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Abstract. We study the asymptotic-preserving fully discrete schemes for non-
equilibrium radiation diffusion problem in spherical and cylindrical symmetric ge-
ometry. The research is based on two-temperature models with Larsen’s flux-limited
diffusion operators. Finite volume spatially discrete schemes are developed to cir-
cumvent the singularity at the origin and the polar axis and assure local conserva-
tion. Asymmetric second order accurate spatial approximation is utilized instead of
the traditional first order one for boundary flux-limiters to consummate the schemes
with higher order global consistency errors. The harmonic average approach in spher-
ical geometry is analyzed, and its second order accuracy is demonstrated. By formal
analysis, we prove these schemes and their corresponding fully discrete schemes with
implicitly balanced and linearly implicit time evolutions have first order asymptotic-
preserving properties. By designing associated manufactured solutions and reference
solutions, we verify the desired performance of the fully discrete schemes with numer-
ical tests, which illustrates quantitatively they are first order asymptotic-preserving
and basically second order accurate, hence competent for simulations of both equilib-
rium and non-equilibrium radiation diffusion problems.
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1 Introduction

Non-equilibrium radiation diffusion problems often appear in inertial confinement fu-
sion (ICF), astrophysical phenomena, combustion and other research fields. Two-
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temperature model is a representative non-equilibrium problem. In case thermal equi-
libration is much faster than radiation diffusion, the system is called to be in its equilib-
rium limit, and can be described by a one-temperature model, which is the asymptotic
limit of the two-temperature model. When simulating non-equilibrium radiation diffu-
sion problems using numerical method, asymptotic-preserving (AP) discrete schemes are
favored since they are able to maintain this asymptotic property and appropriate for both
non-equilibrium and equilibrium radiation diffusions.

To demonstrate the notion of AP scheme more vividly, people often start from an
original problem with a scaling parameter ε ∈ [0,1]. In this application, ε may differ in
several orders of magnitude from the non-equilibrium regime (ε= 1) to the equilibrium
regime (ε=0). The smaller ε is, the closer the system is to the equilibrium limit. A discrete
scheme of the original problem is called to be asymptotic-preserving if it converges to a
scheme consistent with the limit problem when ε tends to zero [1]. An AP scheme works
uniformly with respect to the parameter ε, hence adapts to both the original problem and
its limit problem.

There are extensive publications studying the AP schemes and properties for trans-
port and hydrodynamic problems [1–7]. These methods are also extended to other fields.
For instance, for P1 equation, some AP finite volume schemes were established on un-
structured meshes in [4]. For discrete-velocity kinetic equations, some high order AP
DG schemes were developed in [8]. For a non-equilibrium radiative transfer system, the
classic Marshak wave equation and a higher order equilibrium diffusion approach were
studied in [9]. However, studies on AP schemes for radiation diffusion problems are
rarely found, although their importance in radiation multi-physics is pointed out and
some researches on schemes considering accuracy and fast solutions have been devel-
oped [10–14].

Benefited from the work for the implicitly balanced (IB) and linearly implicit (LI) time
integrations with asymptotic analysis and qualitative numerical tests in [15], we devel-
oped some AP finite volume schemes for non-equilibrium radiation diffusion problem
in plane geometry in [16]. Therein the sensitivity of the global accuracy to the bound-
ary flux-limiter approaches is explored, and second order spatial accuracy (i.e., O(h2)
spatial accuracy where h is a nominal mesh size and as h→ 0) is gained. However, that
paper does not involve the curve geometrical problems. In practice, many heat trans-
fer and radiation hydrodynamic problems arise in complicated geometry instruments,
which are more appropriately modeled by using curved geometric coordinate systems
such as spherical and cylindrical coordinates for simulation convenience [17–22]. For
example, in [18], a radiation hydrodynamics (RHD) code was developed in Cartesian,
cylindrical, and spherical geometries to simulate ICF involved problems. In [22], an axis-
symmetric three-temperature non-equilibrium RHD code was developed to simulate in-
tense thermal radiation or high-power laser driven radiative shock hydrodynamics in
cylindrical and spherical symmetric geometry. In this paper, motivated by these broad
applications, we focus on developing AP fully discrete schemes with high accuracy for
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non-equilibrium radiation diffusion in spherical and cylindrical symmetric geometries.

