
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2016-0171

Vol. 23, No. 1, pp. 264-295
January 2018

Second-Kind Boundary Integral Equations for

Scattering at Composite Partly Impenetrable Objects

Xavier Claeys1, Ralf Hiptmair2,∗ and Elke Spindler2

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, UMR 7598,
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Abstract. We consider acoustic scattering of time-harmonic waves at objects com-
posed of several homogeneous parts. Some of those may be impenetrable, giving rise
to Dirichlet boundary conditions on their surfaces. We start from the recent second-
kind boundary integral approach of [X. Claeys, and R. Hiptmair, and E. Spindler. A
second-kind Galerkin boundary element method for scattering at composite objects. BIT Nu-
merical Mathematics, 55(1):33-57, 2015] for pure transmission problems and extend
it to settings with essential boundary conditions. Based on so-called global multi-
potentials, we derive variational second-kind boundary integral equations posed in
L2(Σ), where Σ denotes the union of material interfaces. To suppress spurious reso-
nances, we introduce a combined-field version (CFIE) of our new method.

Thorough numerical tests highlight the low and mesh-independent condition num-
bers of Galerkin matrices obtained with discontinuous piecewise polynomial bound-
ary element spaces. They also confirm competitive accuracy of the numerical solution
in comparison with the widely used first-kind single-trace approach.

AMS subject classifications: 65N12, 65N38, 65R20

Key words: Acoustic scattering, second-kind boundary integral equations, Galerkin boundary
element methods.

1 Introduction

1.1 Acoustic scattering boundary value problem

The governing equation for acoustic scattering of time-harmonic waves is the Helmholtz
equation. In this article, we confine ourselves to the case of a globally constant principal
part given by −∆.
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Figure 1: Two-dimensional illustration of a typical geometry of a composite scatterer for L=3.

The scatterer occupies a bounded domain Ω∗⊂Rd, d=2,3. We assume a partitioning
of Ω∗ into open Lipschitz subdomains, i.e. Ω∗=

(⋃L
i=1Ωi

)
∪Ω•, where Ω denotes the clo-

sure of the domain Ω. The subdomains Ω1, ··· ,ΩL represent the different homogeneous
penetrable materials whereas the impenetrable object with Lipschitz curvilinear polygo-
nal/polyhedral boundary is given by Ω•. See Fig. 1 for a drawing of the scatterer in the
case d=2. The unbounded exterior complement of the scatterer is given by the Lipschitz
domain Ω0 := Rd\Ω∗. Like Ω1, ··· ,ΩL, also Ω0 is filled with homogeneous penetrable
material. We characterize the penetrable materials by their wave numbers κi ∈R+, for
i∈{0,1, ··· , L}. They enter the piecewise constant coefficient function κ∈L∞(Rd), κ

∣∣
Ωi
≡κi.

The impenetrable object Ω• will be modeled by imposing Dirichlet boundary conditions
at its boundary ∂Ω•.

By construction, we observe that Ωi∩Ωj =∅ for j 6= i, for indices i, j∈{•, 0,1, ··· , L}.
The boundary of the subdomain Ωi is given by ∂Ωi for i∈ {•, 0,1 ··· , L}. For Lipschitz
domains, and in particular for each Ωi, there exists a unit normal vector field ni∈L∞(∂Ωi),
ni : ∂Ωi→Rd, pointing towards the exterior of Ωi.

The interface between two subdomains Ωi and Ωj is denoted by Γij :=∂Ωi∩∂Ωj. More-

over, we introduce the so-called skeleton Σ :=
⋃L

i=0∂Ωi, the union of all boundaries of
subdomains.

In our scattering model sources are given through an incident wave, coming from in-
finity and impinging on the scattering obstacle. We assume that the source field Uinc ∈
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C∞(Rd)† satisfies the Helmholtz equation

−∆Uinc−κ2
0Uinc=0 everywhere in R

d , (1.1)

where κ0 denotes the wave number corresponding to the exterior unbounded domain
Ω0.

Now we are in a position to state the acoustic scattering problem in variational form:
Seek U∈H1

0,loc(R
d\Ω•) such that
∫

Rd\Ω•
gradU(x)·gradV(x)−κ2(x)U(x)V(x)dx=0, (1.2a)

for all V∈H1
0,comp(R

d\Ω•), and the scattered field Us :=U−Uinc satisfies the Sommerfeld
radiation condition [14, Sect. 2.2]

lim
r→∞

∫

|x|=r

∣∣∣∣gradUs(x)· x

|x| −iκ0Us(x)

∣∣∣∣
2

dS(x)=0. (1.2b)

Existence and uniqueness of solutions to (1.2) are well established [38, Sect. 2].‡

Remark 1.1 (Transmission Conditions). The variational formulation (1.2a) implies so-
called transmission conditions

U
∣∣
∂Ωi

=U
∣∣
∂Ωj

, ni ·
[
(gradU)

∣∣
∂Ωi

]
=−nj ·

[
(gradU)

∣∣
∂Ωj

]
, (1.3)

which hold on Γij =∂Ωi∩∂Ωj, i, j∈{•,0,. . . ,L}, i 6= j, in the sense of distributions.

Remark 1.2 (Piecewise constant diffusion coefficient). Instead of (1.2a) we may consider
∫

Rd\Ω•
α(x)gradU(x)·gradV(x)−κ2(x)U(x)V(x)dx=0, (1.4)

with a piecewise constant positive diffusion coefficient function α ∈ L∞(Rd). Our ap-
proach can be extended to this setting by switching to a scaled multi-potential generalizing
(2.9), as has been done in [13]. In the context of electromagnetic scattering, this scaling
trick is discussed in [11], see Definition 4.1 in that manuscript. It will achieve regular-
ization by cancellation of kernel singularities of the hypersingular boundary integral op-
erator as in (4.8). Yet, for the double layer boundary integral operators this cancellation
will no longer occur. Nevertheless, the resulting Cauchy-singular skeleton boundary in-
tegral operators will still be continuous in L2 skeleton spaces and yield a valid second
kind formulation. In this article we forgo this generalization for the sake of simplicity
and because an implementation for acoustic scattering is not yet available to us.

†Capital letters are used to refer to functions defined over a volume domain.
‡Notations for function spaces (Sobolev spaces) follow the usual conventions, see [9, 28]. In particular, we
write Hs

loc(Ω) for distributions U such that φ
∣∣
Ω

U∈Hs(Ω) for any φ∈C∞
comp(R

d), see [35, Definition 2.6.1].

Hs
comp(Ω) contains all distributions in Hs

loc(Ω) that have compact support in Ω, see [35, Definition 2.6.5] and

H1
0,loc(Ω) consists of all distributions in Hs

loc(Ω) that vanish on ∂Ω.



X. Claeys, R. Hiptmair, E. Spindler / Commun. Comput. Phys., 23 (2018), pp. 264-295 267

1.2 Second-kind boundary integral formulations

Boundary integral equations (BIE) are an effective tool to model the acoustic scattering of
waves at partly impenetrable objects consisting of several homogeneous materials. They
form the foundation for Galerkin boundary element methods (BEM), a popular class of
methods to discretize and numerically compute acoustic fields. BEM are — in contrast to
finite element methods — well-suited for scattering problems, since they can easily deal
with unbounded domains. Second-kind BIE for transmission problems in the case of a
homogeneous scatterer are well established, that is, when there is no impenetrable object
Ω• and L= 1 (see [27, 30, 34] or [14, Sect. 3] or [35, Sect. 3.9]). As well understood are
second-kind BIE for exterior Dirichlet and Neumann problems (c.f. [14, Sect. 3] or [35,
Sect. 3.9], [16, 17]), i.e. the case described in Subsection 1.1 for L = 0. In this case, the
occurrence of spurious resonances is a persistent problem and combined field integral
equations (CFIE) are a popular remedy, see [3, 4].

Our aim is to unify these approaches to treat complex scatterers consisting of impen-
etrable as well as several penetrable homogeneous materials.

1.3 First-kind boundary integral formulations

For the geometric situation described in Subsection 1.1, a widely used BIE is the first-kind
single-trace formulation (STF) [15, 38], in computational electromagnetics also known
as Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) integral equation [5,21,33,39].
Other recently developed approaches to solve the same type of problems are various
kinds of multi-trace formulations (MTF), see [7–10, 24, 31, 32]. The boundary element
Galerkin discretization of the classical first-kind STF as well as of the MTF leads to ill-
conditioned linear systems on fine meshes. Therefore iterative solvers require precondi-
tioning, which means additional coding and computational effort.

1.4 Novelty and outline

In this article, we extend the Galerkin BEM approach for second-kind STF for transmis-
sion problems proposed in [12] to partly impenetrable objects. This type of STF is based
on so-called multi-potentials (see Subsection 2.2). we find that it is possible to consider
the (variational) second-kind STF in L2. Thus, a boundary element Galerkin discretiza-
tion based on the new formulations yields intrinsically well-conditioned linear systems. To
overcome spurious resonances, we adopt the idea of (direct) combined field integral equa-
tions (CFIE, see [3, 4]) in Section 3. The treatment of essential boundary conditions along
with a CFIE-type stabilization of second-kind skeleton BIEs are major innovations in this
work. They deserve attention, because numerical tests in three dimensions provide solid
evidence for

(i) stability of our second-kind Galerkin discretization,

(ii) mesh-independent good conditioning of the Galerkin matrices, and
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(iii) competitive accuracy in comparison with the first-kind STF.

