

end

MG(ν1, ν2):= ws;

end

When Algorithm 3.2 is applied to solve the k-th system of (3.3), then the finest grid

operator, the unknown vector and the right-hand side in (3.4) become

AN = I − γA , w = wk+1 and b = γBwk + v̂ j ,

where N = (m − 1)(n− 1). We performed the V-cycle with full coarsening and set the

total grid level l = log2(min{m, n}), with the coarse grid number Ns = (
m

2s−1 − 1)(n

2s−1 − 1)

for 1 ≤ s ≤ l. We noted that the matrix A is a block tri-diagonal Toeplitz matrix with

tri-diagonal blocks, and so is AN , which inspired us to use the block Gauss-Seidel relax-

ation operator [5]. In addition, we adopted the red-black strategy, which does not add

any computational cost. To retain the block tri-diagonal Toeplitz structure in coarse grid

operators, we constructed ANs
by discretising the PIDE (2.1) with coarse grid numbers. In

other words, we defined the coarse grid operators in geometric means.

The restriction operators were defined as

I s+1
s = P ⊗ P

with

P =
1

4




1 2 1

1 2 1
...

1 2 1




,

and interpolation operators as I s
s+1 = 4I s+1

s , 1 ≤ s ≤ l (cf. [5]). When solving the k-th

system of (3.3), we took the approximation solution of the (k− 1)-th system as the initial

Fast Exponential Time Integration for Pricing Options 63

guess. Moreover, only one V-cycle was carried out to approximate the solution of each

system in (3.3), and our numerical results in the next section show that one V-cycle is

enough for the convergence of the iteration scheme (3.3).

Finally, we considered the computational cost of solving the iteration scheme (3.3). To

solve the k-th system of (3.3), we to first worked out the right-hand side b = γBwk + v̂ j.

As matrix B is a BTTB matrix, the vector b can be constructed by the FFT with

O
�
mn log(mn)

�

operations [8]. When the V-cycle in Algorithm 3.2 is applied to the the k-th system of (3.3),

the coefficient matrix ANs
on each grid level is a block tri-diagonal matrix with tri-diagonal

blocks and the relaxation adopted in the V-cycle is the block Gauss-Seidel iteration, such

that the system on each grid level can be solved in

O(Ns) = O

�
mn

4s−1

�

operations. Thus the computational cost per V-cycle multigrid iteration for solving the k-th

system of (3.3) is roughly

�
1+

1

4
+

1

42
+ · · ·+

1

4l−1

�
·O
�
(m− 1)(n− 1)

�
= O(mn)

provided that the right hand side has been obtained. On the whole, the total computational

cost for solving the k-th system of (3.3) is about

O
�
mn log(mn)

�

operations. Furthermore, if the iteration scheme (3.3) converges linearly, then the to-

tal computational cost for solving (3.2) is O(mn log(mn)) operations, which implies that

the computational cost in each iteration step of the shift-invert Arnoldi method is also

O(mn log(mn)) operations. The linear convergence rate of the iteration scheme (3.3) has

not been proved in this paper. However, numerical results in the following section show

that the scheme (3.3) converges very fast and the convergence rate is almost independent

of grid numbers.

4. Numerical Experiments

In this section, we demonstrate numerically the efficiency of the proposed ETI scheme

by comparing with the IMEX Euler-based extrapolation scheme introduced in Ref. [14].

All experiments are performed in MATLAB 7.11 (R2010b) on a PC with the configuration

Intel(R)Xeon(R)CPU W3520 @ 2.67GHz and 6.00GB RAM.

We considered the European vanilla put (EVP) option and the knock-out double barrier

put (DBP) option under the SVCJ model. The corresponding payoff function is ψ(x , y) =

K(1− ex)+. Parameter values in our numerical experiments were taken from Refs. [14,34]

64 H.-K. Pang and H.-W. Sun

and given in Table 1. Among them, λ, ν , µJ , σJ , ρD, ρJ , ζ, κ, θ , r, q are model

parameters and K is the strike price, and L and U denote the lower and upper barriers of

the DBP option, respectively. In practice, the infinite domains of EVP and DBP options are

restricted to the bounded domains ΩEV P and ΩDBP , respectively. We call these bounded

domains the computational domain. Numerical tests show that the computational domains

given in Table 1 lead to small enough truncation errors for the considered option prices.Table 1: Parameter values used in numeri
al experiments.
Model and option λ= 4, ν = 0.02, µJ =−0.04, σJ = 0.06, ρD =−0.5, ρJ =−0.5

parameters ζ= 0.1, κ= 4, θ = 0.04, r = 5%, q = 2%, K = 100, L = 80, U = 120

Other parameters ΩDBP =
�

xmin, xmax

�
× (ymin, ymax) = (ln 0.8, ln 1.2)× (−1,7) ,

ΩEV P =
�

xmin, xmax

�
× (ymin, ymax) = (−0.8,0.8)× (−1,7) .

