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Abstract

We investigate time domain boundary element methods for the wave equation in R
3,

with a view towards sound emission problems in computational acoustics. The Neumann

problem is reduced to a time dependent integral equation for the hypersingular operator,

and we present a priori and a posteriori error estimates for conforming Galerkin approxima-

tions in the more general case of a screen. Numerical experiments validate the convergence

of our boundary element scheme and compare it with the numerical approximations ob-

tained from an integral equation of the second kind. Computations in a half-space illustrate

the influence of the reflection properties of a flat street.
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1. Introduction

Motivated by the sound radiation of tires [2], this article analyzes time domain boundary

element methods for a scattering or emission problem for the wave equation outside a sound-

hard obstacle.

Let d ≥ 2 and Ωi ⊂ R
d be a bounded Lipschitz domain. We aim to find a weak solution to

an acoustic initial boundary problem for the wave equation in Ωe = R
d \ Ωi:

∂2u

∂t2
−∆u = 0 in R

+ × Ωe, (1.1a)

u(0, x) =
∂u

∂t
(0, x) = 0 in Ωe, (1.1b)

∂u

∂n
= g̃ on R

+ × Γ . (1.1c)

Here n denotes the inward unit normal vector to Γ = ∂Ωe, and 2g̃ = g lies in a suitable Sobolev

space.
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This article reduces the boundary problem (1.1) to a time dependent integral equation on

R
+ × Γ and studies Galerkin time domain boundary element methods for its approximation.

While we focus on the hypersingular integral equation, numerical examples compare it to an

integral equation of the second kind.

Time domain boundary integral formulations for hyperbolic equations and their numerical

solution were introduced by Friedman and Shaw [7], resp. Cruse and Rizzo [4]. A first math-

ematical analysis of time dependent boundary element methods goes back to Bamberger and

Ha-Duong [1,12], see also [9] for Dirichlet and acoustic boundary problems in a half-space. First

numerical experiments for integral equations of the second kind in the full space were reported

by Ding et al. [5], and the practical realization of the numerical marching-on-in-time scheme

include the Ph.D. thesis of Terrasse [19] as well as [14]. Also, fast collocation methods have

been developed in the engineering literature [21]. Some recent work around space-time adaptive

methods and applications is surveyed in [8]. A detailed exposition of the mathematical back-

ground of time domain integral equations and their discretizations is available in the lecture

notes by Sayas [18].

In this work we investigate the Neumann problem (1.1), present a priori and a posteriori

error estimates for the Galerkin solution of the time dependent hypersingular integral equation

of the first kind (with the normal derivative of the double layer potential). We compare the

numerical scheme for the hypersingular equation with numerical approximations of an integral

equation of the second kind (with the normal derivative of the single layer potential). We

analyze the integral equations in the more general setting of a screen Γ, i.e., allow ∂Γ 6= ∅,
which will prove relevant for work in progress on dynamic contact problems.

A motivation for these results comes from applications to traffic noise [2,9,10], where adap-

tive methods based on a posteriori error estimates are crucial to resolve singular geometries.

With this application in mind, we also present numerical results in an acoustic half-space. Here,

Ωi ⊂ R
d
+ is a bounded domain with R

d
+ \Ωi Lipschitz, and the Neumann boundary conditions

on Γ = ∂Ωi ∩R
d
+ are supplemented by acoustic boundary conditions

∂u

∂n
− α

∂u

∂t
= 0 (1.2)

on R
d−1 × {0} = ∂Rd

+, α ≥ 0. Screens arise naturally when ∂Ωi ∩ ∂Rd
+ 6= ∅.

Notation: To simplify notation, we will write f . g, if there exists a constant C > 0

independent of the arguments of the functions f and g such that f ≤ Cg. We will write f .σ g,

if C may depend on σ.

2. Time-domain Integral Equations and Discretization

2.1. Boundary integral equations

Space–time anisotropic Sobolev spaces on the boundary Γ provide a convenient setting to

study the mapping properties of the time-dependent layer operators [3,13]. We more generally

consider the case of a screen, where the orientable, (d − 1)-dimensional Lipschitz submanifold

Γ ⊂ R
d may have a boundary. If ∂Γ 6= ∅, first extend Γ to a closed, orientable manifold Γ̃.

For σ > 0, s, r ∈ R the space Hs
σ(R

+, Hr(Γ̃)) consists of certain distributions φ on R
+ × Γ̃,

vanishing at t = 0, such that in local coordinates the space–time Fourier–Laplace transform Fφ
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satisfies

‖φ‖s,r,Γ̃ =

(∫ ∫
|ω + iσ|2s

(
|ω + iσ|2 + |ξ|2

)r
|Fφ(ω + iσ, ξ)|2 dξ dω

) 1
2

<∞ .

The space Hs
σ(R

+, H̃r(Γ)) is then defined as the closed subspace of distributions φ ∈ Hs
σ(R

+,

Hr (Γ̃)) with support in Γ, and Hs
σ(R

+, Hr(Γ)) as the quotient space Hs
σ(R

+, Hr (Γ̃)) /Hs
σ(R

+,

Hr (Γ̃ \ Γ)). The corresponding norms are denoted by ‖φ‖s,r,Γ,∗ resp. ‖φ‖s,r,Γ. By truncation,

we also obtain anisotropic Sobolev spaces on finite time–intervals [0, T ], Hs
σ([0, T ], H̃

r(Γ)) and

Hs
σ([0, T ], H

r(Γ)). When r ∈ 1
2Z, resp. s + r ∈ 1

2Z, there are subtle distinctions between

the spaces of supported and extensible distributions, and the closure of C∞
0 , as is known for

time-independent screen problems. See [9, 13] for a more detailed discussion.