We emphasize that the focus of the present work is not on theoretical investigations,
but on the derivation of the new boundary integral equations, the implementation of the
related Galerkin BEM, and numerical tests probing specific properties in typical settings.
Theoretical considerations will only be recalled briefly and for proofs we largely refer
to [6, 12, 36].

In Section 2 we first present the basic tools, set up the notation, and introduce the
spaces needed for our second-kind single-trace formulation. There we also introduce the
formulation itself and, afterwards in Section 3, we derive its CFIE extension. Based on
a specific example, the discretization and implementation of the method is discussed in
Section 4. Finally, we report on numerical results in Section 5.

2 Boundary integral equations

2.1 Traces and potentials ‡

For the ith subdomain, i∈{•,∗,0,1,··· ,L}, we introduce the interior Dirichlet and Neumann
trace (co-normal trace) [35, Theorems 2.6.9, 2.8.3 & Lemma 2.8.4]§

γi
D :H1

loc(Ωi)→H
1
2 (∂Ωi), γi

Du := u |∂Ωi
,

γi
N :H1

loc(∆,Ωi)→H−
1
2 (∂Ωi), γi

Nu := ni ·gradu |∂Ωi
.

The exterior Dirichlet and Neumann traces γi,c
D : H1

loc(R
d\Ωi) → H

1
2 (∂Ωi) and γi,c

N :

H1
loc(∆,Rd\Ωi)→ H−

1
2 (∂Ωi), are taken from outside Ωi. The associated trace spaces,

henceforth called Dirichlet trace space and Neumann trace space, can be merged into the

Cauchy trace space H(∂Ωi) := H
1
2 (∂Ωi)×H−

1
2 (∂Ωi), which is self-dual with respect to the

pairing

〈〈u,v〉〉H(∂Ωi)
:= 〈u,ϕ〉∂Ωi

−〈v,ν〉∂Ωi
, u :=

(
u

ν

)
, v :=

(
v

ϕ

)
∈H(∂Ωi) , (2.1)

with 〈·,·〉∂Ωi
denoting (extensions of) the L2-duality pairing on ∂Ωi. A related compact

notation is the Cauchy trace operator

γi : H1
loc(∆,Ωi)→H(∂Ωi), γiU :=

(
γi

DU

γi
NU

)
. (2.2)

Potential representations of solutions of (1.2) are the first step towards boundary in-
tegral equations. The following result can be found in [35, Sect. 3.11] and [28, Ch. 6]:

‡We are going to use the same notation as introduced in [12, Subsection 3.1].
§H1

loc(∆,Ω) :={U∈H1
loc(Ω)|∆U∈L2

comp(Ω)}, see [35, Equation (2.108)].
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Lemma 2.1 (Single Domain Representation Formula). There are continuous linear operators,
depending on the constant κ>0, the

single layer potential Si[κ] : H−
1
2 (∂Ωi)→H1

loc(∆,Rd\∂Ωi) ,

double layer potential Di[κ] : H
1
2 (∂Ωi)→H1

loc(∆,Rd\∂Ωi) ,

such that

(i) For any ϕ∈H−
1
2 (∂Ωi), u∈H

1
2 (∂Ωi) the potentials Si[κ](ϕ) and Di[κ](u) are solutions

of −∆U−κ2U = 0 in Ωi and in Rd\Ωi and satisfy the Sommerfeld radiation conditions
(1.2b).

(ii) Every solution U ∈H1
loc(Ωi) of

(
−∆−κ2

)
U = 0 that satisfies the Sommerfeld radiation

conditions (1.2b) if i=0 fulfills

Gi[κ](γ
iU)=

{
U on Ωi ,

0 on Rd\Ωi ,
(2.3)

with the local potentials defined by ¶

Gi[κ](u) :=−Di[κ](u)+Si[κ](ϕ) , u :=

(
u

ϕ

)
∈H(∂Ωi) .

For distributions ϕ and u on ∂Ωi the potentials possess the integral representations

Si[κ](ϕ)(x)=
∫

∂Ωi

Φκ(x−y)ϕ(y)dS(y) ,

Di[κ](u)(x)=
∫

∂Ωi

grady Φκ(x−y)·ni(y)u(y)dS(y) ,

(2.4)

for x 6∈∂Ωi, based on fundamental solutions

Φκ(z)=





i
4 H

(1)
0 (κ |z|), d=2,

1
4π|z| exp(iκ |z|), d=3,

κ∈R+ , (2.5)

where H
(1)
0 is the Hankel function of the first kind and |·| represents the Euclidean norm.

Notation. For simplicity we neglect the argument [κ] in Si[κ], Di[κ], and Gi[κ] and
write Si :=Si[κi], Di :=Di[κi], Gi :=Gi[κi], respectively, in the cases where κ in the formulas
(2.4) coincides with the local wave number κi of Ωi, i∈{0,1, ··· , L}.

¶Fraktur font is used to designate functions in the Cauchy trace space, where Roman typeface is reserved
for Dirichlet traces, and Greek symbols for Neumann traces.
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2.2 L2 skeleton trace spaces and multi-potentials

This subsection will follow the same notation as introduced in [12, Subsections 3.2, 3.3] or
[6, Section 2], but will extend it to the setting with impenetrable material in Ω•. Moreover,
for the sake of conciseness, we consider a functional setting based on square integrable
functions rather than on Sobolev spaces of fractional order.

Definition 2.1 (Multi-Trace Space [6, Section 2], [12, Def. 3.1], [36, Def. 3.2.1]). The L2

skeleton multi-trace space is given by

ML
2(Σ) :=

L

∏
i=0

L2(∂Ωi)×L2(∂Ωi) . (2.6)

Next for any ǫ>0, we may introduce the skeleton multi-trace operator γΣ, mapping

H3/2+ǫ
loc (Rd\(Ω•∪Σ))=H3/2+ǫ

loc (Ω0)×···×H3/2+ǫ
loc (ΩL) into the multi-trace space, is given

by γΣ : H3/2+ǫ
loc (Rd\(Ω•∪Σ))→ML

2(Σ) ,

γΣU :=(γ0U,γ1U,··· ,γLU) . (2.7)

We notice self-duality of ML
2(Σ) with respect to an L2-type bilinear pairing defined, for

any u=(uj)
L
j=0∈ML

2(Σ) and v=(vj)
L
j=0∈ML

2(Σ), by the formula

〈〈u,v〉〉 :=
L

∑
i=0

〈〈ui,vi〉〉H(∂Ωi)

= ∑
0≤j<i≤L

∫

Γij

ui ϕi−νivi+uj ϕj−νjvj dS+ ∑
0≤i≤L

∫

Γi•

ui ϕi−νivi dS, (2.8)

where ui = (ui,νi), vi = (vi,ϕi). Next, we introduce the important subspace of unique
traces in ML

2(Σ) that incorporate homogeneous Dirichlet boundary conditions at ∂Ω•.

Definition 2.2 (L2 Single-Trace Space [12, Def. 4.2], [36, Def. 4.2.6]). The L2 single-trace
space is defined by

SL
2(Σ) :=

{
(u0,ν0,. . .,uL,νL)∈ML

2(Σ) : ui

∣∣
Γij
=uj

∣∣
Γij

,

νi

∣∣
Γij
=−νj

∣∣
Γij

,∀j< i and ui

∣∣
∂Ω•

=0,∀i∈{0, ··· , L}
}

.

Elements of ST (Σ) should be regarded as skeleton traces of functions defined ev-
erywhere on Rd\Ω•. Indeed for any ǫ > 0, an element (uj,νj)

L
j=0 ∈ML

2(Σ) such that

uj ∈Hǫ(∂Ωj) actually belongs to SL
2(Σ) if and only if there exist two globally defined

volume based functions U∈Hǫ+1/2
0 (Rd\Ω•) and φ∈H(div,Rd\Ω•) such that γi

D(U)=uj

and ni ·(γi
D,γi

D)φ=νi.
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Even in an L2 setting we can still capture the traces of solutions of the scattering
transmission problem (1.2), because, appealing to elliptic lifting results [26, Theorem
B.2], [20, Remark 2.4.6, Corollary 2.6.7], we observe that the solution U of (1.2) belongs

to H
3
2+ǫ

loc (Rd\Ω•) for some ǫ > 0. Then, standard trace theorems supply the following
regularity even of Neumann traces of U:

Lemma 2.2. For the unique solution U of (1.2) holds γΣU∈SL
2(Σ).

The polar set characterization of SL
2(Σ) as a subspace of ML

2(Σ), see also [6,
Prop. 2.1], [9, Thm. 3.1] and [12], still holds for our extension to impenetrable parts.

