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Abstract. Some efficient numerical schemes are proposed to solve one-dimensional and
two-dimensional multi-term time fractional diffusion-wave equation, by combining the
compact difference approach for the spatial discretisation and an L1 approximation for
the multi-term time Caputo fractional derivatives. The unconditional stability and global
convergence of these schemes are proved rigorously, and several applications testify to
their efficiency and confirm the orders of convergence.
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1. Introduction

Recently, fractional differential equations have been invoked in various applications.
Unlike classical differential equations of integer order, where the derivatives depend only
on the local behaviour of the function, fractional differential equations accumulate all of
the information on the function in a weighted form. This is the so-called memory effect in
physics, chemistry and other research areas — e.g. see Refs. [1-3] and references therein.
In particular, the time fractional diffusion-wave equation models a wide range of important
physical phenomena, including inter alia the propagation of mechanical waves in viscoelas-
tic media [4], a non-Markovian diffusion process with memory [5], and charge transport
in amorphous semiconductors [6].

Since analytical solutions are rare and to date restricted to simpler fractional partial dif-
ferential equations, there has been increasing interest in the development of effective and
easy to use numerical schemes. Yuste & Murillo [7,8] constructed difference schemes using
an L1 discretisation formula for the fractional diffusion equation and an L2 discretisation
formula for fractional diffusion-wave equations, respectively. The stability analysis of their
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schemes was carried out via the von Neumann method. Langlands & Henry [9] considered
an implicit numerical scheme for a fractional diffusion equation, using the backward Euler
approximation to discretise the first order time derivative and an L1 scheme to approxi-
mate the fractional order time derivative. Chen et al. [10] constructed a difference scheme
based on the Griinwald-Letnikov formula. They also provided both an explicit and an im-
plicit scheme for the two-dimensional anomalous sub-diffusion equation, using relation-
ships between the fractional Griinwald-Letnikov and Riemann-Liouville definitions [11].
The corresponding theoretical analysis for stability and convergence was undertaken using
the Fourier method, and a highly accurate algorithm was constructed exploiting Richard-
son extrapolation. Sun & Wu [12] derived two fully discrete difference schemes for the
fractional diffusion-wave and sub-diffusion equations, and proved that the schemes are
uniquely solvable, unconditionally stable, and respectively @(73~* 4+ h?) and @(t?~*+h?)
convergent in the maximum norm. Recently, Zhang et al. [13] constructed a compact alter-
nating direction implicit (ADI) scheme to solve two-dimensional time fractional diffusion-
wave equations.

There has also been some previous work on the numerical solution of problems with
multiple fractional derivatives. Diethelm & Luchko [14] gave an algorithm for solving the
multi-term linear fractional differential equations based on Ref. [15], but their method may
require a large amount of computational effort to calculate the associated weights. Edwards
et al. [16] solved linear multi-term fractional differential equations through a reduction to
a system of ordinary and fractional differential equations. Based on the analogue equa-
tion concept, Katsikadelis [17] presented a numerical method to solve linear multi-term
fractional differential equations.

A key issue in solving fractional-order diffusion models numerically is the design of
efficient algorithms for the space and time discretisation. The complexity of fractional
differential equations is because the fractional derivatives are nonlocal and characterised
by historic dependence and universal mutuality. Thus all previous solutions must be saved
to compute the solution at the current time level, which makes the storage expensive. Due
to their high spatial accuracy, compact difference methods need few grid points to produce
accurate solutions. However, there appear to be very few previous studies on efficient
numerical methods for problems involving multi-term fractional derivatives.

This article provides some numerical schemes to solve the one-dimensional and two-
dimensional multi-term fractional differential equations of the general form (cf. [17-19])

P2 uX,t) =kAuX, t)+ f(X,t), XeQ, 0<t<T, (1.1)

where « is a positive diffusion constant. The multi-term fractional operator P(°%,) is de-
fined by

S
P2 v(X,t) = (g@g + Z q g@f‘f) v(X,t),
i=1

wherel <o, < <oy <a<2,q;,>0,i=1,2,---,s,and

1 V()

r—a) ), (t—s)t

g@f‘v(t) =
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defines the Caputo fractional derivative of order a.

We construct some effective and fast numerical methods for solving Eq. (1.1), and es-
tablish corresponding error estimates. To reduce the computational burden, we adopt a
fourth-order compact difference method for the spatial approximation as it requires rela-
tively few grid points to produce highly accurate solutions, and use an L1 approximation
to deal with the temporal Caputo fractional derivatives. Using the discrete energy method,
we prove that in the one-dimensional case our resulting compact difference scheme is un-
conditionally stable and globally @(73~*+h*) convergent in the maximum norm. The two-
dimensional case is also discussed, and its corresponding stability and convergence results
are obtained. In Section 2, we present the compact difference scheme, analyse the trun-
cation error, and prove its stability and convergence. Our results on the two-dimensional
multi-term time-fractional diffusion equation are given in Section 3. In Section 4, we dis-
cuss the results obtained from several examples to demonstrate the efficiency and accuracy
of our approach, and some brief comments follow in the concluding section.

2. One-Dimensional Multi-Term Time Fractional Diffusion-Wave Equation

2.1. Derivation of the compact difference scheme

Without loss of generality, we may take a; =1 and ¥ = 1 in Eq. (1.1), and so consider
the following problem involving the two-term time fractional diffusion-wave equation:

u(x t)

S2u(x, )+ §2%u(x, t) = ——=—+f(x,t), 0<x<L, 0<t<T, (2.1)

with initial conditions
u(x,0)=¢1(x), u(x,0)=py(x), 0<x<1L, (2.2)
and boundary conditions
u(0,t) =1(t), u(L,t)=1,(t), 0<t<T, (2.3)

where 1 < a; < a <2, ¢1(x), ps(x), Y (t),,(t) and f (x, t) are known smooth functions.
We first give some notations and auxiliary lemmas to be used in the construction of the
compact finite difference scheme.

For the finite difference approximation, we equally sub-divide the intervals [0, L] with
x;=ith(0<i< M)and[0,T] with t, =kt (0 <k <N), where h=L/M and 1 =T/N
are the respective spatial and temporal step sizes. We denote tq/o = (tx + tx4+1)/2, and
Q,={x;|0<i< M}, Q.= {t, | 0< k <N}, so the computational domain [0,L] x [0, T]
is covered by €2 x Q.. For any grid function v = {vl.k |0<i< M, 0< k< N} defined on
Qp, x Q., we introduce the following notation:

1
Rt ] CRUPE R
2 2

A S T R %(vik“—v.k).