Layer operators allow to reduce the boundary problem (1.1) to an integral equation on the

boundary Γ, both in the case of the whole space Rd and in the half-space with acoustic boundary

conditions (1.2). These operators are based on a Green’s function G for the wave equation. In

R
3, G is explicitly given by

G(t− s, x, y) =
δ(t− s− r(y3))

4πr(y3)
,

and in R
3
+ by [15]

G(t− s, x, y) =
δ(t− s− r(y3))

4πr(y3)
+
δ(t− s− r(−y3))

4πr(−y3)
+ Σ , (2.1a)

with

Σ =
α

2π

∂

∂t

H(t− s− r(−y3))√
(t− s+ α(x3 + y3))2 + (α2 − 1)R2

. (2.1b)

Here H denotes the Heaviside function, R2 = (x1 − y1)
2+(x2 − y2)

2 and r(±y3)2 = R2+(x3 ∓
y3)

2. The second and third terms on the right-hand side of G represent the field reflected by

the plane ∂R3
+.

From a single layer potential ansatz for the solution u of (1.1):

u(t, x) =

∫

R+×Γ

G(t− τ, x, y) ϕ(τ, y) dτ dsy (2.2)

with ϕ(s, y) = 0 for s ≤ 0, one obtains an equivalent boundary integral equation of the second

kind for the unknown density ϕ on Γ:

(−Id+K ′)ϕ = 2
∂u

∂n
= g . (2.3)

Here, the time–dependent adjoint double layer operator K ′ is defined by

K ′ϕ(t, x) = 2

∫

R+×Γ

∂G

∂nx
(t− τ, x, y) ϕ(τ, y) dτ dsy. (2.4)

Knowing ϕ, one reconstructs the solution u of the wave equation from (2.2). Numerical schemes

based on (2.3) have been explored in [2]. However, little is known about the theoretical analysis

for discretizations of time dependent integral equations of the second kind.
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In this article we focus on an integral equation of the first kind, which we obtain from a

double layer potential ansatz for u:

u(t, x) =

∫

R+×Γ

∂G

∂ny
(t− τ, x, y) ψ(τ, y) dτdsy (2.5)

with ψ(s, y) = 0 for s ≤ 0. The wave equation (1.1) is then equivalent to a time–dependent

hypersingular equation for the unknown density ψ on Γ:

Wψ = 2
∂u

∂n
= g, (2.6)

where the time–dependent hypersingular operator W for the half-space is given by

Wψ(t, x) = 2

∫

R+×Γ

∂2G

∂nx∂ny
(t− τ, x, y) ψ(τ, y) dτdsy .

More generally than for Γ = ∂Ω, we consider the integral equations (2.3) and (2.6) on an

orientable, (d− 1)-dimensional Lipschitz submanifold Γ ⊂ R
d with boundary. For the analysis

we recall the mapping and coercivity properties of K ′ and W :

Theorem 2.1. a) The following operators are continuous for r ∈ R:

K ′ : Hr+1
σ (R+, H̃− 1

2 (Γ)) → Hr
σ(R

+, H− 1
2 (Γ)),

W : Hr+1
σ (R+, H̃

1
2 (Γ)) → Hr

σ(R
+, H− 1

2 (Γ)).

b) The operator W∂t is weakly coercive:

∫

R+×Γ

e−2σt(Wψ(t, x))∂tψ(t, x) dt dsx &σ ‖ψ‖20, 1
2
,Γ,∗.

See [13] for part a) when ∂Γ = ∅. In this case part b) follows from Eq. (2.14), p. 174 in [12].

For the half-space or when ∂Γ 6= ∅, a) is shown in [9]; the proof of b) is obtained by extending

Ha Duong’s proof in [13] for ∂Γ = ∅, using the modifications from [9].

The mapping and coercivity properties give a basic well-posedness theorem for the integral

equations (2.3) and (2.6).

Theorem 2.2. Let g ∈ Hs+2
σ (R+, H− 1

2 (Γ)).

a) There exists a unique solution ϕ ∈ Hs
σ(R

+, H̃− 1
2 (Γ)) to (2.3). It satisfies

‖ϕ‖s,− 1
2
,Γ,∗ ≤ C‖g‖s+2,− 1

2
,Γ

for some constant C independent of g.

b) There exists a unique solution ψ ∈ Hs+1
σ (R+, H̃

1
2 (Γ)) to (2.6). It satisfies

‖ψ‖s+1, 1
2
,Γ,∗ ≤ C‖g‖s+2,− 1

2
,Γ

for some constant C independent of g.

The proof of part a) uses the equivalence of (2.3) with the original PDE problem (1.1). It does

not imply the well-posedness of the discretized problem. Part b) is a direct consequence of

the weak coercivity estimate in Theorem 2.1b); note that the solution is less regular in time
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than the mapping properties in Theorem 2.1a) might suggest, because coercivity only holds in

a weaker norm.

Both formulations, (2.3) and (2.6), will be discretized from their variational formulations,

which admit a unique solution when g ∈ H
5
2
σ (R+, H− 1

2 (Γ)), resp. g ∈ H2
σ(R

+, H− 1
2 (Γ)), i.e. for

sufficiently smooth functions of time. They are given as:

• Find ϕ ∈ H
1
2
σ (R+, H̃− 1

2 (Γ)) such that for all Ψ ∈ H
1
2
σ (R+, H̃

1
2 (Γ)) there holds:

∫

R+×Γ

e−2σt(−Id+K ′)ϕ Ψ dt dsx =

∫

R+×Γ

e−2σtg Ψ dt dsx . (2.7)

• Find ψ ∈ H1
σ(R

+, H̃
1
2 (Γ)) such that for all Ψ ∈ H1

σ(R
+, H̃

1
2 (Γ)) there holds:

∫

R+×Γ

e−2σt(Wψ) ∂tΨ dt dsx =

∫

R+×Γ

e−2σtg ∂tΨ dt dsx . (2.8)

Because of the coercivity in Theorem 2.1b), the Galerkin scheme (2.8) admits a unique solution

and is stable in the norm of the space H0
σ(R

+, H̃
1
2 (Γ)).