Lemma 2.3. SL
2(Σ)={u∈ML

2(Σ) : 〈〈u,v〉〉=0∀v∈SL
2(Σ)}.

Based on the spaces introduced above, we define the so-called multi-potential.

Lemma 2.4 ([36, Def. 3.3.7], [36, Thm. 3.3.13, Lem. 4.3.4, Lem. 4.3.6]). The multi-potential
is defined as the sum of all local potentials Gi[κi] defined in Lemma 2.1, i=0, ··· , L:

MΣ(u) :=
L

∑
i=0

Gi[κi](ui) . (2.9)

Moreover the boundary integral operator obtained by taking its traces MΣ := γΣMΣ induces a
continuous linear map ML

2(Σ)→ML
2(Σ).

Notation. If MΣ or MΣ are supplied with an argument [κ], all wave numbers κi in (2.9)
are supposed to agree with κ in MΣ[κ] and MΣ[κ], respectively.

The attribute multi indicates that generically L+1 potentials contribute to the value of
MΣ(u)(x) for every x 6∈Σ. Yet, the multi-potential becomes single-valued when acting on
traces of the solution of (1.2). To see this note that, if U solves the transmission problem
(1.2), then

Gi[κi](γ
iU)=

{
U in Ωi ,

0 elsewhere,
i=1,··· ,L ,

G0[κ0](γ
0(U−Uinc))=

{
U−Uinc in Ω0 ,

0 elsewhere.

This explains the following multi-potential representation formula.

Corollary 2.1 (Global Representation Formula [12, Cor. 3.1], [36, Cor. 3.3.8]). If U solves
the transmission problem (1.2), then

U−Uinc

∣∣
Ω0

=MΣγΣ
(

U−Uinc

∣∣
Ω0

)
, (2.10)

where γΣ is the multi-trace defined in (2.7).
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The representation formula in (2.10) paves the way to the boundary integral formula-
tion. We take the skeleton-trace on both sides of the equation, insert the resulting equa-
tion into the bilinear form (2.8) and test with v ∈MT (Σ). We obtain the following
variational BIE satisfied by u :=γΣU.

Formulation 2.1 ([36, Form. 4.3.3]). Find u∈SL
2(Σ) such that

〈〈(Id−MΣ)u,v〉〉= 〈〈uinc,v〉〉 ∀v∈ML
2(Σ) , uinc :=γΣUinc .

The simple expression on the right hand side is due to the identity
〈〈
(Id−MΣ)u

0
inc,v

〉〉
= 〈〈uinc,v〉〉 .

It holds, since we assume that the incident wave Uinc solves an interior Helmholtz prob-
lem on Ω∗, see (1.1). To be more precise, by (2.3), we obtain

G∗[κ0](γ
∗Uinc)=

{
Uinc on Ω∗ ,

0 on Rd\Ω∗ .

Since Ω0=Rd\Ω∗, this involves

G∗[κ0](γ
∗Uinc)+Uinc

∣∣
Ω0

=Uinc . (2.11)

Taking into account the relation between G∗ and G0 together with the fact that

γ∗Uinc=

(
γ0

D

−γ0
N

)
Uinc ,

we can write (2.11) in terms of the multi potential (2.9). We observe

−MΣ(γ
Σ(Uinc

∣∣
Ω0
))+Uinc

∣∣
Ω0

=Uinc ,

which finally yields

(Id−MΣ)u
0
inc=γΣUinc=uinc .

We observe an important redundancy in the variational form of the boundary integral
equations in Formulation 2.1:

〈〈
(Id−MΣ)γ

ΣU,v
〉〉

=0, ∀v∈SL
2(Σ) , (2.12)

if U is the solution of (1.2). In words, testing with single-trace functions yields “0=0” and
does not supply any information. The relationship (2.12) not only points to redundancy
in the test space of Formulation 2.1, it also hints at a remedy. Since SL

2(Σ) is a closed
subspace of ML

2(Σ) (as an immediate corollary of Lemma 2.3), it is sufficient to test
with elements in the L2-orthogonal complement of SL

2(Σ) in ML
2(Σ), which enjoys a

simple characterization, see [36, Def. 4.3.11].
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Definition 2.3 (Orthogonal Complement of the Single-Trace L2-Space).

SL
2,⊥(Σ) :=

{
(u0,ν0,··· ,uL,νL)∈ML

2(Σ) : ui

∣∣
Γij
=−uj

∣∣
Γij

,

νi

∣∣
Γij
=νj

∣∣
Γij

, j< i and νi

∣∣
Γi•

=0∀i∈{0,1,··· ,L}
}

.

Testing with functions in this complement space leads to the following variational
BIE from Formulation 2.1.

Formulation 2.2 ([36, Form. 4.3.12]). Search u∈SL
2(Σ) :

〈〈(Id−MΣ)u,v〉〉= 〈〈uinc,v〉〉 , ∀v∈SL
2,⊥(Σ), uinc :=γΣUinc .

Corollary 2.2. Formulation 2.2 is consistent with the original scattering problem in the sense
that the exact solution of (1.2) will also fulfill Formulation 2.2.

As a consequence of γΣU∈SL
2(Σ) we can state the equivalence of Formulation 2.2

to the original problem (1.2).

Corollary 2.3 (Equivalence [36, Cor. 4.3.16]). If Formulation 2.2 has a unique solution u∈
SL

2(Σ), then u provides the skeleton trace γΣU of the solution U of the original transmission
problem (1.2).

The proof of Corollary 2.3 runs parallel to that of [12, Corollary 4.2].

Remark 2.1. [12, Thm. 4.1] asserts that the operator underlying Formulation 2.2 is a
compact perturbation of the identity when there is no impenetrable material. In this case
the proof of well-posedness of Formulation 2.2 reduces to the verification of

Ker(Id−MΣ)={0}. (2.13)

In the presence of Ω• showing the Fredholm property of the operator on the left hand
side of Formulation 2.2 is much more involved and could only be accomplished for d=2
under additional geometric assumptions, see [36, Appendix C].

It is still open, whether (2.13) holds true. But numerical tests (see [12, Subsection 6.1])
indicate the absence of spurious resonances in the absence of impenetrable materials.
Otherwise, spurious resonances are known to affect the formulation for particular wave
numbers. A heuristic remedy will be devised in Section 3.

2.3 Formulation in L2 interface trace spaces

Efficient implementation must be interface-oriented and, therefore, we now look at the L2

skeleton trace spaces from a different perspective.
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Definition 2.4 (L2 Skeleton Trace Space, [36, eq. (4.9)]). The L2 skeleton trace space is given
by

L
2
•(Σ) :=

(

∏
0≤j<i≤L

L2(Γij)×L2(Γij)

)
×
(

∏
0≤i≤L

{0}×L2(Γi•)

)
.

In order to make sense of the notation u= (uij,νij)j<i ∈L
2
•(Σ), we set •< j for all j ∈

{0,··· ,L}. It is a closed subspace of the space

L
2(Σ) :=

(

∏
0≤j<i≤L

L2(Γij)×L2(Γij)

)
×
(

∏
0≤i≤L

L2(Γi•)×L2(Γi•)

)
,

also allowing for non-vanishing Dirichlet contributions at the boundary of the impene-
trable subdomain ∂Ω•.

It is isomorphic to SL
2(Σ) by the following one-to-one correspondence. Any element

u= (uij,νij)j<i ∈L
2
•(Σ) is associated to the element I(u) = (u0,ν0,··· ,uL,νL) ∈ SL

2(Σ)
according to

(ui,νi)=





(uij,νij) on Γij if 0≤ j< i,

(uji,−νji) on Γji if 0≤ i< j,

(ui•≡0,νi•) on Γi• ,

i=0,··· ,L. (2.14)

In a similar manner, we find an isomorphism between SL
2,⊥(Σ) and L

2
•(Σ). In com-

parison to (2.14), when going from L
2
•(Σ) to SL

2,⊥(Σ), the idea is to flip the role of
Dirichlet data uij and Neumann data νij. Any element u=(uij,νij)j<i ∈L2

•(Σ) is associ-

ated to the element J (u)=(u0,ν0,··· ,uL,νL)∈SL
2,⊥(Σ) via

(ui,νi)=





(−νij,uij) on Γij if 0≤ j< i,

(νji,uji) on Γji if 0≤ i< j,

(−νi•,ui•≡0) on Γi• ,

i=0,··· ,L. (2.15)

This leads to another Formulation equivalent to Formulation 2.2 with ansatz and test
functions taken in L

2
•(Σ), where I and J represent the action of the isomorphisms intro-

duced above in (2.14) and (2.15), respectively.

Formulation 2.3 ([36, Form. 4.3.17]). Find u∈L2
•(Σ) such that

〈〈(Id−MΣ)I(u),J (v)〉〉= 〈〈uinc,J (v)〉〉 ∀v∈L2
•(Σ), uinc :=γΣUinc .
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value distribution operator I at interface Γij

Ωi Ωj

uij ++

Ωi Ωj

νij −+

value distribution operator J at interface Γij

Ωi Ωj

νij −+

Ωi Ωj

uij ++

Figure 2: Visualization of the local action of the mappings I , J at the interface Γij acting on an L2 skeleton

function uij =(uij,νij)∈L2
•(Σ). It is important to note the change of the role of Dirichlet and Neumann data

inherent in the mapping J .