1 1
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In addition, we introduce a discrete fractional derivative operator

1 1
k=3 -3

a 1 k_% S a a J a <i< <k <
Dju; * = M— O, —Z:(bk_j_1 — bk_].)6tui —bl_eo(x))|, 0<i<M, 1<k<N,
a j=1

where u, = 7% 'I'(3—a) and by =(k+ 1)>"* —k?%; and an average operator

2

1 h
E(ui_1+10ui+ui+1):(I+_6i)ui, 1<1<M—1,

Hu; = 12

u;, i:O,M,

where the I denotes identical operator. The grid function space on £, is denoted by ¥}, =
viv=0W0pv " Vy_1,Vu)> Vo = vy = 0}, and for any u,v € ¥, we define the discrete
inner product

M-1
Wwv)=h Y uv,
i=1

and adopt the L, norm |lul| = v/(u,u). Further, we denote [|62ul| = 1/(62u, 52u), H'
seminorms |- |1, || - || 5+, and the maximum norm || - ||, as follows:

M
(6,u,6,v)= hZ((‘qui_%)((‘vai_%) , uly =4/ (0,u,6,u),

i=1

hz 2 2
(u)v>% = (5xu> 5xv)_ E(5xu) 5XV) > ”u”% = (u, u)% > ”u”OO = 1<I;Iée]1\/)[(—1 |ui| .

Lemma 2.1 (cf. Refs. [21,22]). For any grid function u € ¥},

VL

llulloo < 7|u|1 .

Lemma 2.2 (cf. Refs. [23]). For any grid function u € ¥,
2
5|U|f < full3, < luff

Lemma 2.3 (cf. Ref. [24]). Let 6(s) = (1 —5)3[5—3(1—5)?] If f(x) € €°[x;_1,X;41] for
1<i<M-—1, then

5 [ Cri) + 1087 0e) + £ Cri)] = 1 [ Geica) =2 () + £ ()]
1

L [f(f’)(xi —sh)+ f(f’)(xi + sh)] 0(s)ds .

=360 ),
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Lemma 2.4 (cf. Ref. [25]). Suppose 1 <y < 2, g(t) € 63[0, t;] and let

5tgk—%zw, 1<k<N,
T

by =(k+1*"—k*7, 0<k<N-1,

1—y

T
r(3—ry)

B 1 |: 1 L g//(S) J //(S) :|
2(r2=7)J, (tx—=s)~ 1 F(2 1) (g1 —s)1

RI(g(t, 1)) = 5.8 Z(bk 1~ bl )6:8"2 = b g'(0)

Then

2— 3
g
F(3—Y)[ 12 3—-y

1
R (g(t, 1))l < —(1+2")+ g]omax 8" (0)] 5.

Ststy

Let us now consider the grid functions
UF=u(x;,tr), fF=flx,t), 0<i<M, 0<k<N.

Suppose u(x,t) € ‘5)?7’?([0, L] x[0,T]). Thus from Eq. (2.1), at the point (x;, t;) we have

i 82u(xl,s) 1—a, t azu(xl,s) 1—a
o al)J (tx—s) ds+r(2_ )J (tx —s)"ds

_uxx(xi:tk)+f(xi: tk): 0<is<M,0<k<N,

whence

1 t" azu(xl,s) —a; azu(xl,s) I
|:F(2 al)f (tx—s) ds+r(2_ )J (tr —s) " %ds

tr—1 2 L1 2
G, u(xl,s) 1—a; 9“u(x;,s) 1-
)l mgs 4 —— — —s) %
F(2 al)J (t—1—5) S+F(2—a) i 352 (tg—1—s) " “ds

1 1 .
za[uxx(xi) tk) + uxx(xi) tk—l)] + E[f(xi) tk) +f(xi1 tk—l)]: 0si< M) 1<k<N.

Recalling D! Dgz and using Lemma 2.4,

P22

1

k—3 k 1
Do U * +Dg Up za[uxx(xi’ tge) + Uy (X5, tk—l)] + —[f(xi, ti) + f (i, tk—l)]

N[ =

_1
RZ(w), 0<i<M, 1<k<N, (2.4)
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where Rk V2() = R* (u(x;, ty—1/2)) +R*(u(x;, te—1/2)). Since 1 < oy < a < 2, there exists
a posmve constant ¢; independent of h and 7 satisfying

k— 1

R, (W) <ct®, 0<i<M, 1<k<N.

Applying the spatial average operator 5 on both sides of Eq. (2.4),

k—3 =1 1
%DS;UI 2 + %DgzUl 2 — EI:%UXX(XI', tk)+”uxx(xi, tk—l)]

k—1

i@,
1<i<M-1, 1<k<N.

+ %[%f(xi, t)+ A f (x;, tk—1)] + AR

From Lemma 2.3,

— 1 = -1
DU Dt U = 5201 e f TR 1<i<M-1, 1<k<N, @25)
where
~k—2 h 9°u 9°u
R 2=3‘£R (u)+720J [3 S (xi—Ah, tk)+ ( i~ AR, )
36 2°u

S (i A, 0 + 5 (i + ARty 1)]9(/1)@1

and there exists a positive constant c, independent of h and 7 satisfying

k=3
P S

IR (T3 %+hY), 1<i<M-1, 1<k<N. (2.6)

Further, given the boundary conditions (2.3) and the initial condition (2.2), we have
U(lf:lh(tk), UJI\}Z"L/’z(tk), 1<k<N, 2.7)
U2 =pi(x;), 0<i<M. (2.8)

k—1/2

Omitting the small term R ) in Eq. (2.5) and replacing the function Ul.k with its numerical

approximation ui.‘, we obtain the following compact difference scheme L1-CD:
ap, k= a k= 2 k_% k_% :
F€D 1ul +%D =6xui +#f %, 1<i<M-—1, 1<k<N, (2.9)
uf =1;(ty), UM=1/’2(tk), 1<k<N, (2.10)
u=p(x), O0<i<M. (2.11)

At each time level, this compact difference scheme (2.9)-(2.11) is a tridiagonal system
of linear algebraic equations where the coefficient matrix is strictly diagonally dominant,
so it has a unique solution and can be solved via the fast tridiagonal (Thomas) algorithm
— cf. Ref. [28] for details.
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2.2. Stability and Convergence of the L1-CD Scheme

We now proceed to investigate the stability and convergence of the L1-CD scheme (2.9)-
(2.11). Let us first introduce some lemmas that play a very important role in proving
stability and convergence.

Lemma 2.5 (cf. Refs. [10,20]). If 1<y <2, b] = (k+1)*7"—k*7,k=0,1,2,---, then

1=b)>b]>b)>-->b >--->0,
@2—7)(k+ 1) < bl < (2= )k .