As foreshadowed, the ETI scheme was implemented by the the shift-invert Arnoldi

method. In all tests, the shift parameter chosen was γ = 1/15, the stopping criterion

via the formula (3.19) in Refs. [27], and the related tolerance was 10−5. In the inner

iteration of the shift-invert Arnoldi process, we employed the matrix splitting iteration

with multigrid method as described in Subsection 3.2, to solve the system (3.2). Only

one V-cycle was carried out at each step of the iteration scheme (3.3), and the number of

pre-correction and post-correction relaxation sweeps in the V-cycle were both set to be 1.

For comparison, we also used the same V-cycle to solve the systems arising from the IMEX

Euler-based extrapolation scheme [14]. The extrapolation process was stopped when the

local error tolerance became less than 10−5. In both cases, we stopped solving the resulting

systems when the relative residual error was less that 10−8.

We first priced a 3 month (T̄ = 0.25) EVP option, which can also be done by inverting

the Fourier transform by FFT [10]. We investigated the pricing error at the at-the-money

option with the asset price S0 = K = 100 and the volatility σ0 = 20% — which corresponds

to the point (x , y) = (0,0), since the asset price S, the volatility σ, x , and y have the

relationships S = Kex , σ =
p
θ
�

y + 1
�
. The benchmark price was computed using the

FFT and is 4.812582536. Table 2 reports the numerical results of the ETI scheme and

the extrapolation scheme with different grid numbers. In the table, the symbol “(m,n)”

represents the number of spatial grid points, “ETI” and “Extrapolation” respectively refer to

the ETI scheme and the extrapolation scheme, and “outer/inner” denotes the out iteration

number and the average inner iteration number. For the ETI scheme, the outer iteration

number refers to iteration steps of the Arnoldi process, and the inner iteration number

refers to the average iteration number of the iteration scheme (3.3). For the extrapolation

scheme, the outer iteration number refers to the number of resulting systems required

to be solved in the extrapolation process, and the inner iteration number refers to the

average iteration number of solving those systems. “CPUtime” denotes the total CPU time

of performing the corresponding schemes with the unit in second. The label “Error” in

the table represents the pricing error at the at-the-many option (i.e., at the point (x , y) =

(0,0)), and the column “ratio” is the ratio of two consecutive pricing errors.

Numerical results in columns “Error” and “ratio” show that the numerical solutions

Fast Exponential Time Integration for Pricing Options 65Table 2: Numeri
al results for pri
ing the EVP option with maturity time T̄ = 0.25 by the ETI s
hemeand the extrapolation s
heme respe
tively.
(m,n) ETI Extrapolation Error ratio

out/inner CPUtime out/inner CPUtime

(16, 128) 11/6.09 0.15 45/5.22 0.37 4.20e-001 4.45

(32, 256) 14/6.00 0.46 45/7.11 1.38 9.44e-002 4.13

(64, 512) 14/6.07 1.65 45/7.89 4.49 2.29e-002 4.01

(128,1024) 16/7.00 8.47 45/8.00 16.31 5.70e-003 4.03

(256,2048) 18/7.06 41.22 45/8.00 68.75 1.41e-003

converge to the benchmark and the convergence rate is the second-order accurate, which

exemplifies the correction of our proposed scheme. From Table 2, in order to reach the

same accuracy we see that the outer iteration number and the CPU time required by the

ETI scheme are much less than that by the extrapolation scheme. In addition, the average

inner iteration numbers for the ETI scheme are not large and are almost independent of

spatial grid numbers, which implies that the splitting iteration scheme (3.3) converges very

fast, and in each iteration step one V-cycle is enough to approximate the solution.

