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Abstract. An efficient numerical method is proposed for the valuation of American op-

tions via the Black-Scholes variational inequality. A far field boundary condition is em-

ployed to truncate the unbounded domain problem to produce the bounded domain

problem with the associated variational inequality, to which our finite element method

is applied. We prove that the matrix involved in the finite element method is symmetric

and positive definite, and solve the discretized variational inequality by the projection

and contraction method. Numerical experiments are conducted that demonstrate the

superior performance of our method, in comparison with earlier methods.
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1. Introduction

An option is a contract that permits but does not require the holder to either buy (a

“call option") or sell (a “put option") a certain amount of an underlying asset at a fixed

price within a fixed period of time. Options are called European or American, according

to their exercise prerogative. Any European option can only be exercised on the maturity

date, so it is easy to get a closed-form solution for the exercise price at any time. On the

other hand, an American option may be exercised not only on its expiry date but also at

any time beforehand, so there is no such closed-form solution, which makes the American

option pricing problem a challenging task.

There has been extensive analytical and numerical work done on the American option

pricing problem, due to its complexity and importance. The analytical research has con-

tinued since the 1970s, but the results have often been unsatisfactory. Early closed-form

solutions depend upon the optimal exercise boundary that is unknown in practice [3–5,13,

16,24], and a more recent exact solution in the form of a Taylor series expansion is a very

beautiful theoretical result [29]. Numerical methods for American options have attracted

∗Corresponding author. Email addresses: songhm11�mails.jlu.edu.
n (H. Song), zhangran�

jlu.edu.
n (R. Zhang)

http://www.global-sci.org/eajam 48 c©2015 Global-Science Press



Projection and Contraction Method for the Valuation of American Options 49

increasing interest, and are mainly of two types — viz. the Monte Carlo method [6,19,22]

and the partial differential equation (PDE) method [1,9,10,14,20,23,27]. The Monte Carlo

method has a high computational cost due to its slow convergence, and in this article we

pursue the famous Black-Scholes PDE approach, which is widely regarded as one of most

effective [7,11,15].

Numerical methods developed and extensively studied in recent decades include lattice

tree methods, finite difference methods, finite element methods and spectral methods. In

their seminal contribution, Cox et al. [8] introduced the binomial method to price American

options, and its convergence was proven by Amin & Khanna [2]. The binomial method

is essentially a difference method, and inspired a variety of finite difference schemes for

American option pricing [9, 20, 26]. Refs. [14, 15] discuss relevant convergence analysis.

To improve the solution precision, finite element and spectral methods have received more

attention recently [1,10,23,27]). One may refer to Ref. [18] and the references therein for

a survey.

There are two main challenges in the numerical evaluation of American option prices:

• the solution domain of the option price is unbounded, so the truncation technique is

a key issue; and

• the variational inequality under the Black-Scholes approach renders a complicated

nonlinear problem, so an efficient numerical method to solve the problem quickly

and accurately is extremely important in practice.

To meet the first challenge for American call options, Holmes & Yang [10] introduced a far

field boundary condition, and we follow this idea to deal with put options in this article.

The second challenge is our main concern here. We first discretize the American option

pricing problem by a finite element method [21, 28], and then solve the resulting system

using the projection and contraction method [12]. Numerical experiments show that our

proposed method is much faster than earlier methods within the same accuracy.

In Section 2, we summarise the linear complementary problem and corresponding vari-

ational inequality form for an American put option in the Black-Scholes model. The far field

boundary condition is recalled and employed to truncate the unbounded domain. In Sec-

tion 3, a finite element method is applied to the truncated variational inequality problem,

and we prove that the matrix in the associated discretisation is symmetric and positive def-

inite. The projection and contraction algorithm adopted to solve the resulting nonlinear

system is also discussed in this section. In Section 4, numerical simulations are presented

to compare the performance of our method against earlier methods, and our concluding

remarks are in Section 5.

2. Pricing Problem on a Bounded Domain

The Black-Scholes model for an American put option that we adopt is summarised here.