. . k . k_ ok
Lemma 2.6. For any grid function {u; |0<i<M, 0Sk<N}andug=u 0,

2, k—3 -1y 1 k|2 k=112
—(82uk2, 251 2)—Z(|Iu 12— I5112,), 1<k<N.
Proof. Applying the identity s#u; = (I + %5§)ui, we obtain
k 1 k 1 k 1 hz k 1
—(82u%2, 5,k 7 ) = — (82042, (1 + 3008 1)
_1 _1\ h? _1 1
=—(82u*7, 5,0k z)—ﬁ(ﬁiuk 7,6,62uK77). (2.12)

Invoking the discrete Green formula, we rewrite the first term on the right-hand side of
(2.12) as

—(82uk2, 5,072 ) = (6,u52,6,6,u577)

= %[(@uk, 5xuk) — (5xuk_1, 5xuk—1)] . 2.13)

The second term on the right-hand side of (2.12) may be rewritten

hZ
52uk2,5,62uF "1 ) = —24—T[(5§u’<, 52uk) - (82ukL, 52uk1) | (2.14)
Consequently, substituting Egs. (2.13) and (2.14) into Eq. (2.12) and noting the definition

of || - || s, we arrive at

(52, 5k 4) = (11~ 101, 0

In proceeding to determine the stability of the L1-CD difference scheme (2.9)-(2.11)
with respect to the initial values ¢;(x), ¢5(x) and the forcing term f, we now prove the
following a priori estimate.
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Theorem 2.1. Let {vik |0<i< M, 0<k< N} be the solution of the difference system

_1 _1 1 1
ADEY T4 Dy T =62 gl 7, 1<i<M—1,1<k<N,  (215)
V=0, v =0, 1<k<N, (2.16)
v =v(x;), 0<i<M, (2.17)

where v°(xo) =v°(xy;) =0. Then for 1 <k <N,

. ti—al t}%—a k .
2 02 2 a—1 i—12
y < v + + K4 +Tr2—a)t* 7 E 72|12

_1
Proof. Multiplying Eq. (2.15) by h#6 tvl.k ? and summing over i from1to M —1,

(#D&vk=2, 725,v572 ) + (D8 v*72, 505,v* 77
=(82v%72, 5,v"72 ) + (57, 5,vF 7). (2.18)

From the definitions of D:f; and D“Z,

) k=1

:uial H5 vk —uial;:(bk_] b ) (5,073, 5, vF )
b (s, #5,577) (2.19)
Ha,

tiz_l(b;;_]l b ) (5,74, 05,42

1 (A, #5v°77) . (2.20)

Invoking Lemma 2.6, we obtain the following estimate:
_1 _1 1
—(83 2,52 ) = (V15— V%) - (2.21)

Substituting Egs. (2.19)-(2.21) into Eq. (2.18), from Lemma 2.5 and the Cauchy-Schwarz
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inequality we obtain

(Ilvkll2 — V<13,

k—1 a;
1 . !
=— > (b — byt ) (8,072, o08,v5 72 ) + 2L (g, 5,087
bay S oy
1 S a ;
+— > (bg, —bp ) (52, 5,52
.ua j=1
b k—3 k k—1
+ (%¢2,%6tv 2)+(g 2,50,V 2)
Ua
k—1
1 2 —-b ' 2
SO G | 2Rt I E R
21“’(11 ]:1 J J nual
pH ¢ ="
+ L | 4 ’%6tvk_5 — (b, - H%6 yi=3
WUa, a a =1
1— b 2 be b
+— 5| L g 2 L |5 | (g e )
24t 2414 2414
or
1
(—+—)HJ£5 N (||v'<||2 — IVE2,)
Uay
1 k—1
<— > (b, - b)) || s 10,1
.ual j=1 ay
1 S . .
> (b, bg_].)H%(stvf—z +2‘(gk_§,%5tvk_§),
.ua j:1
1<k<N. (2.22)
Let
=Vl
and
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Then on multiplying (2.22) by T and using the Cauchy-Schwarz inequality we have

ay a

b b
Fk< 141 (ﬁ + k‘l) | p,lI* + 27

(8572, 75,v°2)

a
al b
]

||m2||2+2r2\(gJ 5,y7)
Mal Mo

k al b2 k 1 9
-1 2 i1
Z( Ma, [ ) 1l TZ bl b ’

a j=1| 2= 4

Ba; ' Ha
bal ] pe .
k— k— ;
| =2+ = H;%tvf‘%
Uq, Uy

k a1 a k
K12 <(lv02 by bi, 2 1 1|?
WA, <IvOIZ, + 7 >0 L2+ L2 el 4wy ,
.U'al “(l j: i k—j

Jj=1

2

or

1<k<N. (2.23)

Let us first estimate the second term on the right-hand side of Eq. (2.23). Noting that

Z] 1 b]Y | =k¥7, y=ay,a, we obtain

i e [EA 6" ) gy (2.24)
T + oll“ = + ©oll% . .
= 7 o\rB-a) IB-a) ’

Next, let us estimate the third term on the right-hand side of Eq. (2.23). Noting that bz_] =
-7 k—j+1D)"7"=(2—1)k'",y = a;,a when 1 < j < k, we arrive at

Y Y 1-r

bk bk —J (2 Y)kl 7 _ tk (225)

Uy TTE—pul F(3 Pl T2—-y)’

Moreover, invoking Eq. (2.25) we find that
£ 1 j—3 2 - Uy j—1 2 a—1 L j—1 2

w2 b b, 18 <7 ’g | <r@-age), Hg ’ (2.26)

j=1 J 4 j=1 “k—j j=1

Pay Pa

The desired result follows on inserting Egs. (2.24) and (2.26) into Eq. (2.23). O

We conclude the following stability statement from Theorem 2.1.

Theorem 2.2. The L1-CD scheme (2.9)-(2.11) is unconditionally stable with respect to the
initial values ¢(x) and @5(x) and the inhomogeneous term f.
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We now consider the convergence of the L1-CD scheme (2.9)-(2.11). Let

ef=Uf—uf, 0<i<M,0<k<N.

Subtracting Egs. (2.9)-(2.11) from Egs. (2.5), (2.7) and (2.8) respectively, we get the error
equations

k—1 k—1 k=1 ~k—1 .
ADy'e; >+ #Dfe, 2 =5%, *+R *, 1<i<M-—1,1<k<N,
eé:O’ eIIT/I: 8 1<k<N,

e)=0, 0<i<M.

Invoking Eq. (2.6) and Theorem 2.1, we obtain

k k
L 1|2
k12, < T-a)g e 3[R < g Y Lt + 1Y
j=1 j=1

< chF(Z —a)TH(13 *+h*)?,

and applying Lemmas 2.1 and 2.2 we have the following theorem.

Theorem 2.3. Assume that u(x,t) € ‘62’?([0,L] x [0,T]) is the solution of the problem

(2.1)-(2.3), and {uf |0<i< M, 0< k< N} issolution of the L1-CD scheme (2.9)-(2.11),
respectively. Then

L
le¥llco < 22/6T@—a)T(+** +h), O0<K<N.