2.2. Discretization

We consider dimensions d = 2 and 3. If Γ is not polygonal we approximate it by a piecewise

polygonal curve resp. surface and write Γ again for the approximation. For simplicity, when

d = 3 we will use here a surface composed of N triangular facets Γi such that Γ = ∪N
i=1Γi.

When d = 2, we assume Γ = ∪N
i=1Γi is composed of line segments Γi. In each case, the elements

Γi are closed with int(Γi) 6= ∅, and for distinct Γi, Γj ⊂ Γ the intersection int(Γi)∩int(Γj) = ∅.
For the time discretization we consider a uniform decomposition of the time interval R+

into subintervals In = (tn−1, tn] with time step |In| = ∆t, such that tn = n∆t (n = 0, 1, . . . ).

Let Pp be the space of polynomials of degree at most p. We choose a basis ϕp
1, · · · , ϕp

Ns
of

the space

V p
h =

{
φ : Γ → R : φ|Γi

∈ P
p ∀i (and φ continuous and φ|∂Γ = 0 if p ≥ 1)

}

of piecewise polynomials in space and a basis β1,q, · · · , βNt,q of the space

V q
∆t =

{
φ : R+ → R : φ|In ∈ P

q ∀n (and φ continuous and φ(0) = 0 if q ≥ 1)
}

of piecewise polynomials in time.

Let TS = {T1, · · · , TNs
} be the spatial mesh for Γ and TT = {(0, t1], (t1, t2], · · · , (tNt−1, T ]}

the time mesh for a finite subinterval (0, T ].

We consider the tensor product of the approximation spaces in space and time, V p
h and V q

∆t,

associated to the space–time mesh TS,T = TS × TT , and we write

V p,q
h,∆t = V p

h ⊗ V q
∆t . (2.9)

These approximation spaces lead to Galerkin formulations for (2.7) and (2.8). They are

given in terms of the discretized right hand sides gh,∆t, resp. (∂tg)h,∆t as:

• Find ϕh,∆t ∈ V p,q
h,∆t such that for all test functions Ψh,∆t ∈ V p,q

h,∆t there holds:

∫

R+×Γ

e−2σt(−I +K ′)ϕh,∆t Ψh,∆t dt dsx =

∫

R+×Γ

e−2σtgh,∆t Ψh,∆t dt dsx . (2.10)
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• Find ψh,∆t ∈ V p,q
h,∆t such that for all test functions Ψh,∆t ∈ V p,q

h,∆t there holds:

∫

R+×Γ

e−2σt(Wψh,∆t) ∂tΨh,∆t dt dsx =

∫

R+×Γ

e−2σtgh,∆t ∂tΨh,∆t dt dsx . (2.11)

3. Error Estimates for the Hypersingular Integral Equation

3.1. An a priori error estimate

Our first error estimate proves the convergence of the Galerkin method (2.11) if the exact

solution is sufficiently smooth and the discretization is based on piecewise polynomials of suffi-

ciently high order. In the numerical experiments in Section 5, we shall observe convergence for

more practical discretizations. See also [12], p. 182, Thm. 3, for a similar statement for closed

manifolds Γ ⊂ R
d without proof.

As ingredient, we require an inverse estimate like (3.182) in [11], namely

‖φh,∆t‖1, 1
2
,Γ,∗ .

1

∆t
‖φh,∆t‖0, 1

2
,Γ,∗, (3.1)

provided φh,∆t ∈ V p,q
h,∆t, the space of piecewise polynomials defined in (2.9).

Theorem 3.1. Let ψ ∈ H1
σ(R

+, H̃
1
2 (Γ)) be the solution of (2.8), ψh,∆t ∈ V p,q

h,∆t the solution of

(2.11). Then there holds:

‖ψ − ψh,∆t‖0, 1
2
,Γ,∗

.||gh,∆t − g||1,− 1
2
,Γ +

(
1 + (∆t)−1

)
inf

φh,∆t∈V p,q

h,∆t

‖ψ − φh,∆t||1, 1
2
,Γ,∗ .

Proof. We start with the coercivity estimate, Theorem 2.1b), applied to ψh,∆t − φh,∆t ∈
H1

σ(R
+, H

1
2 (Γ)), where φh,∆t ∈ V p,q

h,∆t is arbitrary:

‖ψh,∆t − φh,∆t‖20, 1
2
,Γ,∗

.

∫

R+×Γ

e−2σt(W (ψh,∆t − φh,∆t))∂t(ψh,∆t − φh,∆t) dt dsx

=

∫

R+×Γ

e−2σt(W (ψh,∆t − ψ))∂t(ψh,∆t − φh,∆t) dt dsx

+

∫

R+×Γ

e−2σt(W (ψ − φh,∆t))∂t(ψh,∆t − φh,∆t) dt dsx.

In the second line we have added and subtracted the term with ψ. For the first term we obtain

using the discretized weak form (2.11) and the continuity of the duality pairing:

∫

R+×Γ

e−2σt(W (ψh,∆t − ψ))∂t(ψh,∆t − φh,∆t) dt dsx

=

∫

R+×Γ

e−2σt(gh,∆t − g)∂t(ψh,∆t − φh,∆t) dt dsx

≤‖gh,∆t − g‖1,− 1
2
,Γ‖∂t(ψh,∆t − φh,∆t)‖−1, 1

2
,Γ,∗ .
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For the second term the continuity of duality pairing and the mapping properties of W in

Theorem 2.1a) show:

∫

R+×Γ

e−2σt(W (ψ − φh,∆t))∂t(ψh,∆t − φh,∆t) dt dsx

≤‖W (ψ − φh,∆t)‖0,− 1
2
,Γ‖∂t(ψh,∆t − φh,∆t)‖0, 1

2
,Γ,∗

.‖ψ − φh,∆t‖1, 1
2
,Γ,∗‖ψh,∆t − φh,∆t‖1, 1

2
,Γ,∗ .