In particular, we represent the corresponding linear complementary problem on a bounded

domain obtained via a far field boundary condition and its variational inequality form,

which we will then proceed to solve using a finite element method.
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2.1. Black-Scholes model

For simplicity, we consider only an American put option, since American call options can

be obtained by put-call parity [1,15]. Let S, t, σ, r, q, K and T denote the price for some

underlying asset of a certain amount, time, volatility, interest rate, dividend rate, exercise

price and date of expiration, respectively. Then the option value P = P(S, t) satisfies the

following free boundary problem [11]:

Pt +
1

2
σ2S2PSS + (r − q)SPS − rP = 0 , B(t) < S < +∞ , 0≤ t < T ,

P(S, T ) = G(S) , B(T ) ≤ S < +∞ ,

P(B(t), t) = G(B(t)) , 0≤ t < T ,

PS(B(t), t) = −1 , 0≤ t < T ,

lim
S→+∞

P(S, t) = 0 , 0≤ t < T , (2.1)

where the subscripts S and t denote the respective differentiation, G(S) = max{K − S, 0},
and B(t) is the unknown optimal exercise boundary that satisfies [15,18]

KX ≤ B(t) ≤ B(T ) .

Here KX is the optimal exercise boundary of a permanent American put option, where

X =
−r + q+ 1

2σ
2 −
q

(−r + q+ 1
2σ

2)2 + 2rσ2

−r + q− 1
2σ

2 −
q

(−r + q+ 1
2σ

2)2 + 2rσ2
and B(T ) = K min(r/q, 1) .

2.2. Linear complementary problem

The Black-Scholes model implies that the put option price P(S, t) satisfies (2.1) when

S > B(t), and of course the American put option price is P(S, t) = G(S) when S ≤ B(t).

The price P(S, t) of the American put option can therefore be characterised mathematically

by the following backward differential linear complementary problem [25]:

�

Pt +
σ2

2
S2PSS + (r − q)SPS − rP

�

(P − G(S)) = 0 , 0≤ S < +∞ , 0≤ t < T ,

P(S, T ) = G(S) , 0≤ S < +∞ ,

P(0, t) = G(0) , 0≤ t < T ,

lim
S→+∞

P(S, t) = 0 , 0≤ t < T , (2.2)

subject to the constraints

Pt +
σ2

2
S2PSS + (r − q)SPS − rP ≤ 0 , P ≥ G(S) . (2.3)
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Using standard variable transforms [9,18]

P(S, t) = Ke−αy−βτφ(y,τ) , T − t = τ/
σ2

2
, S = Ke y , (2.4)

where α = (r − q)/σ2 − 1/2 and β = α2 + 2r/σ2, we can rewrite (2.2) as a forward

differential linear complementary problem with constant coefficients — viz.

(φτ −φx x )(φ − g) = 0 , −∞< x < +∞ , 0< τ ≤ T ∗ ,
φ(x , 0) = g(x , 0) , −∞< x < +∞ ,

lim
x→−∞φ(x ,τ) = g(x ,τ) , 0< τ ≤ T ∗ ,

lim
x→+∞φ(x ,τ) = 0 , 0< τ ≤ T ∗ ; (2.5)

and the function G, the expiration date T and the constraints (2.3) render

g(x ,τ) = eαx+βτmax{1− ex , 0} , T ∗ =
σ2

2
T ,

φτ −φx x ≥ 0 , φ − g ≥ 0 . (2.6)

We now introduce the far field estimate, which plays a pivotal role in solving the option

pricing problem on some truncated domain. We can adapt a result used by Holmes &

Yang [10] for American call options, to deal with American put options considered here.

Other methods to truncate the unbounded domain are discussed in Refs. [1,9,17,27].

Lemma 2.1 ( [30]). For a given positive number ǫ ∈ (0,1), we have

P(S, t) ≤ ǫ , ∀ S ≥ KeL1 , 0≤ t < T ,

where

L1 = −2.5T ∗α+ 0.5

q

25(T ∗)2α2 − 20T ∗ log(ǫ/
p

5K) .