3. Two-Dimensional Multi-Term Time Fractional Diffusion-Wave Equation

3.1. Derivation of the compact ADI difference scheme

Let us now consider the numerical solution of the following problem involving the two-
dimensional multi-term time fractional diffusion-wave equation:

S92 ulx,y, )+ §D0u(x, y, £) = Aulx,y, ) + f(x,y,1) , (6, y) €Q,0<t<T, (3.1)
U(X,)’,O):(;Ol(X,}’), ut(X,)’,O)zﬁpz(X,}’), (X,)’)EQ:QUaQ, (32)
u(x,y,t)=4Y(x,y,t), (x,y)ed, 0<t<T, (3.3

where Q= (0,L,)%(0,L,),1 <a; <a<2and ¢;(x,¥),s(x,¥),¥(x,y,t) and f(x,y,t)
are known smooth functions.

Set x; = ihy and y; = jhy with hy = L,;/M; and hy = Ly/M,, where M; and M,
are positive integers. Define @, = {x;/ 0 < i < M;} and O3, = {y;| 0 < j < My},
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Qp =y X Qp,, U = Y NQ and 9Qy, = QNI . The definitions of 7, t; are the same as
in Section 2. For any grid function v = {v;; | 0 <i < M;,0 < j < M,}, we denote

1 1
6xvi—%,j = h—l (Vl'j _vi—l,j) , 632CVij = h—l (6xvi+% Jj ) Vl_l ))
1
— 2 _ 2 2
5 6 vl—lj $ = h (5 vl—— J -6 vl—l J— 1) 5}'5)( ij—3 — E (5xvij _5xvi,j—1) :

Similarly, the notations &, v; j_1/5, 63 Vij, 663 Vi_1/2,j, 6565 v;j can be defined. The discrete

Laplace operator is denoted by Ahvl i 52 Lvijto f,vi j» and the spatial average operators are
defined as

2
Aoy = 12(vl 1 F 10V + Vi) = (I+E52) vii 1<i<M;—1,0<j<M,,
Vij i=0 or M, 0Zj<M,,
! h . .
Hyvij = E("i,j—l + 10V + Vi j41) = (H E‘Sy)vif’ 1<j<My,—1,0<i<M,,
Vij > j=0 or M,, 0<i<M,.

We introduce the space of grid functions on €,
V= {v | v="_{v;j | (xi, ;) € Q,} and vi; =0if (x;,¥;) € anh} .

For any grid functions u,v € V,*, we define the discrete inner product

M;—1M,—1

(u,v) =hihy Z Z UijVij

i=1 j=1

and denote ||v|| = 4/ (v, V). Similarly, we define ||5)2(v||, ||5§v|| and ||6§5}2,v||; and denote

M; My—1

6,01 = [ ahy > " [, 1,

i=1 j=1

J

M; M,

15,5, vll = | i > |66y, 3

2

)

i=1 j=1

M;—1 M,

15,82v]l = \ hhy > >

5y6xvl’] 1

b

i=1 j=1

and the semi-norms ||5,v||, |5 x5§,v|| can be defined similarly. The discrete H! semi-norm

and H! norm are respectively

IVpvll= I8 VIR +16,vI1Z, Vil = VIVIZ+V,v]2.
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Finally, for any grid function v € V.*, we denote

hZ
16,vlla= \J 16, vII*— 1—;”53"”2 ,

h2
_ 2
6, vllp = \l 6, vz — B 163V,

and

IVl = V117, 5,112+ 17,5, V13 .
We next construct our compact alternating direction implicit (ADI) difference scheme to

solve the problem (3.1)-(3.3).
Suppose that u(x,y,t) € %f,’;’f(ﬂ x [0,T]). On considering Eq. (3.1) at the point
(xi, ¥, tn—1/2) and then using Lemma 2.4, we have
DUU"? 4D g
pa T ij o L]
1
_E[uxx(xi, Yis tn) + uxx(xi’ Yis tn—l)] + E[uyy(xi’yj, tn) + uyy(xi’.yj, tn—l)]
1
5[ Gyt +F Gy tan) |+ R (uCxin vt 1)) +R (ulxi v t1))
(xi, )€, 1<n<N. (3.4)
Applying the spatial average operator 5, 7€, on both sides of Eq. (3.4), we obtain
nl a1l
oA, DOUL 2 + Ao, DE U

P2 ij
_ %xﬁy

A,
[uxx(xi: yj: tn) + uxx(xi: .yj: tn—l)]_l_—[uyy(xi: .yj: tn) + uyy(xi: .yj: tn—l)]

o, )
+ 2 I:f(xi).yj:tn)_'_f(xi:yj) tn—l)]+%x%yR l(u(xizyj) tn_%))

+ 7, 7,R (u(xi: Yj> byt )) ,

(xi,Y;) €EQy, 1Sn<N.
From Lemma 2.3,
aq ”_% a ”_%
fo%"yD(pz Ul.]. + %"XnyDSO2 Ul.].

-1 1 _pl
=(#,62+ AU 2+ AHH S AR, (¥ )€, 1Sn<N,  (35)

13
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where

n

R.? :jfx%"yRal (u(xi,yj, tn_%)) + fo%y}{a (u(xi:J’j: tn_%))

ij
ht 2%u 2%u
+7T10%yf |:a 6( —sh }’], n)+ ( i_Sh,yj,tn—l)

bu 2%u
+o—(x; +sh, yj, t,) + s—(x; +sh, yj, t,_1) [ O(s)ds
x dx6 J

4 351 351
+_%XJ |: (xu.y) —sh,t )+ (xu.y) sh, t by 1)

6 86
(xl,y] +sh,t )+ (xl,y] +sh,t,_1)|0(s)ds .

Adding a small term %5?{6}%5 U” 2 into Eq. (3.5), we have

2
L PaHaT
A 76, DA, b A A DU 2+L52525 U
¥2 P2 1 4(.“:11 ) X"y

-1 -1 -1
U ? o+ A S PR L (xpy) €9, 1Sn<N,  (3.6)

- (%yéi + %ﬁi) ;

where

72
R12 Rn 12 | Mo o 52525, U

Y 4(ua1+ua) e
Halﬂa 62526 Un 1/2

oy +tHa) X7y
of hy, h, and T satlsfymg

Since = 0(v!*%), there exists a positive constant c; independent

1
R ?

i <c3(73_“+h‘1‘+h‘2‘), (xi,¥;)€EQ, 1Sn<N. 3.7)

In addition, given the initial and boundary conditions (3.2) and (3.3) we find that
Uj=wilxiy), (i y) €, (3.8)
Ui =9,y ta), (x,y;) €09, 1Sn<N. (3.9)

Omitting the small term R’ ij 12 in Eq. (3.6), and replacing the function U} with its numer-
ical approximation u?j, and noting Egs. (3.8) and (3.9), we obtain the followmg compact
difference scheme L1-CADI:

e el BaMa® o el
S 7, Dlu, 2+%%’D“ Wy Pt —6.0,6.u;; °
w2l 4(ua1+.ua)