We use the inverse inequality (3.1) in the time variable to estimate second factor:

‖ψh,∆t − φh,∆t‖1, 1
2
,Γ,∗ .

1

∆t
‖ψh,∆t − φh,∆t‖0, 1

2
,Γ,∗.

Therefore we obtain

‖ψh,∆t − φh,∆t‖0, 1
2
,Γ,∗ . ||gh,∆t − g||1,− 1

2
,Γ + (∆t)−1‖ψ − φh,∆t||1, 1

2
,Γ,∗.

With the triangle inequality, one concludes

‖ψ − ψh,∆t‖0, 1
2
,Γ,∗ ≤ ‖ψ − φh,∆t‖0, 1

2
,Γ,∗ + ‖ψh,∆t − φh,∆t‖0, 1

2
,Γ,∗

.||gh,∆t − g||1,− 1
2
,Γ + ‖ψ − φh,∆t||0, 1

2
,Γ,∗ + (∆t)−1‖ψ − φh,∆t||1, 1

2
,Γ,∗.

The a priori estimate follows. �

3.2. An a posteriori error estimate

In this section we derive a simple computable error estimate, which can be used to steer

adaptive mesh refinements based on the four steps

SOLVE −→ ESTIMATE −→ MARK −→ REFINE ,

as shown for the single layer potential in [8, 10, 11]. Because in practical computations we set

σ = 0, we derive the estimate on finite time intervals [0, T ], but as in these sources also R
+

could be considered. Also, for simplicity we assume g = gh,∆t. The weak formulation on [0, T ]

reads as: Find ψ ∈ H1
0 ([0, T ], H̃

1
2 (Γ)) such that for all Ψ ∈ H1

0 ([0, T ], H̃
1
2 (Γ)) there holds:

∫

[0,T ]×Γ

(Wψ) ∂tΨ dt dsx =

∫

[0,T ]×Γ

g ∂tΨ dt dsx. (3.2)

Its Galerkin discretization is given by: Find ψh,∆t ∈ V p,q
h,∆t such that for all test functions

Ψh,∆t ∈ V p,q
h,∆t there holds:

∫

[0,T ]×Γ

(Wψh,∆t) ∂tΨh,∆t dt dsx =

∫

[0,T ]×Γ

g ∂tΨh,∆t dt dsx. (3.3)

Instead of the coercivity estimate in Theorem 2.1b, the analysis of the scheme may be directly

based on considerations of the energy

E(u, t) =
1

2

∫

Ωi∪Ωe

(
(∂tu)

2 + |∇u|2
)
dx.
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Following Ha Duong [13], if u satisfies the wave equation outside Γ, the representation formula

and Green’s identity may be used to express the energy at time t in terms of the hypersingular

operator and u|Γ+
− u|Γ−

= ϕ, where u|Γ±
denote the upper, resp. lower, side of Γ:

E(u, t) =

∫

[0,t]×Γ

(Wϕ)ϕ̇ dsx dτ.

The time dependent version of the trace theorem for functions of finite energy [13],

‖u|Γ±
‖20, 1

2
,Γ,∗ .T

∫ T

0

E(u, t) dt,

therefore results in:

Proposition 3.1. For every ϕ ∈ H1
0 ([0, T ], H̃

1
2 (Γ)) there holds:

‖ϕ‖20, 1
2
,Γ,∗ .T

∫ T

0

∫

[0,t]×Γ

(Wϕ)ϕ̇ dsx dτ dt.

We may now derive an a posteriori error estimate.

Theorem 3.2. Let ψ ∈ H1
0 ([0, T ], H̃

1
2 (Γ)) be the solution of (3.2), ψh,∆t ∈ V p,q

h,∆t the solution

of (3.3). Assume that

R = g −Wψh,∆t ∈ H1([0, T ], H̃−1/2(Γ)).

Then there holds:

‖ψ − ψh,∆t‖0, 1
2
,Γ,∗ . ‖R‖1,−1

2
,Γ.

Proof. From Proposition 3.1 we first note that

‖ψ − ψh,∆t‖20, 1
2
,Γ,∗ .T

∫ T

0

∫ t

0

∫

Γ

(W (ψ − ψh,∆t))∂t(ψ − ψh,∆t) dsx dτ dt.

Using the continuous weak formulation (2.8), then its discretization (2.11), we have for all

Ψh,∆t ∈ V p,q
h,∆t:

∫ T

0

∫ t

0

∫

Γ

(W (ψ − ψh,∆t))∂t(ψ − ψh,∆t) dsx dτ dt

=

∫ T

0

∫ t

0

∫

Γ

g ∂t(ψ − ψh,∆t) dsx dτ dt−
∫ T

0

∫ t

0

∫

Γ

(Wψh,∆t)∂t(ψ − ψh,∆t) dsx dτ dt

=

∫ T

0

∫ t

0

∫

Γ

g ∂t(ψ −Ψh,∆t) dsx dτ dt−
∫ T

0

∫ t

0

∫

Γ

(Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dτ dt

=

∫ T

0

∫ t

0

∫

Γ

(g −Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dτ dt.

The last term may be estimated by interchanging the time integrals and duality:
∫ T

0

∫ t

0

∫

Γ

(g −Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dτ dt

=

∫ T

0

(T − t)

∫

Γ

(g −Wψh,∆t)∂t(ψ −Ψh,∆t) dsx dt

≤T ‖R‖1,−1
2
,Γ‖ψ −Ψh,∆t‖0, 1

2
,Γ,∗ .