From Lemma 2.1, the right boundary in (2.5) can be truncated at x = L1. For the left

boundary, the boundary condition can be satisfied at x = −L2 ≤ log X , since P(S, t) = G(S)

when S ≤ B(t). For convenience, we let L = max{L1, L2} and Ω = [−L, L], such that the

approximating bounded domain problem corresponding to (2.5)-(2.6) is formulated as

(uτ − ux x )(u− g) = 0 , − L ≤ x ≤ L , 0< τ≤ T ∗ ,
u(x , 0) = g(x , 0) , − L ≤ x ≤ L ,

u(−L,τ) = g(−L,τ) , 0< τ ≤ T ∗ ,
u(L,τ) = 0 , 0< τ ≤ T ∗ , (2.7)

with constraints

uτ − ux x ≥ 0 , u− g ≥ 0 . (2.8)
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2.3. Variational inequality

Let us now summarise the variational inequality form corresponding to (2.7)-(2.8),

which we will proceed to solve by our finite element method. We define

H1
τ(Ω) :=
�

v ∈ H1(Ω); v ≥ g(x ,τ) , v(−L) = g(−L,τ) , v(L) = 0
	

,

then the variational inequality form of the problem reads as follows:

(VF:) Find u(τ) ∈ H1
τ(Ω) such that u(x , 0) = g(x , 0) and

(uτ, v − u) + (ux , vx − ux) ≥ 0 ∀ v ∈ H1
τ(Ω) a.e. 0< τ ≤ T ∗ . (2.9)

Lemma 2.2 ( [28]). If u ∈ L2(0, T ∗; H2(Ω)), uτ ∈ L2(0, T ∗; L2(Ω)), then u is the solution of

the linear complementary problem (2.7)-(2.8) if and only if u is the solution of the variational

inequality problem (2.9).

A brief sketch of a proof of Lemma 2.2 is as follows — cf. also Ref. [28].

Proof. If u is the solution of the linear complementary problem, from (2.7) an integration

yields

(uτ,u− g) + (ux ,ux − gx) = 0 , 0< τ ≤ T ∗. (2.10)

Letting v ∈ H1
τ(Ω), we have v ≥ g, and combining with the constraint condition uτ−ux x ≥ 0

leads to

(uτ, v − g) + (ux , vx − gx)≥ 0 , ∀ v ∈ H1
τ(Ω) a.e. 0< τ ≤ T ∗. (2.11)

Subtracting Eq. (2.10) from inequality (2.11), it is easy to see that u ∈ H1
τ(Ω) satisfies

the variational inequality (2.9). Conversely, if u ∈ H1
τ(Ω) is the solution of the variational

inequality (2.9) and satisfies the premise, on integrating by parts we get

(uτ − ux x , v − u)≥ 0 , ∀ v ∈ H1
τ(Ω) a.e. 0< τ ≤ T ∗. (2.12)

Since v ∈ H1
τ(Ω) is arbitrary, we can let v = u+ψ ∈ H1

τ(Ω) ∀ ψ ∈ C∞0 (Ω ψ≥ 0) such that

uτ − ux x ≥ 0 ,

so with u≥ g we have

(uτ − ux x ,u− g) ≥ 0 . (2.13)

Letting v = g ∈ H1
τ(Ω) in (2.12) and combining with (2.13), we have

(uτ − ux x ,u− g) = 0 ,

hence from

uτ − ux x ≥ 0 , u− g ≥ 0

we obtain

(uτ − ux x)(u− g) = 0

almost everywhere.
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3. Finite Element Method

We now discretize the variational inequality form (2.9) under our finite element method

and establish that the associated matrix for the nonlinear system is positive definite, before

presenting the projection and contraction algorithm used to obtain the numerical solution.

3.1. Notation

We define the respective temporal and spatial partitions of [0, T ∗] and Ω= [−L, L] as

Jτ : 0= τ0 < τ1 < · · · < τM = T and Ih : −L = x0 < x1 < · · ·< xN = L .