_1
= (4,62 + 4,62 ), * + A, f] : (Y €Q, 1Sn<N,  (3.10)

u?j=801(xi,y]'), (x1,¥;) € (3.11)
ul]:ﬁ)(xi,y]',tn): (xi)yj)eaﬂh) 1sn<N. (312)
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We determine {u?j} by solving two sets of independent one-dimensional problems as
follows. Introducing the intermediate variables

Uy U T
usz[%y—L(‘Si]u;, 0<i<M;,1<j<M,—1.
2(Ug, + )

To compute {u;f‘j} for fixed j € {1,2,---,M, — 1}, we solve

Ba, T Ba,MaT Pa, MaT
( [%"x—L%]u?jZ[%X+L5i][%y+L5i]ugl
2(“(11 + Ug) 2(Uq, + Ua) 2(Ug, + Ma)

a -1
Z(bn B DL AT

-
ay
-1 ,U,a’l.'bn_l
(b2 —b% )., 0,u. . P + ————FH.F,(P);i
{ 'ualzlz n—I[—1 n—l X<y HtTj Mal+MaXy j
u Tb“_ Uglhg. T _1
+al—nl%x%y((p2)ij+&%x%y L2, 1<isM; -1,
Ua1+Ua a; a !

P, M T 2] [ Mo, Mo T 2]
wh=| A — 52 |l U, = | A — 2 (Ul
o [ T2, ) VLY M T 2, ) M

Once {u;.kj} is available, we solve the following system for fixed i € {1,2,---,M; — 1} to
obtain the solution {ul’.lj}:
W, Mo T
Ay — 52 Ul =uf, 1<j<M,—1,
2(pg, +ug) Y17 Y

ulo zlp(xi’yO’ tn)’ ulr'lMZ zlp(xi’.yMzﬁtn)-

3.2. Stability and convergence of the L1-CADI scheme

To analyse the stability and convergence of the L1-CADI scheme (3.10)-(3.12), we first
introduce some lemmas.

Lemma 3.1 (cf. Ref. [13]). For any grid function {vi’} | (xi,y7) € Q,, 0<n <N} and
vl."j =0o0n 9y,

_1 _1 1 _
(7,82 + 524, s, 5074 ) = = (I = v 2.).
Lemma 3.2 (cf. Ref. [13]). For any grid function v € V.,

1
(5§6§v,%x%yv) > §||6x6yv||2 .
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Lemma 3.3 (cf. Ref. [13]). For any grid function v € V¥,

STt e <
- Hl ~ h* >~ — Hl .
3\ 6(LI+L3)+12L3 3

In order to show the stability of the L1-CADI scheme (3.10)-(3.12) to the initial values
p1(x,y), @a(x,y) and the forcing term f, we prove the following a priori estimate.

Theorem 3.1. Let {vi’} | (xi,y5) € Q,, 0 < n < N} be the solution of the difference system

72
1 1 g Mg T
a2 a T2 G ma 2¢2 n—3
%x%yD¢;Vij +%X%yD(p2Vij +4(Ha +,ua)6x5y6 tVi;
1
_1 _
:(%y5§+ﬁx5§)v; 2 +gfj 2, (x,¥)) €, 1<n<N, (3.13)
VSZVO(Xi,}’j), (xi,¥;) € Yy (3.14)
=0, (x;,y))€9Q,, 1<Sn<N, (3.15)

where vo(xi,yj) =0on(x;,y;) €0 ThenforISn<N,

2—a 2—a
t,

t 2 _ - _1|?
2, <||V0||§*+(r(3—a) TG a))||% 05| + T2 —a)t? 1T2ng ;
=1

Proof. Taking the inner product (3.13) with 5, 5¢, 6 tv”_% , we have the following equal-
ity:
(s, 76,D0v" 2, 0, 56,5 9" ) + (6,76, D2 V'3, e, 6,5 v E)
Uy o T
4, + )
=((,62 + #8202, 70, 7,5,v"72 ) + ("2, A H6,6 V"2 . (3.16)

(82625,v"2, ,6,6,v"% )

Recalling D:f; and D“Z, we have

(if A, D“lv”_%,%f’xﬁy&v”_%)

—_— @ -3 _1

H - Z(bn I— 1_bnil (%x%y(gtv 2,%x%y6tv" 2)
Ma, =1

bo‘1

— (S 03, K HE VTR (3.17)

a
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(#.,D8 =2, 5,5, v”—%)

1 _1 _1 _1
:_a %x%y&vn 2‘ _U_alzl:(bn -1 l)(%f’xjf}ﬁtvl 2,%x%y5tv” z)
bis 1
— 2L (A 0, #5977 ) (3.18)
a
Invoking Lemmas 3.1 and 3.2, we obtain the following estimates:
_1 _1 1 _
(8,82 + 5552, . ,6,v" 2 ) = = (VI ~ V"I ). (3.19)
2<2 n—i n—i 1 n—1 2
(82625,v"72, ,56,5,v z)zg 2 (3.20)

On substituting Egs. (3.17)-(3.20) into Eq. (3.16), from the Cauchy-Schwarz inequality we
deduce that

1 2.1
(_+_)H%%’6 yn 5H +— (V"I = v 1“h*)+
.ual 2T

a

—1
a —= l bn— _l
< Z(bn L DA, 6 VT, A A6 V) + L (A S o, Ho A, 5 V)

1

Au’(ll =1 aq
1 n—1 L . b 1

+— > (b= b ), 8,V 5,8, 7) + (A A g, 5,V
ll’l’a =1 Ma
+ ("2, H A, 5,V 2)

a1

_1 1 b —1
Z(bn T (A L e A DRl e[

(111 1 a

bal 1 ! 1
+2n—1||=9fxﬁy5tvn 2||2 Z(bn 1= b2 . 5,6 v 2 |P+ || . ,6 v 2 |1?)

aq all

b* b 1 _1 _1
+5 L7, 0517 + zllllﬂx%y&v” 2|12+ |(g"2, o #, 5,2,
a

implying that
1 |
(—+—)H%’%5v = O =)
.ual T
ay =1 2 11 2
<—Z(bn = b)) |l 5 v ||+ 2L,
a

0‘111

1 1|1, baa
+—Z(bn - bz_l)H%X%y6tv ” + 221 5, 5, o
“al 1 nu’a

+2 (g”_%,iijfy&v”_%)‘ . (3.21)
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On denoting

n ball bal )
G = 2 4w S| 2L gt H%%’5vl_i‘
e ba,  Ha S

=1 a1

2
,1<n<N and G°=[n°|7.,

Eqg. (3.21) can be written as

p* pe
_ -1 -1 2 1 1
G" <G" 1+r(“”—+ ; )”%"X%ytpz” +2’r’(g” 2, #.7,6,v"?)|, 1<n<N.
aq a

Recalling the analytical method and tools in the proof of Theorem 2.1 or given in Refs. [13,
26], we similarly obtain the desired result. O

The following stability statement follows immediately from Theorem 3.1.