We use Ψh,∆t = ψh,∆t to obtain the estimate. �
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4. Algorithmic Considerations

4.1. Implementation of W

We set τ = t− |x− y| and use σ = 0. Citing a formula for W from Ha-Duong [12], Lemma

4b), we have:

∫

R+×Γ

(Wψ) ∂tΨ dt dsx

=
1

2π

∫ ∞

0

∫

Γ×Γ

{−nx · ny

|x− y| ψ̇(τ, y)Ψ̈(t, x) +
(curlΓ ψ)(τ, y) · (curlΓ Ψ̇)(t, x)

|x− y|
}
dsy dsxdt. (4.1)

We use piecewise linear ansatz functions ϕ1
i (x)β

m,1(t) from the space V 1,1
h,∆t (see (2.9)) in space

and time:

ψh,∆t(t, x) =

Nt∑

m=1

Ns∑

i=1

cmi ϕ
1
i (x)β

m,1(t), (4.2)

where βm,1(t) = (∆t)−1
(
(t− tm−1)γ

m(t)− (t− tm+1)γ
m+1(t)

)
and γj(t) = βj,0 is the char-

acteristic function of (tj−1, tj ]. For algorithmic reasons, to obtain the time-stepping scheme

below, we choose test functions Ψ̇h,∆t(t, x) =ϕ
1
j(x)γ

n(t), which are piecewise constant in time

and piecewise linear in space. Expanding (4.1) for ansatz functions ψh,∆t of the form (4.2)

results in:
∫

R+×Γ

Wψh,∆t(t, x) ∂tΨh,∆t(t, x) dt dsx = A−B,

with

A =

Nt∑

m=1

Ns∑

i=1

cmi
2π

∫

Γ×Γ

1

|x− y|

∫ ∞

0

βm,1(τ) curlΓ ϕ
1
i (y) γ

n(t) curlΓ ϕ
1
j (x)dtdsydsx,

B =
1

2π

∫ ∞

0

∫

Γ×Γ

nx · ny

|x− y|

(
Nt∑

m=1

Ns∑

i=1

cmi β̇
m,1(τ)ϕ1

i (y)

)
γ̇n(t)ϕ1

j (x)dsydsxdt

=

Nt∑

m=1

Ns∑

i=1

cmi
2π

∫

Γ×Γ

nx · ny

|x − y|ϕ
1
i (y)ϕ

1
j (x)

(∫ ∞

0

β̇m,1(τ)γ̇n(t) dt

)
dsydsx.

Using, in particular, that the derivative γ̇n = δtn−1
− δtn is a difference of Dirac distributions,

we first compute

∫ ∞

0

β̇m,1(τ)γ̇n(t)dt

=(∆t)−1
(
2(H(tn−m − |x− y|)−H(tn−m−1 − |x− y|))−H(tn−m+1 − |x− y|)

+H(tn−m − |x− y|)−H(tn−m−1 − |x− y|) +H(tn−m−2 − |x− y|)
)

=− (∆t)−1
(
χEn−m

(x, y)− 2χEn−m−1
(x, y) + χEn−m−2

)
.

Here, for l ∈ N0 we define the light cone El = {(x, y) ∈ Γ×Γ : tl ≤ |x− y| ≤ tl+1} ⊂ Γ×Γ, and

χEl
(x, y) = 1 if (x, y) ∈ El, and = 0 otherwise. The second equality is verified by calculating
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both sides for (x, y) ∈ El. To conclude:

B =

Nt∑

m=1

Ns∑

i=1

cmi

[
−

∫

En−m

(nx · ny)(∆t)
−1ϕ1

i (y)ϕ
1
j (x)

2π|x− y| dsydsx

+ 2

∫

En−m−1

(nx · ny)(∆t)
−1ϕ1

i (y)ϕ
1
j (x)

2π|x− y| dsydsx −
∫

En−m−2

(nx · ny)(∆t)
−1ϕ1

i (y)ϕ
1
j (x)

2π|x− y| dsydsx

]
.

We now consider A:

A =

Nt∑

m=1

Ns∑

i=1

cmi
2π

∫

Γ×Γ

1

|x− y|

∫ ∞

0

βm,1(τ)curlΓ ϕ
1
i (y) γ

n(t)curlΓ ϕ
1
j(x)dtdsydsx

=

Nt∑

m=1

Ns∑

i=1

cmi
2π

∫

Γ×Γ

1

|x− y|curlΓ ϕ
1
i (y)curlΓ ϕ

1
j (x)

∫ ∞

0

βm,1(τ)γn(t) dtdsydsx.

An explicit calculation of the integral shows
∫ ∞

0

βm,1(τ)γn(t) dt =

∫ ∞

0

(∆t)−1
(
(t−|x− y| − tm)γm(t− |x− y|)

−(t− |x− y|−tm+1)γ
m+1(t− |x−y|)

)
γn(t)dt

=(∆t)−1

∫ ∞

0

(t− |x− y| − tm)γm(t− |x− y|)γn(t)dt

− (∆t)−1

∫ ∞

0

(t− |x− y| − tm+1)γ
m+1(t− |x− y|)γn(t)dt

=(2∆t)−1
(
|x− y|2 − 2|x− y|tn−m+1 + t2n−m+1

)
χEn−m

(x, y)

+ (2∆t)−1
(
|x− y|2 − 2|x− y|tn−m−2 + t2n−m−2

)
χEn−m−2

(x, y)

+ (2∆t)−1
(
− 2|x− y|2+2|x− y|(tn−m + tn−m−1)−(t2n−m + t2n−m−1) + 2(∆t)2

)
χEn−m−1

(x, y)

=:Υn−m(x, y).