For each spatial element In := (xn−1, xn) with length hn := xn− xn−1 (n = 1,2, · · · , N), the

mesh size of the partition is h :=max1≤n≤N hn. Similarly, Jm := (τm−1,τm), km = τm−τm−1

(m = 1, · · · , M) and△τ =max1≤m≤M km denote the temporal element, its associated local

step size and the overall step size, respectively.

Jiang [15] mentions that a put option should be exercised if the stock price S is equal

to or less than B(t) at time t, but otherwise it is better to hold. The most important points

in the option value function are therefore around the high contact point B(t), which is the

curve obtained by the transformation S = Kex . We will consider a lattice with xmin = −L,

xmax = L and symmetry about xN/2 = 0, and require an even number of intervals N .

When the xn are equidistant, the Sn := Kexn distribution is rather disadvantageous for our

purposes, as there are then very few points placed around B(t). To correct this, we need to

distribute more knots xn close to 0, whereas towards xmin and xmax the distances between

the knots may be larger. Thus we use a graded mesh in the spatial direction [21]:

xn = sign(2n− N )L

�

2n− N

N

�2

, n= 0,1, · · · , N .

In the temporal direction, an equidistant partition is used:

△τ = T ∗

M
, τm = m△τ , m= 0,1, · · · , M .

3.2. Discrete approximation

In this subsection, we consider the completely discrete form of the variational inequality

(2.9) using a finite element method in the spatial direction and the backward Euler method

in the temporal direction. The corresponding matrix form is presented, and we establish

that the associated matrix is symmetric positive definire.

Suppose Vh ⊂ H1(Ω) is a piecewise linear polynomial space, and the piecewise linear

finite element space is

S1
τ(Ω) :=
�

vh ∈ Vh(Ω); v(xn) ≥ g(xn,τ) ∀ xn , vh(−L) = g(−L,τ) , vh(L) = 0
	

.
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The semi-discrete form for the problem (2.9) is then:

(SDF:) Find uh(τ) ∈ S1
τ(Ω), such that uh(x , 0) = gI(x , 0) and satisfying

(uhτ, vh − uh) + (uhx , vhx − uhx )≥ 0, ∀ vh ∈ S1
τ(Ω) a.e. 0< τ≤ T ∗ , (3.1)

where gI(x , 0) denotes the linear interpolant approximation of g(x , 0) belonging to S1
0
(Ω).

We further discretize the semi-discrete variational inequality (3.1) about the time variable

by the backward Euler method. Thus at a fixed point τ = τm the completely discrete

approximation of the variational inequality (2.9) is

(um
h
− um−1

h
, vh − um

h
) +△τ(um

hx
, vhx − um

hx
) ≥ 0 , ∀ vh ∈ S1

τm
(Ω) . (3.2)

If a basis of S1
τ(Ω) is given by {ϕ j(x)}N−1

j=0
such that

ϕ0(x) =

( x − x1

x0 − x1

, x ∈ [x0, x1) ,

0, x ∈ Ω \ [x0, x1) ,

ϕ j(x) =















x − x j−1

x j − x j−1

, x ∈ [x j−1, x j) ,

x − x j+1

x j − x j+1

, x ∈ [x j, x j+1) ,

0 , x ∈ Ω \ [x j−1, x j+1) ,

then at each time level τ = τm the finite element approximation of the solution is

um
h
=

N−1
∑

j=1

um
j
ϕ j(x) + g(−L,τm)ϕ0(x) , m = 0,1, · · · , M .

Now the corresponding matrix form of inequality (3.2) is

(V − Um)T ((△τA+ B)Um − BUm−1 + F m) ≥ 0 ∀ V ≥ Gm, m = 1, · · · , M , (3.3)

where

V = (v1, v2, · · · , vN−1) , Um = (um
1 ,um

2 , · · · ,um
N−1) ,

A=
�

(ϕ′j ,ϕ
′
i)
�

N−1×N−1
, B =
�

(ϕ j ,ϕi)
�

N−1×N−1
,

F m =

��

h1

6
− △τ

h1

�

g(−L,τm)−
h1

6
g(−L,τm−1), 0, · · · , 0

�T

,

Gm =
�

g(x1,τm), · · · g(xN−1,τm)
�T

.