Theorem 3.2. The L1-CADI scheme (3.10)-(3.12) is unconditionally stable with respect to
the initial values @,(x,y) and @4(x, y) and the inhomogeneous term f.

Let us now consider the convergence of the L1-CADI scheme (3.10)-(3.12). On setting

eg:U;—uZ, (Xi’.yj)EQh’ O<H<N,

and subtracting Egs. (3.10)-(3.12) from Egs. (3.6), (3.8) and (3.9) respectively, we get the
error equations

2
_1 _1 Ug, YT 1
a; n—3 a n—3 aia 2 <2 n—s
A, #,Dy'e;; * + H, 7, Die;; +—4(Mal+ua)5x5y5teij
1 1
_ 2 2y,72 | ph—3
= (%y5x+%x5y)eij 2 +R;; 2, (Y )€, 1SnSN,
e?ij, (xi,y;) €y,
e?j=0, (x;,¥;)€0Q,, 1Sn<N.

With the help of Eq. (3.7), it then follows from Theorem 3.1 that
- 1
el <TQ2—a)y e ) IR < GL LT (2 a)T* (e + ki +h3)?,
=1

and applying Lemma 3.3 yields the following convergence result.

Theorem 3.3. Assume that u(x,y,t) € %6’6’3(9 x [0, T]) is the solution of (3.1)-(3.3) and

XYt

{ul’.lj | (xi,y5) € Qn, 0 < n < N}is the solution of the L1-CADI scheme (3.10)-(3.12). Then

2 2
1+L2

3c LZLZ
el < 73\ (6+ %) L1LT(2—a)T4(x> *+h +hd), O0<n<N.
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4. Numerical Experiments

We now present some calculations using the numerical methods previously discussed,
where the errors involved are measured by comparing the numerical solutions with the
exact solutions.

Example 4.1. Let L = 7,T = 1. In order to test the convergence rate of the proposed
methods, we refer to the exact solution of the problem (2.1)-(2.3) — viz.

) — t1+a1+a

u(x,t sinx .

It can readily be checked that the corresponding source term f(x,t) and the respective
initial and boundary conditions are
r2+o, +cc)t1+a+ r2+a;+a)

flx, t)z( r2+a) T2 +ay)

t1+a1 + t1+a1+a) sin x ,
and
(P]_(X)ZO, (,02()():0, wl(t)zoa 111)2(1-):0

We compute the maximum norm errors of the numerical solution
_ k k
eoo(h:T)— max ”U —u ”oo 5
0<k<N

and characterise the temporal convergence order and the spatial convergence order as

€oo(h,27) eoo(Zh,T))
eco(h, 7) eco(h,7) J
In order to show the effectiveness of the L1-CD scheme, we construct the corresponding

Crank-Nicolson scheme L1-CND, which is also computationally efficient when the storage
is inexpensive:

Orderl =log, ( ) ) Order2 = log, (

ay, k=3 a k=3 2 k=3 k—3 .
DPu; > +Dfu; *=8%u; *+f; *, 1<i<M-1, 1<k<N,
uk =y(t), uf, =,(t), 1<k<N,
W= (x), 0<i<M,

with the truncation error @(7>% + h%). We compare the the numerical results from the
L1-CD scheme with the results obtained from the L1-CND scheme.

The first computational investigation concerns the temporal errors and convergence
orders. In order to find the temporal convergence order, the space step h should be chosen
sufficiently small to prevent large spatial discretisation error. The computational results of
the L1-CD and the L.1-CND schemes with h = 7t/20 and h = 7t/100 are presented in Table 1,
respectively. It is observed that both schemes generate 3 — a temporal convergence order,
consistent with our theoretical analysis.
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Table 1: Numerical convergence of the L1-CND and L1-CD schemes in the temporal direction for
Example 4.1.

L1-CND scheme (h = 7t/100) L1-CD scheme (h = 7t/20)
a;, a T eoo(h, T) Orderl eoo(h, T) Orderl
1/10 1.387e-1 * 1.387e-1 *
a; =1.15 1/20 6.485e-2 1.096 6.485e-2 1.096
a=1.95 1/40 3.081e-2 1.074 3.080e-2 1.074
1/80 1.475e-2 1.062 1.475e-2 1.063
1/160 7.093e-3 1.056 7.090e-3 1.057
1/10 5.793e-2 * 5.793e-2 *
a; =1.35 1/20 2.180e-2 1.410 2.179e-2 1.410
a=1.65 1/40 8.266e-3 1.399 8.262e-3 1.399
1/80 3.152e-3 1.391 3.149e-3 1.392
1/160 1.208e-3 1.383 1.205e-3 1.386

Table 2: Numerical convergence of the L1I-CND and L1-CD schemes in the spatial direction for Exam-
ple 4.1.

L1-CND scheme (7 = 1/20000) L1-CD scheme (7 = 1/200000)
a;, a h eool(h, ) Order2 h eoo(h, T) Order2
n/4 3.870e-3 * /2 2.096e-3 *
a;=1.1 /8 9.803e-4 1.981 /4 1.243e-4 4.076
a=1.3 /16 2.459e-4 1.995 /8 7.638e-6 4.025
n/32  6.155e5 1.998 n/16  4.756e-7 4.005
/4 2.526e-3 * /2 1.369e-3 *
a, =13 n/8  6.407e-4 1.979 n/4  8.124e-5 4.075
a=1.5 /16 1.610e-4 1.993 /8 4.999¢-6 4.022
/32 4.050e-5 1.991 n/16 3.195e-7 3.968

Secondly, we test the spatial errors and convergence orders of the two schemes by letting
h vary and fixing the time step size 7 sufficiently small to avoid temporal error. Table 2
shows the maximum norm errors and spatial convergence orders of the L1-CD scheme and
the L1-CND scheme with different a1, a. As predicted in our theoretical estimates, the L1-
CD scheme attains fourth-order spatial accuracy while the L1-CND scheme has second-order
spatial accuracy.

Next, in order to quantify some features of the computational efficiencies of the L1-CD
scheme more precisely, we consider the CPU time for both schemes. As mentioned before,
since fractional derivatives are non-local operators, they require a large memory storage
capacity if low-order finite difference methods are employed for the spatial approximation.
For the L1-CND scheme, the optimal step sizes satisfy 7°~% ~ h?, or N ~ [M = ]. For the
L1-CD scheme, the optimal step sizes satisfy 75~ * ~ h*, or N ~ [M = ]. From Table 3, it
is clear that the two schemes provide almost the same accuracy for the same temporal grid
size, but the L1-CD scheme needs fewer spatial grid points and less CPU time. Thus the L1-
CD scheme reduces both the storage requirement and the necessary CPU time successfully.

Example 4.2. Let T =1, Q = (0, ) x (0, 7). We consider the exact solution of the problem
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Table 3: The maximum norm error and CPU time of the L1-CND and L1-CD schemes for Example 4.1.