Here we use the definition of El from above. Therefore

A =

Nt∑

m=1

Ns∑

i=1

cmi
2π

∫

Γ×Γ

1

|x− y|curlΓ ϕ
1
i (y)curlΓ ϕ

1
j (x) Υ

n−m(x, y) dsy dsx.

4.2. Marching-on-in-time scheme

In terms of the coefficients cmi with respect to the basis functions we note from the formulas

for A and B in Section 4.1 that

∫

R+×Γ

Wψh,∆t(t, x) ∂tΨh,∆t(t, x) dt dsx =

Nt∑

m=1

Wn−mcm.

Here Wn−m is a matrix which has A−B as entries.

Similarly we have for the right hand side

gh,∆t(t, x) =

Nt∑

m=1

Ns∑

i=1

gmi β
m,1(t)ϕ1

i (x).
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In matrix-vector notation we obtain using the stiffness matrix Ii,j =
∫
Γ
ξi(x)ξj(x) dsx:

Nt∑

m=1

Wn−mcm =
∆t

2
I(gn−1 + gn),

i.e., an explicit time stepping scheme, known as the marching-on-in-time (MOT) algorithm:

W 0cn =
∆t

2
I(gn−1 + gn)−

n−1∑

m=1

Wn−mcm .

4.3. Leading contribution of absorbing boundary conditions to K ′

To consider the leading contribution of an absorbing half-space, we show that the leading

part of the new term Σ in the fundamental solution (2.1a) for the absorbing half-space can

be implemented as a minor modification of the pure Neumann problem, α = Σ = 0. For

this, let y′ = (y1, y2,−y3) the reflection of y on the y3 = 0-plane, ϑ = x3 + y3 and R2 =

(x1 − y1)
2 + (x2 − y2)

2. We compute that the contribution of Σ to the operator K ′ as in (2.4),

〈K ′
3ϕ,Ψ〉 := 2

∫

R+×Γ

∫

R+×Γ

∂Σ

∂nx
(t− τ, x, y) ϕ(τ, y) Ψ(t, x)dτ dsy dt dsx ,

is given by

α

π

∫

R+×Γ

∫

R+×Γ

∂

∂nx

(
∂

∂τ
[

H(t− τ − |x− y′|)√
(t− τ + αϑ3)2 + (α2 − 1)R2

]ϕ(τ, y)

)
Ψ(t, x)dsydτdsxdt .

If we define

A(t, τ) :=
√
(t− τ + αϑ3)2 + (α2 − 1)R2,

an integration by parts in τ shows that

〈K ′
3ϕ,Ψ〉 = −α

π

∫

R+×Γ

∫

R+×Γ

∂

∂nx

(
[
H(t− τ − |x− y′|)

A(t, τ)
]ϕ̇(τ, y)

)
Ψ(t, x)dsydsxdτdt .

In a physically motivated approximation, we neglect the x-derivative of A:

∂

∂nx
[
H(t− τ − |x− y′|)

A(t, τ)
] = − ~nx · (x− y′)

|x− y′|A(t, τ) δ(t− τ − |x− y′|) + · · ·

With piecewise constant ansatz and test functions in space and time, we obtain

〈K ′
3ϕh,∆t,Ψh,∆t〉 ≃

α

π

∫

Γ×Γ

ϕ0
i (x)ϕ

0
j (y)

(
γm(tn−1 + |x− y′|)− γm(tn + |x− y′|)

)
×

· · · × nx · (x− y′)

|x− y′|A(tn−1 + |x− y′|, tn−1)
dsxdsy .

This term is easily included in the contributions of the first two terms of the fundamental

solution, see [2].
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5. Numerical Results

5.1. Neumann problem exterior to the sphere

In the following, we present numerical results for the Neumann problem (1.1), using the

time domain boundary element formulations of the first, resp. second kind, (2.8) and (2.7).

In the special case where Γ = S2 = {x ∈ R
3 : |x| = 1} is the unit sphere, for simple

right hand sides exact solutions for the densities may be found in [20]. We recall that for the

hypersingular equation Wψ = g with g(t, x) = g(t), the solution has the following form [20]:

ψ(t, x) = ψ(t) = −
∫ t

0

g(t− τ) cosh(τ)dτ

+

⌊t/2⌋∑

k=1

k∑

l=1

(−1)k+1

∫ t

2k

ck,l(τ − 2k)k−l+1eτ−2kġ(t− τ)dτ . (5.1)

Here

ck,l :=

(
k − 1

l − 1

)
2k−l

(k − l + 1)!
.

For the corresponding equation of the second kind, (−Id+K ′)ϕ = g, again with g(t, x) = g(t),

the exact solution is given by

ϕ(t, x) = −
⌊t/2⌋∑

k=0

g(t− 2k) +

⌊t/2⌋∑

k=0

∫ t

2k

e−(τ−2k)g(t− τ) dτ . (5.2)

As ϕ is independent of x, the L2(Γ) norm turns out to be ‖ϕ(t)‖L2(Γ) = 2
√
π|ϕ(t)|, and similarly

for ψ.

Example 1. In the first numerical experiment, we look for solutions to Wψ = g, resp. (−Id+
K ′) ϕ = g with g(t, x) = g(t) = sin ( t

2

8 ) cos (t
2) on Γ = S2 for the time interval [0, 12]. We

use the time domain boundary element formulations (2.8) and (2.7) and compare the numerical

solutions with the exact solutions from (5.1), resp. (5.2). For the discretization, we use the

discretized tensor product spaces V p,q
h,∆t from (2.9) and follow Section 4. In particular, we use

piecewise linear ansatz functions V 1,1
h,∆t for (2.8), resp. piecewise constant ansatz functions V

0,0
h,∆t

for (2.7). The choice of test functions allows us to solve the discretised space time equations

using the marching-on-in-time scheme from Section 4.2. To approximate the sphere, we start

from a regular icosahedron with 20 faces. In each refinement step, we divide both the time

step ∆t and mesh size h by 2 and project the new nodes back onto S2. The ratio ∆t/h ≈ 0.6

remains approximately constant.