3 Combined field integral equations (CFIE)

3.1 Impenetrable scatterer (L=0, Ω• 6=∅)

We first consider the case of a single impenetrable scatterer, i.e. L=0 and Rd=Ω•∪∂Ω•∪
Ω0. Then the second-kind BIE in Formulation 2.3 will fail to have a unique solution for
infinitely many wave numbers κ0 (spurious resonance phenomenon, [35, Section 3.9.2]). A
widely used remedy are the so-called combined field integral equations based on an idea
of Burton and Miller [3, 4]. First, let us recall the direct CFIE policy for L= 0. Later, in
Subsection 3.2, we will adapt the idea to the case of a composite scatterer.

Let U∈H1
0,loc(R

d\Ω•) be a solution of an exterior Dirichlet problem, i.e. U is assumed
to solve (1.2) for L= 0. We have seen that for U equation (2.10) holds true. Taking the
trace γ0 of (2.10) yields:

(
γ0

DU

γ0
NU

)
=

(
γ0

DG0[κ0]{γ0
DU,γ0

NU}
γ0

NG•[κ0]{γ0
DU,γ0

NU}

)
. (3.1)

Using that γ•,c=
(

1 0
0 −1

)
γ0 gives

(
γ•,cD U

γ•,cN U

)
=

(
γ•,cD G0[κ0]{γ0

DU,γ0
NU}

γ•,cN G0[κ0]{γ0
DU,γ0

NU}

)
(1.3)
=

(
γ•,cD G0[κ0]{γ•,cD U,−γ•,cN U}
γ•,cN G0[κ0]{γ•,cD U,−γ•,cN U}

)

=−
(

γ•,cD G•[κ0]{γ•,cD U,γ•,cN U}
γ•,cN G•[κ0]{γ•,cD U,γ•,cN U}

)
,

and thus

−γ•,cU=P•,c(γ
•,cU). (3.2)

The operator P•,c is known as Calderón projector (see [35, Proposition 3.6.2]). The first
equation in (3.1) corresponds to the Dirichlet trace while the second equation is related
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to the Neumann trace. Sloppily speaking, taking just one of the two equations in (3.1) to
characterize the boundary data at impenetrable objects means that we lose information.

We consider the second-kind BIE from Formulation 2.3 for L= 0. Due to our choice
of the test space SL

2,⊥(Σ) = L2(∂Ω0)×{0}, we rely merely on the second equation in
(3.1) which is related to the Neumann trace. However, in the case when κ2

0 is a Neumann
eigenvalue of −∆ in Ω•, i.e. if

∆U+κ2
0U=0 in Ω• , γ•NU=0, (3.3)

has a nontrivial weak solution U ∈ H1
0,loc(Ω•), this second equation will fail to have a

unique solution. In this case, we have to make use of both equations in (3.2) to ensure
that the resulting formulation is equivalent to (1.2), L=0.

The CFIE ansatz is to use a complex linear combination of the two equations in (3.1).
For this purpose, we introduce the trace transformation operator Ψη that transfers Dirichlet
to Neumann data and multiplies them by iη, for some η∈R\{0}:

Ψη : L2(∂Ω•)×{0}→{0}×L2(∂Ω•), v=(v,0) 7→Ψη(v)= iη(0,v). (3.4)

Then, the direct combined field integral approach corresponding to Formulation 2.3 in
the case L=0 boils down to the following variational problem:

Formulation 3.1 ([36, Form. 4.3.21]). Fix η∈R\{0}. Seek u∈{0}×L2(∂Ω0) such that for
all v∈L2(∂Ω0)×{0}, we have

〈〈
(Id−γ0

G0[κ0])u,Ψη(v)+v

〉〉
H(∂Ω0)

=
〈〈

γ0Uinc,Ψη(v)+v

〉〉
H(∂Ω0)

,

where the trace transformation operator Ψη is defined in (3.4).

Splitting the boundary integral operator γ0G0[κ0] into components acting on individ-
ual traces, we find that Formulation 3.1 agrees with the direct CFIE of [3, 4].

3.2 Composite scatterer

Now we return to the general situation of a scatterer with L> 0 penetrable material do-
mains and Ω• 6=∅. Our goal is to apply the same strategy as in Subsection 3.1 in the case
of a composite scatterer. The idea is to add a generalized version of the first equation of
(3.1), related to the Dirichlet trace, as an additional term to Formulation 2.3. This modifi-
cation in the spirit of CFIEs can be expected to suppress spurious resonances caused by
the presence of impenetrable objects.

Starting with the global representation formula (2.10) and using the identity (2.11),
for a solution U of (1.2) we obtain that

γ•,cD

(
U−Uinc

∣∣
Ω0

)
=γ•,cD MΣ

(
γΣ(U−Uinc

∣∣
Ω0
)
)

(3.5)
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⇔ γ•,cD

(
U−Uinc

∣∣
Ω0
−MΣ

(
γΣ(U−Uinc

∣∣
Ω0
)
))

=0

⇔ γ•,cD

(
−U+MΣ

(
γΣU

)
+Uinc

)
=0.

This equation represents the information we lost due to the choice of our test space

SL
2,⊥(Σ) in Formulation 2.3, which has vanishing Neumann data on ∂Ω•. It corre-

sponds to the generalized version of the first equation in (3.1). Our goal is to incorporate
the information from (3.5) into Formulation 2.3 in order to suppress spurious resonances.

To introduce the extension to the setting of a composite scatterer of the trace trans-

formation operator Ψη from (3.4), we define the space L̃2(∂Ω•), which can be seen as the
extension of L2-Dirichlet data associated with the impenetrable subdomain in L2(∂Ω•) to
the skeleton space L

2(Σ) from Definition 2.4:

L̃2(∂Ω•) :=

(

∏
0≤j<i≤L

{0}×{0}
)
×
(

∏
0≤i≤L

L2(Γi•)×{0}
)

.

In order to make sense of the notation v = (vij,ϕij)j<i ∈ L̃2(∂Ω•), we set • < j for all
j ∈ {0,··· ,L}. For any fixed η ∈ R\{0} we define the trace transformation operator

Ψη :L2
•(Σ)→ L̃2(∂Ω•)⊂L

2(Σ),

v=(vij,ϕij)j<i 7→Ψη(v)=
(
Ψη(v)

)
j<i

,
(
Ψη(v)

)
j<i

:=

{
(iηϕi•,0) i=0, ··· , L,

(0,0) 0≤ j< i≤ L.

We may also need the straightforward extension of the isometryJ defined in (2.15) to the

space L
2(Σ)=L

2
•(Σ)⊕ L̃2(∂Ω•) from Definition 2.4. Namely, J (u)= (u0,ν0,··· ,uL,νL)∈

ML
2(Σ) is given by

(ui,νi)=





(−νij,uij) on Γij if 0≤ j< i,

(νji,uji) on Γji if 0≤ i< j,

(−νi•,ui•) on Γi• ,

i=0,··· ,L. (3.6)

Starting with the identity from (2.10) and (3.5) we obtain

〈〈
(Id−MΣ)(γ

ΣU)−γΣUinc,J
(
Ψη(v)

)〉〉

=−
〈〈
−γΣU+MΣ(γ

ΣU)+γΣUinc,J
(
Ψη(v)

)〉〉

(2.8)
= −iη ∑

0≤i≤L

∫

Γi•
γi

D

(
−U+MΣ(γ

ΣU)+Uinc

)
ϕi•dS

=−iη ∑
0≤i≤L

∫

Γi•
γ•,cD

(
−U+MΣ(γ

ΣU)+Uinc

)
ϕi•dS

(3.5)
= 0, (3.7)
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under application of the isometry J from (3.6) and using the fact that by definition of the
traces in the beginning of Sect. 2.1 we have γi

D =γ•,cD on Γi•, i∈{0,1, ··· , L}.
Since equation (3.7) holds true for the solution U of (1.2), the following formulation is

still consistent with the transmission problem.

Formulation 3.2 ([36, Form. 4.3.22]). Find u∈L2
•(Σ) such that for all v∈L2

•(Σ)

〈〈
(Id−MΣ)I(u),J

(
v+Ψη(v)

)〉〉
=
〈〈
uinc,J

(
v+Ψη(v)

)〉〉
, uinc :=γΣUinc .

Also in this case, uniqueness of solutions remains open, cf. Remark 2.1.

4 Galerkin boundary element discretization of the second-kind

formulations

4.1 Boundary element spaces

For the Galerkin discretization of the variational boundary integral equations of Formu-
lations 2.3 and 3.2 we have to rely on a finite-dimensional subspace VM of L2

•(Σ). We first
give a general abstract description before discussing concrete choices.