The research is carried out on two-temperature models with Larsen’s flux-limited
diffusion operators. In construction of the schemes, we apply finite volume spatial dis-
cretizations to deal with the singularity at the origin and the polar axis, and to keep local
flux conservation meanwhile; to guarantee a higher order consistency error on the global
domain, we adopt asymmetric second order spatially discrete approximation for flux-
limiters on boundary and symmetric schemes at interior points. In which we derive some
harmonic averages of the diffusion coefficients in spherical and cylindrical coordinates to
agree with the discrete flux continuity condition. The discrete coefficient differs slightly
from the classical one but performs better in numerical tests. An interesting thing needs
to mention is that the second order accuracy of this harmonic average is not naturally
attained near the origin or the polar axis due to the singularity. We show its second order
accuracy in the spherical case by Taylor expansion and order estimate. Formal analysis
is performed to prove the first order asymptotic-preserving property (A description of
the AP order though O(εn) as ε→0 is briefly reviewed in Section 5.) of the semi-discrete
schemes, consequently the AP properties for the corresponding fully discrete schemes
with IB and LI temporal discretizations are achieved.

In the studies on linear diffusion and transport problems [23–26] or simpler nonlinear
heat conduction problems [27], one can use classical strategy such as Laplace (Fourier)
transformation for temporal (spatial) variant, or adopt some special function to obtain
exact solution. But for scaled non-equilibrium radiation diffusion problems, it is rather
difficult to construct exact solutions due to the strong nonlinearity and the scaling param-
eter. In this paper, we devise some relevant exact solution problems on curved geometric
coordinates with features of scaling parameter and strong nonlinearity, and carry out nu-
merical experiments to verify the expected performance of the schemes. It shows quan-
titatively the fully discrete schemes with IB time evolution are first order asymptotic-
preserving and second order accurate as a whole. The convergence property is not af-
fected by time and space step lengths as the scaling parameter tends to zero, hence the
schemes are qualified to both non-equilibrium and equilibrium problems. For schemes
with usual harmonic average diffusion coefficient, the similar conclusion holds.

The outline of the paper is as follows. In Section 2, we display the non-equilibrium ra-
diation diffusion problem in spherical symmetric geometry and present several spatially
discrete schemes for its scaled problem. Next in Section 3, we analyze their asymptotic
property, and prove they are first order asymptotic-preserving. Hence their correspond-
ing fully discrete schemes with IB and LI time discretizations also have the AP property.
In Section 4, the ideas are extended to cylindrical symmetric problem. Then numerical
tests are implemented in Section 5 to validate the theoretical results. Finally conclusions
are given in Section 6, and more details regarding the second order accuracy of harmonic
average in spherical geometry and the truncation error of the discrete diffusion operator
as well as a numerical example for non-AP schemes are supplied in Appendixes.
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2 Spatially discrete schemes for spherical symmetric

non-equilibrium radiation diffusion

Consider the following non-equilibrium radiation diffusion problem in one-dimensional
spherical symmetric geometry

∂E

∂t
− 1

r2

∂

∂r

(
r2DR

∂E

∂r

)
= cσa(B−E),

Cv
∂T

∂t
=−cσa(B−E),

σa =σaT−3,

B= aRT4, (2.1)

where E is the radiation energy, T is the material temperature, c is the speed of light, σa is
the absorption opacity, Cv is the material specific heat, σ̄a is a parametric constant, and aR

is the radiation constant. We employ Larsen’s form for a flux-limited diffusion coefficient

DR=
c√

(3σa)2+
(

1
E

∂E
∂r

)2
,

which retains first-order asymptotic accuracy in the diffusion limit for radiation transport
[15, 28].