To further illustrate the efficiency of the ETI scheme on other numerical aspects, we

also priced 3 month (T̄ = 0.25), 6 month (T̄ = 0.5), and 1 year (T̄ = 1.0) DBP op-

tions. The pricing errors were investigated in the approximation domain G = (x
¯

G , x̄G)×
(y
¯

G
, ȳG) = (ln0.8, ln1.2)× (0,3) (corresponding to (80,120) in the underlying asset price

and (20%,40%) in the volatility), where we are interested in the value function u. We

computed the benchmark price with large enough grid numbers (m = 320 and n = 2048)

using the ETI scheme. Tables 3, 4 and 5 display the numerical results for pricing DBP

options with maturity times T̄ = 0.25, T̄ = 0.5 and T̄ = 1.0 respectively. In these ta-

bles, “Error” refers to the maximum norm pricing error, which was computed over all grid

points of the approximation domain G. Other symbols have the same meaning as in Ta-

ble 2. Numerical results in Tables 3, 4, and 5 demonstrate again that the proposed ETI

scheme outperforms the IMEX Euler-based extrapolation scheme in both outer iteration

number and CPU time, especially when the maturity time T̄ is large. Moreover, with in-

creasing of T̄ the outer iteration numbers required by the ETI scheme do not increase,

while those from the extrapolation scheme do, another advantage of the ETI scheme over

the extrapolation scheme.

5. Concluding Remarks

In this article, we considered approximating the product of a matrix exponential with

block Toeplitz matrix and a vector, arising from integrating a two-dimensional PIDE in

option pricing problems in the SVCJ model by the ETI scheme. The shift-invert Arnoldi

method was employed to compute this product efficiently, which results in an inner-outer

iteration. To relieve the computational burden, the matrix splitting technique with multi-

66 H.-K. Pang and H.-W. SunTable 3: Numeri
al results for pri
ing the DBP option with maturity time T̄ = 0.25 by the ETI s
hemeand the extrapolation s
heme respe
tively.
(m,n) ETI Extrapolation Error ratio

out/inner CPUtime out/inner CPUtime

(10, 64) 9/6.00 0.07 55/7.45 0.37 4.26e-002 2.60

(20, 128) 18/8.00 0.37 55/9.22 0.87 1.64e-002 4.13

(40, 256) 18/9.50 1.13 55/9.85 2.25 3.96e-003 4.35

(80, 512) 18/10.67 4.52 55/10.51 7.68 9.11e-004 5.27

(160,1024) 18/11.11 18.86 55/10.73 30.81 1.73e-004

(320,2048) 19/11.63 77.73 55/10.95 132.22Table 4: Numeri
al results for pri
ing the DBP option with maturity time T̄ = 0.5 by the ETI s
hemeand the extrapolation s
heme respe
tively.
(m,n) ETI Extrapolation Error ratio

out/inner CPUtime out/inner CPUtime

(10, 64) 15/6.93 0.13 66/8.18 0.51 2.12e-002 4.63

(20, 128) 18/8.89 0.42 66/10.02 1.13 4.58e-003 4.20

(40, 256) 16/10.00 1.10 66/10.55 3.31 1.09e-003 4.52

(80, 512) 16/10.88 4.30 66/10.94 10.42 2.41e-004 5.62

(160,1024) 16/11.50 17.64 66/11.27 39.43 4.29e-005

(320,2048) 16/11.88 66.78 66/11.45 166.29Table 5: Numeri
al results for pri
ing the DBP option with maturity time T̄ = 1 by the ETI s
heme andthe extrapolation s
heme respe
tively.
(m,n) ETI Extrapolation Error ratio

out/inner CPUtime out/inner CPUtime

(10, 64) 11/8.45 0.11 78/8.79 0.61 1.43e-002 14.57

(20, 128) 14/9.64 0.34 78/10.63 1.44 9.84e-004 3.84

(40, 256) 14/10.43 0.97 91/10.92 4.17 2.56e-004 3.84

(80, 512) 11/11.18 2.96 91/11.40 13.60 6.66e-005 4.46

(160,1024) 14/11.93 15.82 91/11.52 53.07 1.49e-005

(320,2048) 14/12.14 59.84 91/11.71 229.14

grid method was proposed to deal with the shift-invert block Toeplitz matrix-vector product

in each inner iteration. Our numerical results to demonstrate the efficiency of the over-

all proposed scheme. There remain some problems that should be considered in future.

One is to prove theoretically that the semi=discrete matrix A+ B is a sectorial operator, to

guarantee the fast convergence rate of the shift-invert Arnoldi method, and another is to

analyse rigorously the convergence of the splitting iteration scheme (3.3).

Fast Exponential Time Integration for Pricing Options 67

Acknowledgments

The author is grateful to the anonymous reviewers for their comments and their effort

in improving the paper. First author was supported by the National Natural Science Foun-

dation of China under grant 11201192, the Natural Science Foundation of Jiangsu Province

under grant BK2012577, and the Natural Science Foundation for Colleges and Univer-

sities in Jiangsu Province under grant 12KJB110004. Second author was supported by

research grants 033/2009/A and 005/2012/A1 from FDCT and MYRG206(Y1-L4)-FST11-

SHW from University of Macau.