L1-CND scheme L1-CD scheme
a,;, a N M  ex(h,7) CPUtime(s) |M es(h,7) CPU time(s)
44 25 1.130e-3 0.0581 5 1.029e-3 0.0308

225 100 6.655e-5 1.2490 10 6.337e-5 0.3184
a; =11, a =13 585 225 1.274e-5 8.2231 15  1.205e-5 1.4025
1151 |400 3.962e-6 34.0598 20 3.763e-6 4.2526
1947 |625 1.60le-6 110.9587 25 1.517e-6 10.6970
141 25 1.816e-3 0.1999 5 1.702e-3 0.1114
1194 |100 1.121e-4 8.9086 10 1.102e-4 2.1454
a; =11, a =1.7 |[4157 |225 2.209e-5 124.5583 15  2.160e-5 19.5761
10073 |400 6.984e-6  1012.6392 |20 6.867e-6 110.1357
20015 |625 2.85%e-6 5602.6990 |25 2.806e-6 480.6011

(3.1)—(3.3) as follows:

u(x,y, t) =3t sinxsiny .

It is again not difficult to obtain the corresponding forcing term f(x, y, t), and the initial
and boundary conditions ¢(x,y), p,(x,y) and Y (x, y, t).

In order to test the convergence rate of the proposed methods, we use the same spacing

h in each direction (h; = h, = h), and compute the maximum norm errors of the numerical
solution

Eoo(h,7)= max

(xj.y)€Q
0<n<N

u(xb )’], tn)_ug'

>

via
Eoo(h,27)

Order3 =log2( E () w) .
oo ’

, Order4 =1

). o= (g
As for Example 4.1, we give the following ADI scheme (L1-ADI) to compare with the L1-
CADI scheme:

ar, 3 a 3 ‘ual‘uaTz 252 n—3 n—3 n—z <n<
1 _ = . .
Djluy; *+Dg u;; *+ TR 5X5y6tuij Apuy; +fl.j , (X5, Y;)) €, 1Sn <N,
0 _
w;; = 1(x, 5), (xi,¥j) € Qs

u?j:lp(xi’yj,tn)3 (xi,J’j)Eth, 1<H<N,

where the truncation error of the L1-ADI scheme is (73~ * + h% + h%).

As before, the numerical accuracy in time is first verified. For fixed space step sizes
h = n/20 and h = 7/200 respectively, the results we obtain on varying the temporal step
size T are displayed in Table 4. We conclude that there is again (3 — a)-order convergence
in time.

Secondly, we test the spatial errors and convergence orders of the two schemes, by
letting h vary and fixing the time step 7 sufficiently small to avoid significant temporal
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Table 4: Numerical convergence of the L1-ADI and L1-CADI schemes in the temporal direction for
Example 4.2.

L1-ADI scheme (h = 7t/200) | L1-CADI scheme (h = 7t/20)

a;, a T E(h,7) Order3 E(h,7T) Order3
1/10 | 2.079%e-1 * 2.079%e-1 *
1/20 | 9.184e-2 1.179 9.184e-2 1.179
a;=12,a=19 | 1/40 | 4.168e-2 1.140 4.168e-2 1.140
1/80 | 1.917e-2 1.121 1.917e-2 1.121
1/160 | 8.874e-3 1.111 8.874e-3 1.111
1/10 | 3.408e-2 * 3.409e-2 *
1/20 | 1.019e-2 1.742 1.019e-2 1.742
a;=1.1,a=13 | 1/40 | 3.046e-3 1.742 3.048e-3 1.741
1/80 | 9.120e-4 1.740 9.137e-4 1.738
1/160 | 2.737e-4 1.737 2.754e-4 1.730

Table 5: Numerical convergence of the the L1-ADI and L1-CADI schemes in the spatial direction for
Example 4.2.

L1-ADI scheme (7 = 1/20000) | L1-CADI scheme (7 = 1/200000)
a;, a h Eoo(h,T) Order4 h Eoo(h,T) Order4
n/4  7.468e-3 * n/2  1.072e-3 *
a;=135| n/8 1.97%e-3 1.916 n/4  6.370e-5 4.073
a=1.65 | ©/16 5.032e-4 1.976 /8 3.981e-6 4.000
/32 1.275e-4 1.981 n/16  3.153e-7 3.658
n/4  7.68%e-3 * m/2  1.104e-3 *
a; =145 | n/8 2.037e-3 1.917 n/4  6.552e-5 4.074
a=1.55 | ©/16 5.170e-4 1.978 /8  4.046e-6 4.018
/32 1.302e-4 1.989 n/16  2.722e-7 3.893

error. Table 5 gives the maximum norm errors and spatial convergence orders for the two
schemes. As predicted by our theoretical estimates, the L1-CADI scheme attains fourth-
order spatial accuracy whereas the L1-ADI scheme has second-order spatial accuracy. In
Table 6, we display some CPU time results for the L.1-CADI and L1-ADI schemes. It is clear
that the two schemes generate almost the same accuracy for the same temporal grid size,
while the L1-CADI scheme needs fewer spatial grid points and less CPU time, and therefore
requires less storage and CPU time.

We compute the problem for a longer time by fixing T = 10 and M; = M, =4,5,---, 14,
and still choosing the optimal step sizes 7°~% a h? for the L1-ADI scheme and 73~ * ~ h*
for the L1-CADI scheme, respectively. Fig. 1 shows the maximum error and CPU time of
both schemes for t = 1,2,---,10 when a; = 1.1, a = 1.2, and also the efficiency of the
L1-CADI scheme.

Example 4.3. Let L =1, T = 1. Consider the following two-term time fractional diffusion
wave equation

2%u(x, t)

g@f‘lu(x, t)+g@f‘u(x, t)= E

“4.1)
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Table 6: The maximum norm error and CPU time of the L1-ADI and L1-CADI schemes for Example 4.2.

L1-ADI scheme L1-CADI scheme
a, a N M, =M, E,(h,t) CPUtime(s) | M; =M, E(h,7) CPU time(s)
44 25 1.756e-7 0.9955 5 1.594e-7 0.2609
a; =11, a=13 97 49 2.506e-9 8.6312 7 2.384e-9 1.3806
176 81 1.015e-10 46.4399 9 9.844e-11 5.3702
282 121 8.013e-12 181.5510 11 7.852e-12 16.7878
141 25 4.127e-11 3.3463 5 3.748e-11 1.0444
a; =15, a=17 398 49 6.73%e-14 44.0832 7 6.412e-14 10.4380
863 81 5.607e-16 370.4846 9 5.440e-16 68.4346
1601 121 1.224e-17 2865.1578 11 1.199e-17 330.9768
_zError of the two schemes versus t CPU time of the two schemes versus t
10 t ‘ 700 ‘ |
@ —#— L1-CADI scheme —#— L1-CADI scheme|q
L1-ADI scheme L1-ADI scheme
600 3
S
. \“ 500 1
10 7 1
2 \\. o 00
: N\ o
g N\ =
3 N a 300f .
s ] o
Y \o
10 ' Ne 1
‘\9 200 1
V|
100t 1
3
10_5 L 0‘73;:_‘1_..-¢
0 5 10 0 5 10
1<t< 10 1<t< 10

Figure 1: Error and CPU time of the L1-ADI and L1-CADI schemes.

subject to zero boundary conditions and the following initial conditions
u(x,0)=sin(mx), u,(x,0)=0, 0<x<1. (4.2)
Denote

uf’ (h,7)— qu (h, %)‘ for sufficiently small fixed h,

F.(7)= max
0o (7) 0<i<M
and

Goo(h) = max u (h, ) — ug(gr) for sufficiently small fixed 7.