First we nondimensionalize (2.1) via the substitutions similar as in [15]:

r→ rre f r, t→ tre f t, T→Tre f T, E→ aRT4
re f E,

and

σa →σare f
σa, DR→

c

σare f

DR, Cv→ aRT3
re f Cv,

where the subscript “ref” stands for a dimensional reference value for each quantity, and
σare f

= σ̄aT−3
re f . Denote

DR(T,E)=
1√

(3σa)2+

(
1

rre f σare f

1
E

∂E
∂r

)2
.

Hence (2.1) can be transformed into

rre f

ctre f

∂E

∂t
− 1

rre f σare f
r2

∂

∂r

(
r2DR

∂E

∂r

)
= rre f σare f

σa(T
4−E),

Cv

rre f

ctre f

∂T

∂t
=−rre f σare f

σa(T
4−E).
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Now we set Cv=1. Then we identify two nondimensional parameters as in [15]:

rre f

ctre f
∼ 1

rre f σare f

∼ ε≪1.

The first parameter is the ratio of the gradient length scale (rre f ) to the distance streaming
photons travel within the dynamical time scale (ctre f ). The second is the ratio of the

absorption mean free path (σ−1
are f

) to the gradient length scale. Since the domain of interest

is collision dominated, both of them are expected to be small as ε, the “small” asymptotic
scaling parameter. Therefore, we have the scaled non-equilibrium radiation diffusion
problem written as

ε2 ∂E

∂t
−ε2 1

r2

∂

∂r

(
r2DR

∂E

∂r

)
=σa(B−E),

ε2 ∂T

∂t
=−σa(B−E), (2.2)

where

B=T4, σa =T−3,

DR(T,E,ε)=
1√

(3σa)2+ε2
(

1
E

∂E
∂r

)2
. (2.3)

Also the following “boundary” condition is feasible to describe the spherical symmetric
problem

∂E

∂r

∣∣∣∣
r=0

=0. (2.4)

Thinking of the singularity at the origin, it is unadvisable to discretize the scaled PDEs
directly. We start from the integral formula and propose the following semi-discrete finite
volume schemes

ε2r2
i

∂Ei

∂t
−ε2 1

h

[
(r2DR)i+ 1

2

Ei+1−Ei

h
−(r2DR)i− 1

2

Ei−Ei−1

h

]

= r2
i σai(Bi−Ei),

ε2 ∂Ti

∂t
=−σai(Bi−Ei), (2.5)

where h represents the spatial step length, and the diffusion coefficient is imitated in three
ways. The first choice (Choice 1) is a harmonic average

(r2DR)i+ 1
2
=

2(r2DR)i+1(r
2DR)i

(r2DR)i+1+(r2DR)i
, (2.6)
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with

(r2DR)i=
r2

i√
(3σai)2+ε2χi

, (2.7)

where at interior points xi (i=1,2,··· , I−1), the discrete flux-limiter χi≈
(

1
E

∂E
∂r

)2

i
takes the

following three forms:
(a) the geometric average of the forward and backward difference quotients

χi =
4

h2

∣∣∣∣
(Ei+1−Ei)(Ei−Ei−1)

(Ei+1+Ei)(Ei+Ei−1)

∣∣∣∣, (2.8)

(b) the weighted algebraic average of the forward and backward difference quotients

χi =
4

h2

E2
i (Ei+1−Ei−1)

2

(Ei+1+Ei)2(Ei+Ei−1)2
, (2.9)

(c) the centered difference quotient

χi =

(
Ei+1−Ei−1

2hEi

)2

. (2.10)

At boundary points,

χ0= χ̃0=

(
1

E0

3
2 E0−2E1+

1
2 E2

h

)2

, χI = χ̃I =

(
1

EI

3
2 EI−2EI−1+

1
2 EI−2

h

)2

. (2.11)

Remark 2.1. Formulae (2.8)-(2.10) give approximations of the flux-limiter at interior
points. For boundary points, such symmetric discrete stencil is not available, hence one
needs other treatment. The traditional way is using a two-point difference quotient to
approximate ∂E