Writing D =△τA+ B and W m = −BUm−1 + F m, we can simplify (3.3) as

(V − Um)T (DUm+W m) ≥ 0 , ∀ V ≥ Gm . (3.4)
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Furthermore, on defining V = V − Gm, U
m
= Um− Gm and W

m
=W m+ DGm we arrive at

(V − U
m
)T (DU

m
+W

m
) ≥ 0 , ∀ V ≥ 0 , (3.5)

which is our completely discretized form of the variational inequality (2.9). We now prove

that the associated matrix is symmetric positive definite.

Theorem 3.1. The matrix D is symmetric and positive definite.

Proof. For simplicity, let us write

D =













b1 c1 0 0 0

a2 b2 c2 0 0

0
.. .

. . .
. . . 0

0 0 aN−2 bN−2 cN−2

0 0 0 aN−1 bN−1













,

where

ai = −
△τ
hi

+
hi

6
, i = 2, · · · , N − 1 ,

bi =△τ
�

1

hi

+
1

hi+1

�

+
1

3
(hi + hi+1) , i = 1, · · · , N − 1 ,

ci = −
△τ
hi+1

+
hi+1

6
, i = 1, · · · , N − 2 .

Given the structure of D, we can verify it is a irreducible symmetric matrix. Furthermore,

|b1| > |c1| ,
|bi| > |ai|+ |ci| , i = 2, · · · , N − 2 ,

|bN−1| > |aN−1| ,

so D is a diagonally dominant matrix, and given that bi > 0 we conclude that it is a sym-

metric positive definite matrix.

Remark 3.1. We also observe that D is an M-matrix provided h2/(△τ) is sufficiently small.

3.3. Projection and contraction method

The projection and contraction method used to solve the variational inequality (3.5) is

tabulated on the next page. He [12] has already noted that the projection and contraction

method efficiently solves inequalities such as (3.5) when D is a symmetric positive definite

matrix, and he also discussed the convergence of the method.
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Algorithm 3.1 Projection and Contraction Method

• For m = 1 : M

– Let k = 0, β (0) = 1, ν ∈ (0,1), µ ∈ (0,1), ǫ = 10−6,

U = U
m−1

, FU = DU +W
m

, tol = abs
�

U −max
�

U − FU , 0
��

.

– While (tol > ǫ)

∗ U
(k)
= U , F

(k)
U = FU , U =max(U

(k) − β (k)F (k)U , 0),

FU = DU +W
m

, dU = U
(k) − U , dF = β

(k)(F
(k)
U − FU ),

ρ(k) = ‖dF‖/‖dU‖;
∗ While (ρ(k) > ν);

· β (k) = 2
3β
(k)min(1,1/ρ(k)), U =max(U

(k)− β (k)F (k)
U

, 0),

FU = DU +W
m

, dU = U
(k)− U , dF = β

(k)(F
(k)
U − FU ),

ρ(k) = ‖dF‖/‖dU‖;
∗ End

∗ dUF = dU − dF , r1 = (dU , dUF ), r2 = (dUF , dUF ), α
∗ = r1/r2, U = U

(k) −
α∗γdUF , FU = DU +W

m
, tol = abs
�

U −max(U − FU , 0)
�

,

∗ if ρ(k) < µ

β (k) = β (k) ∗ γ;

∗ end;

∗ β (k+1) = β (k) and k = k + 1.

– end

• end

4. Numerical Experiments

We now discuss some numerical simulations for American option pricing, to illustrate

the theoretical analysis in Section 3 and to verify the efficiency of our projection and con-

traction finite element method (PCFEM). We consider one-year (T = 1) American put op-

tions, and assume that the volatility of the underlying assets is σ = 0.2 and the strike price

is K = 10 in Eq. (2.2). For comparison, we consider three cases of interest rate r and

dividend rate q.

The three cases considered are:

• Case I: r < q with r = 0.005 and q = 0.01;

• Case II: r = q with r = q = 0.01;

• Case III: r > q with r = 0.05 and q = 0.01.