Following the interface-oriented perspective of Definition 2.4 we decompose trial and
test functions into interface contributions:

u=
(
(uij,νij)0≤j<i≤L,(0,νi•)0≤i≤L

)
∈L2

•(Σ) ,

v=
(
(vij,ϕij)0≤j<i≤L,(0,ϕi•)0≤i≤L

)
∈L2

•(Σ) .
(4.1)

For the Galerkin discretization of (4.6), we rely on Mij-dimensional, Mij∈N, subspaces of

L2(Γij) spanned by basis functions b1
ij,··· ,b

Mij

ij , where i∈{0,··· ,L}, j∈{•,0,··· ,i−1}. This

gives basis expansions of interface components uij, vij, νij, and ϕij, of Galerkin trial and
test functions u,v∈VM, for instance,

uij=
Mij

∑
ℓ=1

uℓ
ijb

ℓ
ij with −→u ij :=(u1

ij,··· ,u
Mij

ij )⊤∈C
Mij . (4.2)

Wherever required, the basis functions will be considered as elements of L2(Σ) after ex-
tension by zero. The resulting subspace VM⊂L

2
•(Σ) has dimension

M :=2 ∑
0≤j<i≤L

Mij+ ∑
0≤i≤L

Mi• . (4.3)
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We denote the vectors of the basis expansion coefficients of u,v∈VM as

−→
u =((−→u ij,

−→
ν ij)0≤j<i≤L,(−→ν i•)0≤i≤L)∈C

M ,
−→
v =((−→v ij,

−→
ϕ ij)0≤j<i≤L,(−→ϕ i•)0≤i≤L)∈C

M .
(4.4)

Of course, we have dropped the vanishing Dirichlet contribution on Γi•. The local coeffi-
cient vectors −→u ij,

−→v ij,
−→
ν ij and −→ϕ ij are defined as in (4.2).

In the concrete case of fixed-degree piecewise polynomial boundary element spaces
VM we rely on a mesh/triangulation T = {τ1,··· ,τ|T |} of Σ (see [35, Sect. 4.1.2]) that re-
solves the given geometry of Σ, in the sense that the closure of every Γij agrees with the

union of some closed cells of T . Mesh based boundary element subspaces VM⊂L
2
•(Σ)

do not have to satisfy any continuity conditions at cell boundaries. Therefore, we opt for
a simple piecewise polynomial discontinuous approximation of L2

•(Σ) by means of‖

VM :=VT ,p :=S p,−1
T (Σ)×S p,−1

T (Σ)⊂L
2
•(Σ), (4.5)

where the total degree p∈N0 is fixed, see [35, Def. 4.1.17] (d= 3), [37, Sect. 10.2] (d= 2).
In other words, we use piecewise polynomial functions of maximal total degree p in each
mesh cell. L

2
•(Σ)-stable bases of VT ,p are readily available. In the case p= 0 we simply

use the set of characteristic functions of the mesh elements τk∈T .

4.2 Galerkin linear systems of equations

In this section, we dip into the details of the Galerkin boundary element discretization of
Formulation 2.3. For the sake of lucidity, we restrict ourselves to the situation depicted
in Fig. 3. This situation is sufficiently general to convey all key considerations.

The main idea is to consider all the operator contributions from Formulation 2.3
interface-wise instead of subdomain-wise, as it has already been done in the definition
of the L2 single-trace space SL

2(Σ) (see Definition 2.2) and the L2 skeleton trace space
L

2
•(Σ) (see Definition 2.4). Definition 2.2 of the single-trace space and the isometry given

in (2.14) adopt the convention that at transmission interfaces the intrinsic orientation cho-
sen for the interface Γij is inherited by the orientation of the boundary of the adjacent
domain Ωi with larger index i> j. In the case of an impenetrable interface Γi•⊂Ω• the
orientation is induced by the penetrable domain Ωi, i∈{0,1,··· ,L}. In Fig. 3, the intrinsic
orientations of the interfaces Γ01, Γ0• and Γ1• are indicated through the directions of the
normal vectors n01, n0• and n1•, respectively.

Based on this convention, we study the structure of Formulation 2.3:

Seek u∈L2
•(Σ) such that

〈〈(Id−MΣ)I(u),J (v)〉〉= 〈〈uinc,J (v)〉〉∀v∈L2
•(Σ). (4.6)

‖The notations for boundary element spaces are borrowed from [35, Sect. 4.1].
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Ω0

Ω1

Ω•

n0•

n1•

n10

Γ10

Γ1•

Γ0•

Figure 3: Model geometry (L=1) for studying the implementation of the second-kind formulation.

To begin with, we study the discretization of the identity operator. We start from (2.8)

〈〈u,v〉〉= ∑
0≤j<i≤L

∫

Γij

ui ϕi−νivi+uj ϕj−νjvj dS+ ∑
0≤i≤L

∫

Γi•
ui ϕi−νivi dS ,

and replace u←I(u), v←J (v). In light of the definitions (2.14) and (2.15) of I and J ,
respectively, this boils down to setting in the first sum of (2.8) ui← uij, ϕi← vij, νi← νij,
vi←−ϕij, uj←uij, ϕj← vij, νj←−νij, and vj← ϕij. In the second sum we replace ui←0,
ϕi←0, νi←νi•, and vi←−ϕi•. This yields

〈〈I(u),J (v)〉〉=2 ∑
0≤j<i≤L

∫

Γij

uijvij+νij ϕijdS+ ∑
0≤i≤L

∫

Γi•
νi•ϕi•dS .

Thus, after introducing the interface mass matrices

M
ij
ij :=

(∫

Γij

bℓijb
k
ijdS

)

1≤ℓ,k≤Mij

∈R
Mij,Mij ,

in the model situation of Fig. 3 the bilinear form (u,v) 7→ 〈〈I(u),J (v)〉〉 gives rise to the
block-diagonal Galerkin matrix




2M10
10 0 0 0

0 2M10
10 0 0

0 0 M0•
0• 0

0 0 0 M1•
1•


 ,

where the color code of Fig. 3 is used to highlight contributions of particular interfaces.
The color red denotes the interface Γ10, violet stands for Γ0• and green represents Γ1•.
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Next, we examine the remaining term on the left hand side in (4.6). We continue
using the interface-wise notation (4.1) for components of u,v∈L2

•(Σ). As above we write
the expressions interface-wise using the definition of the duality pairing from (2.8). We
also rely on the insight that, if we restrict MΣ to SL

2(Σ), then Range(MΣ) will be single-
valued.

〈〈MΣI(u),J (v)〉〉=2 ∑
0≤j<i≤L

∫

Γij

γi
DMΣ(I(u))vij−γi

NMΣ(I(u))
(
−ϕij

)
dS

+ ∑
0≤i≤L

∫

Γi•
0−γi

NMΣ(I(u))
(
−ϕij

)
dS.

If we translate this to the concrete setting of Fig. 3, we get

〈〈MΣI(u),J (v)〉〉=2
∫

Γ10

γ1
DMΣ(I(u))v10+γ1

NMΣ(I(u))ϕ10dS+
∫

Γ0•
γ0

NMΣ(I(u))ϕ0•dS+
∫

Γ1•
γ1

NMΣ(I(u))ϕ1•dS,

where the colors indicate to which interface a term contributes (see Fig. 3).

Next, we split the trial space into interface contributions and take into account that at
the transmission interface Γ10, we have two adjacent domains contributing to the inter-
face, while for the Dirichlet interfaces Γ0• and Γ1•, we have only one contribution from
the penetrable side Ω0 and Ω1, respectively. Throughout, we interpret the interface-wise
defined functions uij, vij and νij, ϕij, i, j∈{•,0,1,··· ,L} as functions on the whole skeleton
Σ after formal extension by 0. Nine terms result from splitting trial and test functions
into three interface contributions each.