Figure 5.1 depicts ‖ψh,∆t‖L2(Γh) for the numerical solution as a function of t for meshes with

320, 1280, 5120, resp. 20480 triangles and compares it to ‖ψ(t)‖L2(Γ). In Figure 5.2 we show

that the absolute value of the difference ‖ψh,∆t‖L2(Γh) − ‖ψ‖L2(Γ) remains uniformly bounded

as a function of time. When the number of degrees of freedom is increased, this error tends to

0 uniformly over the whole time interval, as is expected for a space-time Galerkin method.

For comparison, in Figure 5.3 we plot ‖ϕh,∆t‖L2(Γh) for the numerical solution of the dis-

cretized equation of the second kind. Figure 5.6 compares the L2([0, T ]× Γ)–norm of the error

for the resulting densities ϕ (pink) resp. ψ (blue) vs. the number of degrees of freedom, i.e. the

number of time steps times spatial degrees of freedom. The rate of convergence for the Galerkin
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Fig. 5.1.: L2(Γh)-norm of the solution to the hypersingular equation (2.8) for Example 1.
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Fig. 5.2.: Absolute error ‖ψh,∆t‖L2(Γh) − ‖ψ‖L2(Γ) as a function of time for the hypersingular

equation (2.8), Example 1.

solutions of the hypersingular equation is approximately 1.0 in terms of degrees of freedom, or

3.0 in terms of h, compared to a rate 0.65 in degrees of freedom, 1.96 in h, for the Galerkin

solutions of the integral equation of the second kind. Even for the coarsest discretization with

320 triangles and 60 time steps (19200 DOF for (2.7), 9720 DOF for (2.8)) the Galerkin error

in L2([0, T ]× Γ) for the density ψ is significantly lower for the hypersingular equation (2.8).

Example 2. We complement Example 1 with a second experiment in the same geometry,

where g(t, x) = t4e−2t. In this case, the exact solution ψ to the hypersingular equation is

approximately linear in the time interval [2, 12], see Figure 5.4. Figure 5.6 shows a correspond-

ingly higher rate of convergence 1.6 in degrees of freedom, 4.8 in h (light blue curve), down to

L2–errors of 10−8. Even though the solution to the equation of the second kind (Figure 5.5)
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is far from linear, the rate of convergence 1.34 in degrees of freedom, 4.1 in h, from Figure 5.6

similarly indicates higher regularity of the solution compared to Example 1.

In both examples, the rates of convergence go beyond what our a priori estimates from

Section 3 would indicate even for discretizations with higher polynomial degrees, for a general

geometry.
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Fig. 5.3.: L2(Γh)-norm of the solution to the integral equation (2.7) for Example 1.
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Fig. 5.4.: L2(Γh)-norm of the solution to the hypersingular equation (2.8) for Example 2.

5.2. Acoustic boundary conditions in a half-space

In a further numerical experiment, we include the leading contribution of an acoustic half-

space R
3
+ in our computations. The additional complications of the singular horn geometry

between the emitter Γ and R
2 × {0} are crucial for applications in traffic noise, and there is

particular interest in properly modeling the reflectivity α of the street [2]. The Neumann and
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Fig. 5.5.: L2(Γh)-norm of the solution to the integral equation (2.7) for Example 2.
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Fig. 5.6.: L2([0, T ]×Γ) error vs. degrees of freedom of the space-time mesh in Examples 1 and

2, for the integral equations (2.7) resp. (2.8).

Dirichlet problems correspond to a reflectivity of α = 0 resp. α = ∞, or physically hard vs. soft

scattering.

Example 3. Again we consider the model geometry of the unit sphere, but now centered in

(0, 0, 1.63) in the half space R
3
+ with acoustic boundary conditions

∂u

∂n
− α

∂u

∂t
= 0

on R
2 × {0}. We implement the Green’s function corresponding to these boundary conditions

in the half-space with an approximate third term, as described in Section 4.3. On Γ Neumann

conditions are imposed, ∂u
∂n = 1

2g.
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Fig. 5.7.: Sound pressure at ( 1√
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3
+ as a function of the reflectivity α.
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Fig. 5.8.: Sound pressure at (2.8m, 0, 1.0m) as emitted by a car tire, Dirichlet or Neumann

boundary conditions on the street.

We use the exact solution

u(t, x) =
r+ − t

2r+

[
1 + cos

(
π(r+ − t)

R

)]
H(R − |r+ − t|)

+
r− − t

2r−

[
1 + cos

(
π(r− − t)

R

)]
H(R− |r− − t|)
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Fig. 5.9.: Mesh of the passenger car tire, Example 4.

of the Neumann problem with α = 0 to prescribe g on Γ:

1

2
g =

[
t

2r2+

(
1 + cos

(
π(r+ − t)

R

))
− π

R

r+ − t

2r+
sin

(
π(r+ − t)

R

)]
H(R− |r+ − t|)

+
x2 + y2 + z2 − 1.632

r+r−

([
t

2r2−

(
1 + cos

(
π(r− − t)

R

))

− π

R

r− − t

2r−
sin

(
π(r− − t)

R

)]
H(R− |r− − t|)

)
.