We have tested the algorithms L1-CD and L1-CND for (4.1)-(4.2). The results at time
T = 1 with h = 1/10000 are reported in Fig. 2. We show the errors in the L,,-norm as
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the L1-CND scheme the L1-CD scheme
T T T
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-8t

© ©
8 8
w w
k=) k<)
o o
-10f 1 -10f
-11p —%—0a,=1.3,0=15 [} -1 —%—0,=1.3,0=15 ||
slope=1.5 slope=1.5
—— al=l.5,a=1.7 —p— 01:1.5,0!:1.7
-12p slope=1.3 i -12r slope=1.3
orl=1.7, a=1.9 al=1.7, o=1.9
slope=1.1 slope=1.1
~13 . n n ~13 . n n
-9 -8 -7 -6 -5 -9 -8 -7 -6 -5
log(t) log(r)

Figure 2: Convergence orders in temporal direction of the L1-CND and L1-CD schemes for Example 4.3.

function of N for different a; and a. The slopes are 1.5, 1.3 and 1.1 respectively, in good
agreement with the theoretical result of 3 —a.

The errors obtained by the L1-CD and L1-CND schemes at time T = 1 with 7 =
1/100000 are shown in Fig. 3. It is clear that the L1-CD scheme attains fourth-order spa-
tial accuracy while the L1-CND scheme has second-order spatial accuracy, as theoretically
predicted.

Example 4.4. Consider the following two-term time fractional equation in the 2D domain
Q=(0,1)x(0,1)

22 t) 02 t '3+ a+
S u(x,y, 0) +§Dlulx, y, t) = ux, y, )+ ulx, y, )+€x+y[wt2+“

2 x2 ayZ F(B + a)
[Gtatay) s, _ 2t2+a+a1] , (4.3)
F(B + al)

subject to zero initial conditions and the boundary condition
u(x, y, O)laq = 2N g . (4.4)
The exact solution of the problem (4.3)-(4.4) as follows:

u(x,y, t) — ex+y t2+a+a1 .
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Figure 3: Convergence orders in spatial direction of the L1-CND and L1-CD schemes for Example 4.3.

With the fixed spatial step size h, the problem (4.3)-(4.4) is first solved numerically us-
ing the L1-CADI and L1-ADI schemes, respectively. The computational results are reported
in Table 7, from which the (3 — a)th-order convergence in time of both schemes is evident.

Secondly, we examine the numerical accuracy of the L1-CADI and L1-ADI schemes in
space. The computational results in Table 8 show that the spatial convergence order of the
L1-CADI scheme is fourth-order, while the L1-ADI scheme has second-order spatial accuracy.

As for Example 4.1, we choose the optimal step sizes 73~* ~ h? for the L1-ADI scheme
and 737% ~ h* for the L1-CADI scheme, respectively. In Table 9, we display some resulting
CPU times for the L1-CADI and L1-ADI schemes. It is clear that the two schemes generate
almost the same accuracy for the same temporal grid size, but the L1-CADI scheme again
needs fewer spatial grid points and less CPU time, so requires less storage.

5. Conclusions

Some effective and fast numerical methods have been constructed for multi-term time
fractional diffusion-wave equations. Our approach is based on the L1 approximation for the
Caputo fractional derivative in the temporal direction, and a compact difference method
for the spatial approximation with fourth-order accuracy that reduces storage requirements.
Using some novel techniques, we rigorously proved the unique solvability, unconditional
stability and global convergence for both the one-dimensional and two-dimensional cases.
Numerical examples verify the effectiveness of these compact difference schemes. The
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Table 7: Numerical convergence of the L1-ADI and L1-CADI schemes in the temporal direction for
Example 4.4.

L1-ADI scheme (h =1/200) | L1-CADI scheme (h = 1/20)

a;, a T E(h,7) Order3 E(h,7T) Order3
1/10 3.591e-1 * 3.592e-1 *

1/20 | 1.678e-1 1.098 1.678e-1 1.098

a; =12, a=19 | 1/40 | 7.809e-2 1.104 7.810e-2 1.104

1/80 | 3.632e-2 1.104 3.633e-2 1.104

1/160 | 1.690e-2 1.104 1.690e-2 1.104
1/10 | 2.919e-2 * 2.923e-2 *

1/20 | 8.773e-3 1.734 8.785e-3 1.734

a; =11, a=1.3 1/40 2.626e-3 1.740 2.630e-3 1.740

1/80 | 7.865e-4 1.740 7.880e-4 1.739

1/160 | 2.359e-4 1.737 2.368e-4 1.735

Table 8: Numerical convergence of the the L1-ADI and L1-CADI schemes in the spatial direction for
Example 4.4.

L1-ADI scheme (7 = 1/20000) L1-CADI scheme (T = 1/200000)
a;, a h E(h,7T) Order4 h E(h,7T) Order4
1/4 1.228e-3 " 1/4 1.857¢-3 »
a;=1.1 1/8 3.470e-4 1.823 1/8 1.174e-4 3.984
a=1.15 1/16 8.805e-5 1.978 1/16 7.327e-6 4.002
1/32 2.210e-5 1.994 1/32 4.548e-7 4.010

Table 9: The maximum norm error and CPU time of the L1-ADI and L1-CADI schemes for Example 4.4.

L1-ADI scheme L1-CADI scheme
a, a N M, =M, Eg(h,t) CPUtime(s) | M; =M, E(h,7) CPU time(s)
26 16 6.598e-5 0.3599 4 6.951e-5 0.1621
a; =11, a=1.3 68 36 1.254e-6 4.9273 6 1.334e-6 0.9599
133 64 7.458e-8 32.6547 8 8.031e-8 4.3982
225 100 7.984e-9 157.0927 10 8.684e-9 15.5447
71 16 9.129e-7 0.9941 4 9.053e-7 0.4062
a; =15, a=1.7 | 248 36 2.706e-9 21.0838 6 2.725e-9 5.6526
601 64 4.124e-11 257.7156 8 4.259%e-11 47.1732
1194 100 1.576e-12 1924.6880 10 1.663e-12 270.1644

methods and techniques discussed could be extended to other kinds of multi-term time-
space fractional differential equations, and to equations with a nonlinear source term.
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