〈〈MΣI(u),J (v)〉〉=2
∫

Γ10

γ1
D(G1[κ1])(u10,ν10)v10+γ1

D(G0[κ0])(u10,−ν10)v10

+γ1
N(G1[κ1])(u10,ν10)ϕ10+γ1

N(G0[κ0])(u10,−ν10)ϕ10dS

+2
∫

Γ10

γ1
D(G0[κ0])(0,ν0•)v10 dS+2

∫

Γ10

γ1
D(G1[κ1])(0,ν1•)v10dS

+2
∫

Γ10

γ1
N(G0[κ0])(0,ν0•)ϕ10dS+2

∫

Γ10

γ1
N(G1[κ1])(0,ν1•)ϕ10dS

+
∫

Γ0•
γ0

N(G1[κ1])(u10,ν10)ϕ0•+γ0
N(G0[κ0])(u10,−ν10)ϕ0•dS

+
∫

Γ0•
γ0

N(G0[κ0])(0,ν0•)ϕ0•+γ0
N(G1[κ1])(0,ν1•)ϕ0•dS

+
∫

Γ1•
γ1

N(G1[κ1])(u10,ν10)ϕ1•+γ1
N(G0[κ0])(u10,−ν10)ϕ1•dS

+
∫

Γ1•
γ1

N(G0[κ0])(0,ν0•)ϕ1•+γ1
N(G1[κ1])(0,ν1•)ϕ1•dS.
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In a next step, at the transmission interface Γ10, we rewrite the potential that is related to
Ω0. By definition of the normal n1=−n0, we have that

G0[κ0](u10,ν10)=−G1[κ0](u10,−ν10),

and, therefore, find

〈〈MΣI(u),J (v)〉〉=2
∫

Γ10

γ1
D(G1[κ1]−G1[κ0])(u10,ν10)v10

+γ1
N(G1[κ1]−G1[κ0])(u10,ν10)ϕ10dS

+2
∫

Γ10

γ1
D(G0[κ0])(0,ν0•)v10dS+2

∫

Γ10

γ1
D(G1[κ1])(0,ν1•)v10dS

+2
∫

Γ10

γ1
N(G0[κ0])(0,ν0•)ϕ10dS+2

∫

Γ10

γ1
N(G1[κ1])(0,ν1•)ϕ10dS

+
∫

Γ0•
γ0

N(G1[κ1]−G1[κ0])(u10,ν10)ϕ0•dS

+
∫

Γ0•
γ0

N(G0[κ0])(0,ν0•)ϕ0•+γ0
N(G1[κ1])(0,ν1•)ϕ0•dS

+
∫

Γ1•
γ1

N(G1[κ1]−G1[κ0])(u10,ν10)ϕ1•dS

+
∫

Γ1•
γ1

N(G0[κ0])(0,ν0•)ϕ1•+γ1
N(G1[κ1])(0,ν1•)ϕ1•dS.

Finally, we have derived an interface-wise representation of Formulation 2.3.
Now we proceed with the Galerkin discretization based on basis expansions of all

trial and test functions as introduced above, see (4.2). Our arrangement of basis functions
leads to the following block partitioned Galerkin matrix:




C10
10 C10

0• C10
1•

C0•
10 C0•

0• C0•
1•

C1•
10 C1•

0• C1•
1•


∈C

M,M , M :=2M10+M0•+M1• . (4.7)

The detailed structure of the matrix blocks is

C10
10=2

(−
(
K10

10[κ1]−K10
10[κ0]

)
V10

10[κ1]−V10
10[κ0]

W10
10[κ1]−W10

10[κ0] K′10
10[κ1]−K′10

10[κ0]

)
,

which amounts to the difference of two Calderón operators(see [35, equation (3.122)]),
where

K10
10[κ1]−K10

10[κ0] :=
(∫

Γ10

γ1
D(D1[κ1]−D1[κ0])(b

j
10)b

i
10dS

)M10

i,j=1
∈C

M10,M10

represents the difference of two double layer operators (see [35, Sect. 3.3.3]). The differ-
ence of two single layer operators (c.f. [35, 3.3.2]) gives rise to the matrix

V10
10[κ1]−V10

10[κ0] :=
(∫

Γ10

γ1
D(S1[κ1]−S1[κ0])(b

j
10)b

i
10dS

)M10

i,j=1
∈C

M10,M10
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and the difference of two hypersingular operators (c.f. [35, Sect. 3.3.4]) and two adjoint
double layer operators (see [35, Sect. 3.3.3]), respectively, leads to the matrices

W10
10[κ1]−W10

10[κ0] :=
(
−
∫

Γ10

γ1
N(D1[κ1]−D1[κ0])(b

j
10)b

i
10dS

)M10

i,j=1
, (4.8)

and

K′10
10[κ1]−K′10

10[κ0] :=
(∫

Γ10

γ1
N(S1[κ1]−S1[κ0])(b

j
10)b

i
10dS

)M10

i,j=1
∈C

M10,M10 .

Obviously, at transmission interfaces we end up with differences of the classical ker-
nels∗∗. Taking the difference of two kernels leads to cancellation of leading singularities
such that the integrals involved in C10

10 are at most weakly singular. They are amenable
to the usual singular integration techniques from [35, Chapter 5], though we point out
that numerical cancellation has to be avoided as discussed in [12, Page 51/52]. In short,
one should implement a specific kernel for subtracted operators and use cancellation-
free expressions. In our code, we use Taylor expansions to achieve a numerically stable
implementation (see [12, eq. (5.7)-(5.9)]).

The next block is a coupling term of the Dirichlet interface Γ0• and the transmission
interface Γ10:

C10
0•=2




(∫
Γ10

γ1
D(S0[κ0])(b

j
0•)b

i
10dS

)
1≤i≤M10
1≤j≤M0•(∫

Γ10
γ1

N(S0[κ0])(b
j
0•)b

i
10dS

)
1≤i≤M10
1≤j≤M0•


=

(
V10

0•[κ0]

K′10
0•[κ0]

)
.

In this case, no cancellation occurs since at the Dirichlet boundary we only have an opera-
tor contribution from the penetrable subdomain Ω0. The kernel of the boundary integral
operator γ1

D(S0[κ0])is weakly singular, while the kernel of the operator γ1
N(S0[κ0]), i.e.

the adjoint double layer operator K′10
0•, has a strong singularity behaving like O( 1

‖x−y‖ )

for d=2 andO( 1
‖x−y‖2 ) for d=3, respectively. Therefore, we face a principal part integral,

which finally leads to a jump term 1
2 Id on Γ0•, when crossing the interface Γ0• (see [28, Sec.

7.2]). In the case of C10
0•, we can neglect this term because our trial functions are supported

on the interface Γ10, which only shares a set of measure zero with Γ0•.
The same applies to the third block in the first row of (4.7),

C10
1•=2




(∫
Γ10

γ1
D(S1[κ1])(b

j
1•)b

i
10dS

)
1≤i≤M10
1≤j≤M1•(∫

Γ10
γ1

N(S1[κ1])(b
j
1•)b

i
10dS

)
1≤i≤M10
1≤j≤M1•


=

(
V10

0•[κ0]

K′10
0•[κ0]

)
.

∗∗The operators associated with transmission interfaces are studied in great detail in [12, Lem. 5.3].
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The blocks in the second row of (4.7) are spawned by test functions supported on Γ0•.
Since the first block C0•

10 is associated with trial functions supported on the transmission
interface Γ10, we again obtain more regular differences of classical kernels, which are, at
worst, weakly singular.

C0•
10 =




(
−
∫

Γ0•
γ0

N(D1[κ1]−D1[κ0])(b
j
10)b

i
0•dS

)
1≤i≤M0•
1≤j≤M10(∫

Γ0•
γ0

N(S1[κ1]−S1[κ0])(b
j
10)b

i
0•dS

)
1≤i≤M0•
1≤j≤M10




⊤

=
(

W0•
10[κ1]−W0•

10 [κ0] K′0•10 [κ1]−K′0•10 [κ0]
)

.

The second block C0•
0• in the second row of (4.7) is the self-interaction of Γ0•. As mentioned

above, since the kernel γ0
N,xγ0

D,yΦκ0(x,y) of γ0
N(S0[κ0]) has a strong singularity in x= y,

we obtain a contribution 1
2 Id due to the principal part integral when crossing the interface

Γ0•. After Galerkin discretization, this jump term is represented by the interface mass

matrix M0•
0• :=

(∫
Γ0•

b
j
0•b

i
0•dS

)M0•

i,j=1
. Thus, we obtain

C0•
0•=

(∫

Γ0•
γ0

N(S0[κ0])(b
j
0•)b

i
0•dS

)M0•

i,j=1
=

1

2
M0•

0•+K′0•0•[κ0],

as in the case of the second-kind formulation of the exterior Dirichlet problem. The last
block C0•

1• in the second row has the form

C0•
1•=

(∫

Γ0•
γ0

N(S1[κ1])(b
j
1•)b

i
0•dS

)
1≤i≤M0•
1≤j≤M1•

=K′0•1•[κ1].

Finally, the last row of the block matrix in (4.7) can be obtained analogously to the second
row blocks.

C1•
10 =




(
−
∫

Γ1•
γ1

N(D1[κ1]−D1[κ0])(b
j
10)b

i
1•dS

)
1≤i≤M1•
1≤j≤M10(∫

Γ0•
γ1

N(S1[κ1]−S1[κ0])(b
j
10)b

i
1•dS

)
1≤i≤M1•
1≤j≤M10




⊤

=
(

W1•
10 [κ1]−W1•

10 [κ0] K′1•10 [κ1]−K′1•10[κ0]
)

,

C1•
0•=

(∫

Γ1•
γ1

N(S0[κ0])(b
j
0•)b

i
1•dS

)
1≤i≤M1•
1≤j≤M0•

=K′1•0•[κ0],

C1•
1• :=

(∫

Γ0•
γ1

N(S1[κ1])(b
j
1•)b

i
0•dS

)M0•

i,j=1
=

1

2
M1•

1•+K′1•1•[κ1].