∂r (namely, “Bnd1”), i.e.,

χ0= χ̃0=

(
1

E0

E0−E1

h

)2

, χI = χ̃I =

(
1

EI

EI−EI−1

h

)2

. (2.12)

According to Taylor expansion,
(

∂E

∂r

)

0

=
E1−E0

h
+O(h), (2.13)

etc., so Bnd1 is only first order accurate. Hence we use an asymmetric three-point differ-
ence quotient formulation, and define (2.11) (namely, “Bnd2”) instead. Noticing that

(
∂E

∂r

)

0

=−
3
2 E0−2E1+

1
2 E2

h
+O(h2), (2.14)

etc., Bnd2 has second order truncation error. Later in numerical tests, we will show it
indeed assures the second order accuracy, which exhibits a great advantage over Bnd1.
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The second choice (Choice 2) for discrete diffusion coefficient is a familiar way using
the traditional harmonic average of discrete pure “physical” flux continuity, i.e.,

(r2DR)i+ 1
2
= r2

i+ 1
2
DRi+ 1

2
, (2.15)

where

DRi+ 1
2
=

2DRi+1DRi

DRi+1+DRi
, DRi=

1√
(3σai)2+ε2χi

, (2.16)

and the discrete flux-limiter is defined as (2.8)-(2.10) and (2.11).

Remark 2.2. We’d like to mention that in contrast to Choice 2, Choice 1 is deduced from
the continuity condition for the discrete flux taking into account not only the physical
feather but also the geometric feather of the spherical coordinate, hence from the view
of solving partial differential equation, Choice 1 is also a (if not more) natural numerical
discretization. To distinguish Choice 1 and Choice 2, sometimes we refer to them as
spherical harmonic average and physical harmonic average respectively.

The third choice (Choice 3) is a direct approach

(r2DR)i+ 1
2
=

r2
i+ 1

2√
(3σai+ 1

2
)2+ε2

(
1

E
i+ 1

2

Ei+1−Ei

h

)2
, (2.17)

where

Ei+ 1
2
=

1

2
(Ei+1+Ei),

and the scaled absorption opacity is simulated by

(d)σai =T−3
i , σai+ 1

2
= 1

2(σai+1+σai),

or

(e)σai+ 1
2
=

(
Ti+1+Ti

2

)−3

.

To date we have defined a formal spatially discrete scheme with (2.5). In fact, it in-
cludes several different schemes due to different treatments for diffusion coefficient and
flux-limiter. To distinguish the schemes better, we name them according to their spatial
discrete strategies.

For simplicity, we refer to the schemes defined with discrete diffusion coefficient
Choice 1 and discrete interior flux-limiter (a)-(c) as Schemes (a)-(c), and those with Choice
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2 (“physical”) and interior flux-limiter (a)-(c) as Schemes (ap)-(cp). They can be fur-
ther classified according to the definition of discrete boundary flux-limiter, e.g., we have
Scheme (a-Bnd1) and Scheme (a-Bnd2), etc. Since we mainly consider schemes with Bnd2
in this paper, we often abbreviate the characters “-Bnd2” when no confusion occurs later.
As to that with diffusion coefficient Choice 3 and absorption opacity (d) or (e), we just
call it Scheme (d) or (e).

Remark 2.3. We know scheme (2.5) is second order accurate in space via Taylor expan-
sion without consideration of boundary. In fact, after dividing by ε2 on both sides, the
consistency errors of both equations are O(h2+ε2h2), hence they tend to zero uniformly
with respect to ε as h tends to zero. It is easy to show this with diffusion coefficient Choice
2 or 3. However for Choice 1, although intuitively valid, it is necessary to be illuminated
in some details. For points distributed near the origin of coordinates, we should measure
its accuracy with caution since r is similar as the step length h in magnitude. In Appendix
A, we will show the spherical harmonic average is indeed a second order approach for
generic smooth function. Furthermore we give the truncation error for the discrete dif-
fusion operator in Appendix B. Hence when we consider the boundary problem, for the
two points adjacent to the boundary, with Bnd2 and homogeneous Neumann boundary
condition at r= 0, the truncation errors of Choices 1 and 2 are respectively O(h2+ε2h2)
(at i=1) and O(h2+ε2h2) or O(ε2h+h2) (at i= I−1).