We chose ǫ = 10−6 in Lemma 2.1, and adopted the truncated lengths L = 1.902341,

1.326117 and 1.276117 for the three cases r < q, r = q and r > q, respectively. The so-
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Table 1: l2 error (at t = 0) on the spatial notes de�ned in Subse
tion 3.1, and the time 
ost per option

value 
omputed by the CSPM, FFEM and PCFEM for three 
ases.

Case Method M N Error/10−2 Time/s

r < q CSPM 10000 43 3.171908 18.637314

FFEM 512 AUTO 5.570208 1.591291

PCFEM 200 20 4.116932 0.169713

r = q CSPM 10000 33 1.771630 15.317074

FFEM 512 AUTO 3.461689 1.490190

PCFEM 200 20 3.125822 0.159173

r > q CSPM 10000 15 1.091294 10.135287

FFEM 512 AUTO 1.183515 1.165953

PCFEM 200 20 2.564035 0.158804

lution obtained via the binomial method [15] with 40000 points in the temporal direction

was adopted as the numerical approximation of the exact solution. The relevant param-

eters in the projection and contraction method were chosen to be ν = 0.9, µ = 0.4, and

γ= 1.5. We compared results from our PCFEM with results from two other methods — viz.

the Chebyshev spectral method (CPSM) [23] and the front-fixing finite element method

(FFEM) [10].

The option values at t = 0 using our PCFEM for the three cases shown in Fig. 1 are

denoted by “o”, the dotted lines stand for the values of (K−S)+, and the solid lines represent

the option values at t = 0 computed by the binomial method with 40000 points in the

temporal direction. From Fig. 1, we observe that the option value computed by our PCFEM

approximates the exact solution well. We compare the CSPM, FFEM and PCFEM in Table 1,

from which we conclude that our PCFEM is much faster than both the CSPM and the FFEM

for the same accuracy. This confirms the that our PCFEM is more effective for option pricing,

and we also note in passing that it is more easily applied in practice.

Remark 4.1. The error form used in Table 1 is the l2 error
∑N

i=0(P(Si , 0)− Ph(Si, 0))
2)1/2,

where P and Ph are the exact solution and numerical solutions, respectively. In options

trading, many people care more about the l∞ error and relative l∞ error, which are re-

spectively 10−3 and 10−4 for our PCFEM. Generally, these error values are acceptable for

most stock options.

Next, we verified the convergence of our proposed method. Reviewing the procedure

for solving the variational problem (2.9), we see that the error of the solution u(x ,τ) at

τ = T ∗ mainly consists of the temporal error, iterative error and spatial error. In order to

show the relationship between the numbers of spatial points N and the spatial error, the

other errors must be small enough. We chose M = 10000 in the temporal direction, and

ǫ = 10−10 in Algorithm 3.1. We then divided the x -domain into 1000 uniform intervals,

and tested the L2 error under this partition. Fig. 2 shows that the convergence rate of our

method is O (1/N2).
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Figure 1: The option values at t = 0 
omputed by our PCFEM with M = 200, N = 20 and the binomial

method with 40000 points, for the three 
ases. Case I: r < q (left); Case II: r = q (middle); Case III:

r > q (right).
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Figure 2: The relationship between the partition numbers N and the option errors on u(x , T ∗) for the

three 
ases. Case I: r < q (left); Case II: r = q (middle); Case III: r > q (right).

Figure 3: The option values 
omputed by our PCFEM. Case I: r < q (left); Case II: r = q (middle); Case

III: r > q (right).

Finally, the numerical results we obtained for the American option are represented in

Fig. 3, for the three cases.
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5. Conclusions

We have numerically solved the Black-Scholes model via the variational inequality for

the problem rendered on a bounded rectangular domain by a far field truncated technique.

The valuation problem for American options is discretized by a finite element method. We

have shown that the associated discrete matrix is symmetric positive definite, in the matrix

form solved by our projection and contraction method. Numerical simulations verify the

theoretical analysis and the efficiency of the proposed method.
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