References

[1] L. Andersen and J. Andreasen, Jump-diffusion processes: Volatility smile fitting and numerical

methods for option pricing, Rev. Derivatives Res. 4, 231–262 (2000).

[2] O. Barndorff-Nielsen, Process of normal inverse Gaussian type, Finance Stoch. 2, 41–68 (1998).

[3] D. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark

options, Rev. Financial Stud. 9, 69–107 (1996).

[4] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81,

637–654 (1973).

[5] W.L. Briggs, V.E. Henson, and S.F. McCormick, A Multigrid Tutorial, 2nd edition, SIAM,

Philadelphia, 2000.

[6] P. Carr, H. Geman, D. Madan, and M. Yor, The fine structure of asset returns: An empirical

investigation, J. Business 75, 305–332 (2002).

[7] P. Carr and L. Wu, Finite moment log stable process and option pricing, J. Finance 58, 753–777

(2003).

[8] R. Chan and X. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007.

[9] Y. d’Halluin, P. Forsyth, and K. Vetzal, Robust numerical methods for contingent claims under

jump diffusion, IMA J. Numer. Anal. 25, 87–112 (2005).

[10] D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine jump diffu-

sions, Econometrica 68, 1343–1376 (2000).

[11] E. Eberlein, U. Keller, and K. Prause, New insights into smile, mispricing, and value at risk: The

hyperbolic model, J. Business 71, 371–405 (1998).

[12] M. Eiermann and O. Ernst, A restarted Krylov subspace method for the evaluation of matrix

functions, SIAM J. Numer. Anal. 44, 2481–2504 (2006).

[13] B. Eraker, M. Johannes, and N. Polson, The impact of jumps in volatility and returns, J. Finance

58, 1269–1300 (2003).

[14] L. Feng and V. Linetsky, Pricing options in jump diffusion models: An extrapolation approach,

Oper. Res. 56, 304–325 (2008).

[15] S. Heston, A closed form solution for options with stochastic volatility with applications to bond

and currency options, Rev. Financial Stud. 6, 327–343 (1993).

[16] N. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2008.

[17] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential

operator, SIAM J. Numer. Anal. 34, 1911–1925 (1997).

[18] J. Hull and A. White, The pricing of options on assets with stochastic volatilites, J. Finance 42,

281–300 (1987).

[19] S. Kou, A jump diffusion model for option pricing, Management Sci. 48, 1086–1101 (2002).

68 H.-K. Pang and H.-W. Sun

[20] S. Lee, X. Liu, and H. Sun, Fast exponential time integration scheme for option pricing with

jumps, Numer. Linear Algebra Appl. 19, 87–101 (2012).

[21] S. Lee, H. Pang and H. Sun, Shift-invert Arnoldi approximation to the Toeplitz matrix exponen-

tial, SIAM J. Sci. Comput. 32, 774–792 (2010).

[22] L. Lopez and V. Simoncini, Analysis of projection methods for rational function approximation

to the matrix exponential, SIAM J. Numer. Anal. 44, 613–635 (2006).

[23] D. Madan, P. Carr, and E. Chang, The variance gamma process and option pricing, Eur. Finance

Rev. 2 79–105 (1998).

[24] R. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial

Econom. 3, 125–144 (1976).

[25] I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44 (2004),

pp. 595–615.

[26] H. Pang and H. Sun, Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz

matrix exponential, Numer. Linear Algebra Appl., 18 (2011), pp. 603–614.

[27] M. Popolizio and V. Simoncini, Acceleration techniques for approximating the matrix exponen-

tial operator, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 657–683.

[28] N. Rambeerich, D. Tangman, A. Gopaul, and M. Bhuruth, Exponential time integration for fast

finite element solutions of some financial engineering problems, J. Comput. Appl. Math. 224,

668–678 (2009).

[29] M. Rubinstein, Implied binomial trees, J. Finance 49, 771–818 (1994).

[30] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator,

SIAM J. Numer. Anal. 29, 209–228 (1992).

[31] L. Shampine, Vectorized adaptive quadrature in Matlab, J. Comput. Appl. Math. 211, 131–140

(2008).

[32] D. Tangman, A. Gopaul, and M. Bhuruth, Exponential time integration and Chebychev discreti-

sation schemes for fast pricing of options, Appl. Numer. Math. 58, 1309–1319 (2008).

[33] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the matrix

exponential, SIAM J. Sci. Comput. 27, 1438–1457 (2006).

[34] Y. Zhang, H. Pang, L. Feng, and X. Jin, Quadratic finite element and preconditioning for options

pricing in the SVCJ model, to appear in J. Comput. Finance.