A conservative formula can be gained by adding the two equations in (2.5) together,

r2
i

∂(Ti+Ei)

∂t
− 1

h

[
(r2DR)i+ 1

2

Ei+1−Ei

h
−(r2DR)i− 1

2

Ei−Ei−1

h

]
=0. (2.18)

3 Asymptotic analysis for discrete schemes

This section aims to analyze the asymptotic property of the finite volume schemes.

Using asymptotic expansions such as

E=E(0)+εE(1)+ε2E(2)+ε3E(3)+··· ,

etc. as noted in [15], we have the respective zero-th and first order asymptotic problems
of (2.2) expressed as

r2 ∂[T(0)+B(0)]

∂t
− ∂

∂r

[
(r2DR)

(0) ∂B(0)

∂r

]
=0,

E(0)=B(0)=[T(0)]4, σ
(0)
a =[T(0)]−3, (r2DR)

(0)=
r2

3σ
(0)
a

, (3.1)
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and

r2 ∂[T(1)+B(1)]

∂t
− ∂

∂r

[
(r2DR)

(0) ∂B(1)

∂r
+(r2DR)

(1) ∂B(0)

∂r

]
=0,

E(1)=B(1)=4[T(0)]3T(1), σ
(1)
a =−3T(1)

T(0)
σ
(0)
a ,

(r2DR)
(1)=−σ

(1)
a

σ
(0)
a

(r2DR)
(0). (3.2)

We have the following asymptotic property.

Lemma 3.1. Spatially discrete scheme (2.5) is a first order asymptotic-preserving scheme for the
two-temperature problem (2.2).

Proof. By a similar analysis procedure as in [16], the conclusion is valid for the scheme
with the usual discrete diffusion coefficient Choice 2. Here we only write the proofs for
the scheme with Choices 1 and 3. We will keep their common part and separate the two
cases when necessary.

(I) First, by substituting Hilbert expansions to Bi=T4
i and σaiT

3
i =1, and equating the

coefficients of ε0 and ε1 respectively, we easily see

B
(0)
i =[T

(0)
i ]4, (3.3)

B
(1)
i =4[T

(0)
i ]3T

(1)
i , (3.4)

σ
(0)
ai =[T

(0)
i ]−3, (3.5)

σ
(1)
ai =−3T

(1)
i

T
(0)
i

σ
(0)
ai . (3.6)

In the case of discrete diffusion coefficient Choice 3, moreover, for scheme with (d)
and (e), we find respectively

σ
(0)

ai+ 1
2

=
[T

(0)
i+1]

−3+[T
(0)
i ]−3

2
, (3.7)

σ
(1)

ai+ 1
2

=
1

2

[
−

3T
(1)
i+1

T
(0)
i+1

σ
(0)
ai+1−

3T
(1)
i

T
(0)
i

σ
(0)
ai

]
, (3.8)

and

σ
(0)

ai+ 1
2

=

[
T
(0)
i+1+T

(0)
i

2

]−3

, (3.9)

σ
(1)

ai+ 1
2

=−3σ
(0)

ai+ 1
2

[
T
(0)
i+1+T

(0)
i

2

]−1
T
(1)
i+1+T

(1)
i

2
. (3.10)
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(II) Denoting

ϕi(ε
0,ε1,ε2,···)=

√
(3σai)2+ε2χi,

and using Hilbert expansions and a few operations as in [16], we derive

ϕi(ε
0,ε1,ε2,···)=3σ

(0)
ai +O(ε),

∂ϕi

∂ε1
(ε0,ε1,ε2,···)≈3σ

(1)
ai .

Thereby

ϕi(ε
0,ε1,ε2,···)=3σ

(0)
ai +ε3σ

(1)
ai +··· .