Using the interface-wise decomposition in (4.7), we finally observe the following
block structure for the linear system of equations arising from the Galerkin discretiza-
tion of Formulation 2.3 in the case of the geometry depicted in Fig. 3 and choosing basis
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functions as described above in Section 4.1 [36, Form. 4.4.5]:







2M10
10 0 0 0

0 2M10
10 0 0

0 0 1
2 M0•

0• 0

0 0 0 1
2 M1•

1•




−




−2(K10
10[κ1]−K10

10[κ0]) 2(V10
10[κ1]−V10

10[κ0]) 2V10
0•[κ0] 2V10

1•[κ0]

2(W10
10[κ1]−W10

10[κ0]) 2(K′10
10[κ1]−K′10

10[κ0]) 2K′10
0•[κ0] 2K′10

1•[κ0]

W0•
10 [κ1]−W0•

10 [κ0] K′0•10 [κ1]−K′0•10 [κ0] K′0•0•[κ0] K′0•1•[κ1]

W1•
10 [κ1]−W1•

10 [κ0] K′1•10 [κ1]−K′1•10 [κ0] K′1•0•[κ0] K′1•1•[κ1]










−→u 10−→
ϕ 10−→
ϕ 0•−→
ϕ 1•




=




2M10
10 0 0 0

0 2M10
10 0 0

0 0 M0•
0• 0

0 0 0 M1•
1•







−−−−→
γ1

DUinc10−−−−→
γ1

NUinc10−−−−→
γ0

NUinc0•−−−−→
γ1

NUinc1•




,

(4.9)

with vector of unknowns −→u = (−→u 10,−→ϕ 10,−→ϕ 0•,
−→
ϕ 1•)⊤ ∈ C2M10+M0•+M1• . The vector

−→
u inc :=(

−−−−→
γ1

DUinc10,
−−−−→
γ1

NUinc10,
−−−−→
γ0

NUinc0•,
−−−−→
γ1

NUinc1•)⊤ collects the coefficient vectors of the in-
terpolant of (γ1

DUinc)
∣∣
Γ10

, (γ1
NUinc)

∣∣
Γ10

, (γ0
NUinc)

∣∣
Γ0•

and (γ1
NUinc)

∣∣
Γ1•

, respectively, see

(4.2). The coefficient vector −→u inc can be associated with an element in the finite dimen-
sional space VM⊂L

2
•(Σ), see (4.4). A key observation is that

no hypersingular boundary integral operators are encountered in the interface-
oriented assembly of Galerkin matrices for (4.6),

which is another manifestation of the insight from Lemma 2.4.

The linear system of equations 4.9, arising from Galerkin discretization in the setting
of Fig. 3, is rather typical. For other geometries the structure is exactly the same: when
both spaces, i.e. test and trial space, are associated with a transmission interface, then
matrices of the form

2

(
M10

10 0

0 M10
10

)
−C10

10

occur. The mass term is dropped in the case when the test (superscript indices) and
trial transmission interfaces (subscript indices) do not coincide. If we consider a block
where both spaces are associated with Dirichlet interfaces, then the matrices are of the
form M1•

1•−C1•
1• in the case of a self-coupling and of the form C0•

1• in all other cases where
the Dirichlet test (superscript indices) and Dirichlet trial interfaces (subscript indices)
do not coincide. The coupling blocks have the form C10

0•, if the test space (superscript
indices) is associated with a Dirichlet interface and the trial space (subscript indices) with
a transmission interface, vice versa for C0•

10 .



286 X. Claeys, R. Hiptmair, E. Spindler / Commun. Comput. Phys., 23 (2018), pp. 264-295

4.3 Formal Galerkin discretization for CFIE formulation 3.2

As in the previous subsection, we consider the geometry depicted in Fig. 3. Let G be
the matrix on the left hand side of the linear system of equations 4.9. We observe that
the Galerkin matrix GCFIE arising from Formulation 3.2 is a modification of the system
matrix G of (4.9):

GCFIE :=G−iη




0 0 0 0
0 0 0 0

−(K0•
10 [κ1]−K0•

10 [κ0]) V0•
10 [κ1]−V0•

10 [κ0] V0•
0•[κ0] V0•

1•[κ1]
−(K1•

10 [κ1]−K1•
10 [κ0]) V1•

10 [κ1]−V1•
10 [κ0] V1•

0•[κ0] V1•
1•[κ1]


 . (4.10)

For the right hand side vector we obtain

yCFIE :=




2M10
10 0 0 0 0 0

0 2M10
10 0 0 0 0

0 0 iηM0•
0• M0•

0• 0 0

0 0 0 0 iηM1•
1• M1•

1•







−−−−→
γ1

DUinc10−−−−→
γ1

NUinc10−−−−→
γ0

DUinc0•−−−−→
γ0

NUinc0•−−−−→
γ1

DUinc1•−−−−→
γ1

NUinc1•




. (4.11)

It is important to notice that in the case of CFIE, the right hand side vec-
tor also contains information about the Dirichlet data of the incident field Uinc

associated with the boundary of the impenetrable subdomain ∂Ω•. Namely,

(
−−−−→
γ1

DUinc10,
−−−−→
γ1

NUinc10,
−−−−→
γ0

DUinc0•,
−−−−→
γ0

NUinc0•,
−−−−→
γ1

DUinc1•,
−−−−→
γ1

NUinc1•)⊤ collects the coefficient vec-
tors of the interpolant of (γ1

DUinc)
∣∣
Γ10

, (γ1
NUinc)

∣∣
Γ10

, (γ0
DUinc)

∣∣
Γ0•

, (γ0
NUinc)

∣∣
Γ0•

,

(γ1
DUinc)

∣∣
Γ1•

and (γ1
NUinc)

∣∣
Γ1•

, respectively, see (4.2).

This yields the following linear system of equations generated by the Galerkin BEM
discretization of CFIE Formulation 3.2:

GCFIE

(−→u 10,−→ϕ 10,−→ϕ 0•,
−→
ϕ 1•

)⊤
=yCFIE , (4.12)

with unknowns −→u = (−→u 10,−→ϕ 10,−→ϕ 0•,
−→
ϕ 1•)⊤ ∈C2M10+M0•+M1• . The matrices GCFIE and

yCFIE are given in (4.10) and (4.11), respectively.

4.4 Convergence and conditioning

Since we can show only that the operator on the left hand side of Formulation 2.3 is a
Fredholm operator of index zero, see also Remark 2.1, we cannot assert quasi-optimality
of Galerkin solutions of Formulations 2.3 and 3.2. Yet, bolstered by what we have univer-
sally observed in numerical tests, we may assume stability of our Galerkin discretization.
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Assumption 4.1 (Discrete Inf-Sup Conditions). We assume that Formulation 2.3, dis-
cretized by means of low-order piecewise polynomial boundary element spaces on
shape-regular sequences of meshes, satisfies an asymptotic uniform discrete inf-sup con-
dition (see [35, Theorem 4.2.7]).

Then, we conclude by [35, Theorem 4.2.7] well-posedness, asymptotic stability, and
quasi-optimality of the Galerkin discretization. Assume a shape-regular and quasi-
uniform sequence {Tℓ}ℓ∈N

of skeleton meshes with

hℓ :=max{diam(τ),τ∈Tℓ}→0 as ℓ→∞,

see [37, Section 10.1] (d=2) or [35, Section 4.1.2] (d=3) for details. Under these circum-
stances, quasi-optimality implies O(hℓ) algebraic convergence of the discretization error in
the L2

•(Σ)-norm as a consequence of best approximation error estimates from [37, Section
10.1] or [35, Section 4.1.2].

The condition numbers of the Galerkin matrices crucially depend on the choice of
basis functions. In particular, for VMℓ

=VTℓ,0, see (4.5), we choose the canonical basis of
characteristic functions of mesh cells. This basis is perfectly L2-stable, since, after suitable
scaling, it is even L2-orthonormal. Thus, by the continuity of MΣ :ML

2(Σ)→ML
2(Σ)

and appealing to Assumption 4.1, we can conclude that the Euclidean condition numbers
of the Galerkin matrices Gℓ∈CMℓ,Mℓ arising from Formulation 3.2 are bounded indepen-
dently of hℓ.

4.5 Post-processing

Assume that we perform a Galerkin discretization of Formulation 2.3 based on the
boundary element space VMℓ

= VTℓ,0 of piecewise constant functions on quasi-uniform
sequences of triangular or quadrilateral meshes {Tℓ}ℓ∈N obtained by regular refinement.
In this case, we observe a gain in accuracy if we perform a simple and cheap post-

processing, which relies on the boundary element space S1,0
Tℓ (Σ) of continuous, piecewise

linear functions on Tℓ, see [35, Def. 4.1.36] (d=3), [37, Sect. 10.2] (d=2).
The post-processing we recommend boils down to computing the L2-projection of the

Dirichlet data of the discrete solution onto the continuous piecewise linear boundary ele-

ment space S1,0
Tℓ (Σ). Algorithmically, the projection entails the inversion of a sparse mass

matrix for the space S1,0
Tℓ (Σ). When using modern direct sparse elimination solvers the

extra computational effort is negligible compared to the cost of handling the boundary
element matrices.