Here,H(t) denotes the Heaviside function, r+ = ‖x1, x2, x3 − 1.63‖ and r− = ‖x1, x2, x3 + 1.63‖
and R = 0.9. While for Neumann boundary conditions (α = 0) a single pulse is emitted from

Γ and reflected on R
2 × {0}, the exact solution is not known for acoustic boundary conditions

with reflectivity α ∈ (0,∞) or Dirichlet boundary conditions, α = ∞.

This acoustic problem is solved using the integral equation (2.7) of the second kind, where

K ′ is defined from the modified Green’s function as in Section 4.3. We use tensor products

V 0,0
h,∆t of piecewise constant ansatz and test functions in space and time on a fixed uniform mesh

of 1280 triangles and ∆t = 0.1. Figure 5.7 shows the sound pressure uh,∆t(t, x) in the point

x = ( 1√
2
, 0, 1√

2
) as a function of t for different values of the coefficient α. We note that the

solution is independent of the boundary condition until the first reflected wave arrives in the

point x. Increasing α from the Neumann problem α = 0 (blue) via α = 0.1, 0.5, 5, 10, 1000

to the Dirichlet problem α = +∞ (brown), we obtain a family of solutions which interpolates

monotonously between these boundary conditions.

Depending on the reflectivity, we observe strong interference between the direct and reflected

waves. Similar effects due to the singular horn geometry between the emitter and R
2 ×{0} are

observed in the sound emission of tires [2].

In the case of traffic noise, the resulting dependence on the reflectivity of the street will be

crucial to take into account. This application is the content of our final example.

Example 4: For a problem in traffic noise, we illustrate the influence of the boundary conditions

on the solution for the extreme cases of Dirichlet and Neumann conditions on the street. In

this case Γ is given by the mesh in Figure 5.9 with 6027 nodes of a grown slick 205/55R16

passenger car tyre, of diameter around 60cm, at 2 bar pressure and subject to 3415N axle load
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Fig. 5.10.: Visualization of the density for ∆t = 0.01, time step: 100 (a), 200 (b), 300 (c).
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Fig. 5.11.: Sound pressure at (2.8m, 0, 1.0m) in frequency domain, as emitted by a car tire.

at 50 km/h on a street with an ISO 10844 surface [6]. The right hand side g is obtained from

simulations of the particle velocity ∂u
∂t on Γ, as supplied by the work group of W. Kropp at the

Chalmers University in Gothenburg within the LeiStra3 cooperation and then converted from

frequency to the time domain, see [2] for details.

In this experiment we consider the tire centered above x = y = 0, elevated 2.1cm above the

street. In our units with the speed of sound c = 1, we choose ∆t = 0.01, so that ∆t/h ≈ 0.2 and

solve the integral equation (2.7) of the second kind for both Dirichlet and Neumann boundary

conditions on ∂R3
+. The density is plotted in snapshots at the time steps 100, 200 and 300 in

Figure 5.10 (for the Dirichlet problem). See [2, 8] for similar density profiles for the Neumann

problem. Figure 5.8 shows the resulting sound pressure in the point (2.8m, 0, 1.0m). The

influence of the boundary conditions is clearly observed once the reflected wave has reached the

point of observation, especially in the transient dynamics for short times. For long times, the

Dirichlet conditions show a persistent oscillation of period around 7∆t. Figure 5.11 shows the

absolute value of the Fourier transform of the sound pressure from Figure 5.8 for times ≥ 5.145.

The oscillations in time for the Dirichlet problem clearly manifest themselves as a broad peak

around frequency 4800Hz, in physical units. For the Neumann problem a smaller resonance

may be noticed around 1000Hz. In [2] we showed that such broad-band frequency results agree

and are competitive with direct computations in frequency domain for passenger car and truck
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Fig. 5.12.: A-weighted sound pressure for Dirichlet and Neumann conditions, averaged over

321 points.

tires 1mm above the street over a sound-hard street; they qualitatively agree with experiments.

In practice, it is often average characteristics and the human perception of the sound emis-

sion that are of interest. Figure 5.12 depicts an average over 321 points on the hemisphere

{x ∈ R
3
+ : ‖x‖2 = 2} of emission spectra like in Figure 5.11, also averaged over bands of fre-

quencies. Here the A-weighted sound pressure level is plotted for frequencies up to 2000Hz,

which provides an approximation to the human perception of noise. We observe that Dirichlet

and Neumann conditions lead to similar average noise emission for frequencies between 300

and 800Hz. For higher frequencies, the noise level is significantly higher in the Neumann case,

reflecting the resonance already observed in Figure 5.11. The possibility of such analyses gives

time-domain boundary element methods a role in the study of traffic noise.
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[11] M. Gläfke, Adaptive Methods for Time Domain Boundary Integral Equations, Ph.D. thesis, Brunel

University, 2012.

[12] T. Ha Duong, Equations Integrales Pour la Resolution Numerique des Problemes de Diffraction

d’ondes Acoustiques dans R3, Ph.D. Thesis, Paris VI, 1987.

[13] T. Ha Duong, On retarded potential boundary integral equations and their discretizations, in:

Topics in computational wave propagation, pp. 301–336, Lect. Notes Comput. Sci. Eng., 31,

Springer, Berlin, 2003.

[14] T. Ha Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an

absorbing obstacle, Internat. J. Numer. Methods Engrg., 57 (2003), 1845–1882.

[15] M. Ochmann, Closed form solutions for the acoustical impulse response over a masslike or an

absorbing plane, J. Acoust. Soc. Am., 129:6 2011.

[16] E. Ostermann, Numerical Methods for Space-Time Variational Formulations of Retarded Potential

Boundary Integral Equations, Ph.D. Thesis, Leibniz Universität Hannover, 2009.

[17] S. Sauter, A. Veit, Adaptive time discretization for retarded potentials, Numer. Math., 132 (2016),

569–595.

[18] F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations: A Road-Map,

Springer Series in Comp. Math. 50, Springer, 2016.
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