Hence, in the case of discrete diffusion coefficient Choice 1, (2.7) allows

r2
i =(r2DR)i ϕi(ε

0,ε1,ε2,···)

=
[
(r2DR)

(0)
i +ε(r2DR)

(1)
i +ε2(r2DR)

(2)
i +···

][
3σ

(0)
ai +ε3σ

(1)
ai +···

]

=3σ
(0)
ai (r2DR)

(0)
i +ε

[
3σ

(1)
ai (r2DR)

(0)
i +3σ

(0)
ai (r2DR)

(1)
i

]
+O(ε2).

Equating like powers of ε yields

(r2DR)
(0)
i =

r2
i

3σ
(0)
ai

, (3.11)

(r2DR)
(1)
i =−σ

(1)
ai

σ
(0)
ai

(r2DR)
(0)
i . (3.12)

Noticing that

1

a0+εa1+ε2a2+··· =
1

a0
−ε

a1

a2
0

+··· ,

when ri 6=0, we acquire from (2.6) that

2=(r2DR)i+ 1
2

[
1

(r2DR)i+1
+

1

(r2DR)i

]

=
[
(r2DR)

(0)

i+ 1
2

+ε(r2DR)
(1)

i+ 1
2

+ε2(r2DR)
(2)

i+ 1
2

+···
]

{
1

(r2DR)
(0)
i+1

−ε
(r2DR)

(1)
i+1

[(r2DR)
(0)
i+1]

2
+···+ 1

(r2DR)
(0)
i

−ε
(r2DR)

(1)
i

[(r2DR)
(0)
i ]2

+···
}

.
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A slight calculation and similar comparison indicates

(r2DR)
(0)

i+ 1
2

=
2(r2DR)

(0)
i+1(r

2DR)
(0)
i

(r2DR)
(0)
i+1+(r2DR)

(0)
i

, (3.13)

(r2DR)
(1)

i+ 1
2

=−(r2DR)
(0)

i+ 1
2

[
σ
(1)
ai+1

σ
(0)
ai+1

(r2DR)
(0)
i +

σ
(1)
ai

σ
(0)
ai

(r2DR)
(0)
i+1

][
(r2DR)

(0)
i+1+(r2DR)

(0)
i

]−1
. (3.14)

When ri =0, we have

(r2DR)i=0, (r2DR)i+ 1
2
=0 (3.15)

from (2.6), hence

(r2DR)
(0)
i =0, (r2DR)

(0)

i+ 1
2

=0, (r2DR)
(1)

i+ 1
2

=0,

thus (3.13)-(3.14) satisfies naturally.
Similarly as the deduction of (3.11) and (3.12), in the case of Choice 3, due to (2.17), it

emerges

(r2DR)
(0)

i+ 1
2

=
r2

i+ 1
2

3σ
(0)

ai+ 1
2

, (3.16)

(r2DR)
(1)

i+ 1
2

=−
σ
(1)

ai+ 1
2

σ
(0)

ai+ 1
2

(r2DR)
(0)

i+ 1
2

. (3.17)

(III) Inserting asymptotic expansions into (2.5), comparing the O(ε0) terms on both
sides, and noticing (3.3), we have

E
(0)
i =B

(0)
i =[T

(0)
i ]4. (3.18)

(IV) A similar manipulation to (2.18) gives

r2
i

∂[T
(0)
i +E

(0)
i ]

∂t
− 1

h

[
(r2DR)

(0)

i+ 1
2

E
(0)
i+1−E

(0)
i

h
−(r2DR)

(0)

i− 1
2

E
(0)
i −E

(0)
i−1

h

]
=0. (3.19)

We can show (3.18)-(3.19) are second order spatial discrete approximations of (3.1) no
matter Choice 1 or Choice 3 is made in (2.5).