5 Numerical experiments

This section is dedicated to numerical experiments testing the performance of our new
second-kind Formulations 2.3 and 3.2 compared to the classical first-kind formulation
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Figure 4: Geometry of the scatterer in Experiment I. Shown is the real part of the total field U.

from [38] for d = 3.†† While for the second-kind approach, we use piecewise constant
boundary element test and trial spaces (see (4.5)), for the first-kind approach we need to
use ST (Σ)-conforming boundary element spaces. We take continuous piecewise linear

boundary elements S1,0
Tℓ (Σ) to discretize Dirichlet data and S0,−1

Tℓ (Σ) for Neumann data.

The meshes {Tℓ}ℓ∈N we used for the experiments consisted of flat triangular cells.

We are going to discuss three different scattering problems based on the geometries
depicted in Figs. 4, 5 and 6, respectively.‡‡

5.1 Experiment I: Transmission problem

The first experiment solves the scattering problem (1.2a), (1.2b) at the composite scat-
terer shown in Fig. 4 for the incident plane wave Uinc(x)=exp(iκ0 d·x), with direction of
propagation d := (0,0,1)⊤. The scatterer consists of two different materials. The first
part of the scattering obstacle is given by the ball B0.4(0) of radius r = 0.4, centered
in 0 and halved by the plane E := {x = (x,y,z)⊤ ∈R3 : z = 0}. The upper half of the
ball in Fig. 4, i.e. Ω1 := B0.4(0)∩{x = (x,y,z)⊤ ∈R3 : z > 0} is filled with a penetrable
medium characterized by the wave number κ1=5. The lower half of the ball, denoted by
Ω2 :=B0.4(0)∩{x=(x,y,z)⊤∈R3 : z<0} is also penetrable and with wave number κ2=1.

The exterior domain Ω0 :=R3\B0.4(0) has wave number κ0=2.

††The implementation was done based on the C++ BEM library “Boundary Element Template Library 2”
(BETL2), developed by L. Kielhorn [25].
‡‡The meshes were generated with GMSH [18] and for visualization of the computed data (see Figs. 4, 5, 6)
we used ParaView [1]. All other plots were generated with MATLAB.
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Figure 5: Geometry of the scatterer in Experiment II. Shown is the real part of the total field U.

Figure 6: Geometry of the scatterer in Experiment III. Shown is the real part of the total field U.

5.2 Experiment II: Transmission problem with impenetrable part

We solve the acoustic scattering problem with incident plane wave toward direction d=
1√
2
(0,1,1)⊤ hitting a ball-shaped scattering object B0.5(0) of radius r=0.5, centered at the

origin. A picture of the geometry is given in Fig. 5. We impose homogeneous Dirichlet
boundary conditions on ∂Ω•, where Ω• :=B0.5(0)∩{(x,y,z)⊤ ∈R3 : z>0} The other half
of the ball, Ω1 :=B0.5(0)∩{(x,y,z)⊤∈R3 : z<0} is penetrable and characterized by κ1=4.

The exterior domain Ω0 :=R3\B0.5(0) has the wave number κ0=2.
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5.3 Experiment III: Complex transmission problem with impenetrable part

The incident plane wave in Experiment III is incoming with direction d=(0,0,1)⊤. The
scatterer, which is depicted in Fig. 6, consists of three different materials. The first part of
the scattering obstacle is given by the ball B0.5(0), with Ω• :=B0.5(0)∩{(x,y,z)⊤∈R3 : z>
0}, and Ω1 :=B0.5(0)∩{(x,y,z)⊤ ∈R3 : z< 0}. Ω• is impenetrable and characterized by
homogeneous Dirichlet boundary conditions on ∂Ω•, while Ω1 is a penetrable medium
characterized by κ1 = 1. In addition, we consider another medium given through κ2 = 4

in Ω2 :=Q\B0.5(0) where Q :={(x,y,z)⊤∈R3 : 0.7< x<−0.7, 0.7<y<−0.7, 0.7< z<0}.
The exterior domain Ω0 :=R3\(B0.5(0)∪Q) is penetrable with wave number κ0=2.

5.4 Convergence and post-processing

We consider a sequence of nested meshes {Tℓ}H
ℓ=1 with H = 6. The cor-

responding number of elements are {40,160,640,2560,10240,40960} for Ex-
periment I, {44,176,704,2816,11264,45056} for Experiment II, and {140,560,
2240,8960,35840,143360} for Experiment III. They are created by uniform refine-
ment and consist of flat, uniformly shape regular triangular elements. The local mesh
width is calculated as the maximal distance of the center of mass to all points lying
inside of the element. The global mesh width hℓ is given by the maximum over all local
mesh widths. In Fig. 7, we show the convergence of the discretization error in L2(Σ)

and H−
1
2 (Σ)-norm, respectively, with respect hℓ. As a reference solution we use the

discrete solution calculated with the second-kind formulation on the finest grid TH. The
convergence rates are as expected.

The term proj. Dirichlet second-kind denotes a post-processed version of the Dirich-
let data of the second-kind solution, obtained by projecting the computed data onto the

space of continuous piecewise linear boundary elements S1,0
T (Σ) in the L2-sense (see Sub-

section 4.5).

The convergence plot in Fig. 7 shows that the application of this cheap post-
processing technique improves the convergence rate and we observe results that are as
good as the results of the classical first-kind approach.

5.5 Conditioning of Galerkin matrices

In Fig. 8 the Euclidean condition number of the Galerkin matrices is plotted with re-
spect to the inverse of the mesh width hℓ of the discretization. As expected from the
L2-stability of the characteristic basis used for our second-kind Galerkin approximation,
see Section 4.1, we observe condition numbers for the Galerkin matrix that are almost
independent of the mesh size, while the condition numbers of the Galerkin matrices of
the first-kind approach blow up like O

(
hℓ
−2) (see Fig. 8, compare with [35, Section 4.5

& Cor. 6.4.14]). This behavior is directly reflected by the iteration count for the iterative
solver GMRES, as can be seen in Fig. 9.
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Figure 7: Convergence of the error of (diagonally rescaled) first- and second-kind Galerkin discretization in L2-

and H−
1
2 -norm for a sequence of meshes.

5.6 Spurious resonances due to impenetrable objects

We tested for spurious resonances by monitoring the condition numbers of the Galerkin
matrices while varying wave numbers. In the case of a single uniform ball-shaped impen-
etrable scatterer Ω• :=Br(0), we can explicitly compute the wave numbers κ0 for which
we will observe a spurious resonance (see also Section 3). They correspond to the roots of
derivatives of spherical Bessel functions and the roots of the spherical Bessel functions,
respectively, scaled by 1

r .

We take r = 0.5 and consider the range of wave numbers between 8.8 and 9.2. This
range includes 8.986, which corresponds to 1

r x, where x = 4.493 is the first root of the
spherical Bessel function j1 and the second root of the derivative of the spherical Bessel
function j0. Fig. 5.6 shows the Euclidean condition numbers of the Galerkin matrices.
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Figure 8: Condition numbers of (diagonally rescaled) first- and second-kind Galerkin matrices for a sequence of
meshes.
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Figure 9: Convergence of GMRES applied to (diagonally rescaled) first- and second-kind Galerkin system.
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Figure 10: Spurious resonances due to impenetrable objects: condition numbers of the first- and second-kind
Galerkin matrix for various wave numbers. In the case of the geometry ball, the scatterer consists of the ball
B0.5(0) and is impenetrable, while in the case of the geometry ball+cuboid, which refers to the geometry of

Experiment III, we set κ0 =κ2 and assume that Ω1 is impenetrable as well.

Since we are computing the Galerkin matrices only on relatively coarse comprising 512
and 2240 elements, we observe a shift of the resonance due to approximation errors.
Obviously, the spurious resonances disappear when using a CFIE approach.

In addition to the simple ball-shaped scatterer B0.5(0), we also consider the geometry
shown in Fig. 6, taking the cuboid as pseudo-interface, i.e. setting κ2 = κ0, and defining
Ω1 to be impenetrable, too. In this setting, in accordance with the theory of [8], we get
rid of the spurious resonances in the case of the first-kind formulation. In the case of the
second-kind formulation, spurious resonances persist. However, the condition numbers
for the first-kind formulation with pseudo-interface increase drastically such that the use
of pseudo-interfaces for first-kind formulations does not pay off.

6 Conclusion

In this paper, we have extended the second-kind Galerkin boundary element method pro-
posed in [12] to partly impenetrable composite scatterers. We also devised a combined-
field approach meant to overcome spurious resonances due to the impenetrable parts.
Numerical experiments show that the new method is superior to the widely used clas-
sical first-kind approach [38]: it produces Galerkin matrices that are intrinsically well-
conditioned and allow fast iterative solution without preconditioning. Its implementa-
tion can rely on standard algorithms for singular integration, and its Galerkin solutions
are as accurate as those obtained with the first-kind approach when applying a cheap
post-processing technique. Throughout our tests, the new formulation has demonstrated
to be perfectly stable, though this property has eluded a rigorous proof up to now.
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