(V) Plugging asymptotic expansions to (2.5), comparing the coefficient of ε1, and
taking note of (3.18), (3.4) and (3.5), we get

E
(1)
i =B

(1)
i =4[T

(0)
i ]3T

(1)
i . (3.20)
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(VI) An analogous operation of (2.18) delivers the O(ε1) equation

r2
i

∂
[

T
(1)
i +E

(1)
i

]

∂t
− 1

h

[
(r2DR)

(0)

i+ 1
2

E
(1)
i+1−E

(1)
i

h
−(r2DR)

(0)

i− 1
2

E
(1)
i −E

(1)
i−1

h

]

− 1

h

[
(r2DR)

(1)

i+ 1
2

E
(0)
i+1−E

(0)
i

h
−(r2DR)

(1)

i− 1
2

E
(0)
i −E

(0)
i−1

h

]
=0. (3.21)

We know that (3.20)-(3.21) are second order approximations of (3.2).
Hence Lemma 3.1 comes into existence.

Denoting τ as the temporal step length, and integrating Lemma 3.1 and the studies on
temporally discrete schemes in [15], we establish the asymptotic properties for the fully
discrete schemes consequently.

Theorem 3.1. The following linearly implicit fully discrete scheme

ε2r2
i

En+1
i −En

i

τ
−ε2 1

h

[
(r2DR)

n

i+ 1
2

En+1
i+1 −En+1

i

h
−(r2DR)

n

i− 1
2

En+1
i −En+1

i−1

h

]

= r2
i σn

ai[(T
n
i )

4+4(Tn
i )

3(Tn+1
i −Tn

i )−En+1
i ],

ε2 Tn+1
i −Tn

i

τ
=−σn

ai[(T
n
i )

4+4(Tn
i )

3(Tn+1
i −Tn

i )−En+1
i ]

is a first order asymptotic-preserving scheme for the two-temperature problem (2.2).

Theorem 3.2. The following implicitly balanced fully discrete scheme

ε2r2
i

En+1
i −En

i

τ
−ε2 1

h

[
(r2DR)

n+1

i+ 1
2

En+1
i+1 −En+1

i

h
−(r2DR)

n+1

i− 1
2

En+1
i −En+1

i−1

h

]

= r2
i σn+1

ai [(Tn+1
i )4−En+1

i ],

ε2 Tn+1
i −Tn

i

τ
=−σn+1

ai [(Tn+1
i )4−En+1

i ]

is a first order asymptotic-preserving scheme for the two-temperature problem (2.2), and is
equilibrium-exact, i.e., it exactly satisfies the equilibrium condition E=B at each time level.

4 Extension to cylindrical symmetric problem

The preceding asymptotic analysis can be extended to two-dimensional cylindrical sym-
metric problems. Consider the following scaled model with (2.4)

ε2 ∂E

∂t
−ε2 ∂

∂x

(
DR

∂E

∂x

)
−ε2 1

r

∂

∂r

(
rDR

∂E

∂r

)
=σa(B−E),

ε2 ∂T

∂t
=−σa(B−E), (4.1)
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where

B=T4, σa =T−3,

DR(T,E,ε)=
1√

(3σa)2+ε2

[(
1
E

∂E
∂x

)2
+
(

1
E

∂E
∂r

)2
] . (4.2)

Its zero-th and first order asymptotic equations are respectively

r
∂[T(0)+B(0)]

∂t
−r

∂

∂x

[
D

(0)
R

∂B(0)

∂x

]
− ∂

∂r

[
(rDR)

(0) ∂B(0)

∂r

]
=0,

E(0)=B(0)=[T(0)]4, σ
(0)
a =[T(0)]−3, D

(0)
R =

1

3σ
(0)
a

, (4.3)

and

r
∂[T(1)+B(1)]

∂t
−r

∂

∂x

[
D

(0)
R

∂B(1)

∂x
+D

(1)
R

∂B(0)

∂x

]

− ∂

∂r

[
(rDR)

(0) ∂B(1)

∂r
+(rDR)

(1) ∂B(0)

∂r

]
=0,

E(1)=B(1)=4[T(0)]3T(1), σ
(1)
a =−3T(1)

T(0)
σ
(0)
a , D

(1)
R =−σ

(1)
a

σ
(0)
a

D
(0)
R . (4.4)

We apply finite volume discretizations to (4.1)-(4.2). First we denote the harmonic
average as follows

DRi+ 1
2 j =

2DRi+1 jDRij

DRi+1 j+DRij
, (rDR)i j+ 1

2
=

2(rDR)i j+1(rDR)ij

(rDR)i j+1+(rDR)ij
, (4.5)

with

DRij=
1√

(3σaij)2+ε2χij

, (rDR)ij =
rj√

(3σaij)2+ε2χij

, (4.6)

where χij≈
(

1
E

∂E
∂x

)2

ij
+
(

1
E

∂E
∂r

)2

ij
has the following three forms:

(a) the geometric average of the forward and backward difference quotients

χij =
4

h2
1

∣∣∣∣
(Ei+1 j−Eij)(Eij−Ei−1 j)

(Ei+1 j+Eij)(Eij+Ei−1 j)

∣∣∣∣+
4

h2
2

∣∣∣∣
(Ei j+1−Eij)(Eij−Ei j−1)

(Ei j+1+Eij)(Eij+Ei j−1)

∣∣∣∣, (4.7)

(b) the weighted algebraic average of the forward and backward difference quotients

χij =
4

h2
1

E2
ij(Ei+1 j−Ei−1 j)

2

(Ei+1 j+Eij)2(Eij+Ei−1 j)2
+

4

h2
2

Eij(Ei j+1−Ei j−1)
2

(Ei j+1+Eij)2(Eij+Ei j−1)2
, (4.8)
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(c) the centered difference quotient

χij =

(
Ei+1 j−Ei−1 j

2h1Eij

)2

+

(
Ei j+1−Ei j−1

2h2Eij

)2

. (4.9)

Herein h1 and h2 are respectively the spatial step lengths in the x and r directions.
For boundary points, use the following asymmetric three-point difference quotient

approximation of the first order spatial derivatives to guarantee the second order accu-
racy, e.g., along the x direction,

(
∂E

∂x

)

0j

=−
3
2 E0j−2E1j+

1
2 E2j

h1
,

(
∂E

∂x

)

Ij

=
3
2 EIj−2EI−1 j+

1
2 EI−2 j

h1
, (4.10)

and corresponding χ0j (χ̃0j), χIj (χ̃Ij), etc. are defined.
We can design LI and IB fully discrete schemes and derive the asymptotic properties

for the semi-discrete and fully discrete schemes similarly, e.g.,

Theorem 4.1. The following linearly implicit fully discrete scheme

ε2rj

En+1
ij −En

ij

τ
−ε2rj

1

h1

(
Dn

Ri+ 1
2 j

En+1
i+1 j−En+1

ij

h1
−Dn

Ri− 1
2 j

En+1
ij −En+1

i−1 j

h1

)

−ε2 1

h2

[
(rDR)

n

i j+ 1
2

En+1
i j+1−En+1

ij

h2
−(rDR)

n

i j− 1
2

En+1
ij −En+1

i j−1

h2

]

= rjσ
n
aij[(T

n
ij )

4+4(Tn
ij )

3(Tn+1
ij −Tn

ij )−En+1
ij ],

ε2
Tn+1

ij −Tn
ij

τ
=−σn

aij[(T
n
ij )

4+4(Tn
ij )

3(Tn+1
ij −Tn

ij )−En+1
ij ] (4.11)

is a first order asymptotic-preserving scheme for the two-temperature problem (4.1)-(4.2).

Theorem 4.2. The following implicitly balanced fully discrete scheme

ε2rj

En+1
ij −En

ij

τ
−ε2rj

1

h1

(
Dn+1

Ri+ 1
2 j

En+1
i+1 j−En+1

ij

h1
−Dn+1

Ri− 1
2 j

En+1
ij −En+1

i−1 j

h1

)

−ε2 1

h2

[
(rDR)

n+1

i j+ 1
2

En+1
i j+1−En+1

ij

h2
−(rDR)

n+1

i j− 1
2

En+1
ij −En+1

i j−1

h2

]

= rjσ
n+1
aij [(Tn+1

ij )4−En+1
ij ],

ε2
Tn+1

ij −Tn
ij

τ
=−σn+1

aij [(Tn+1
ij )4−En+1

ij ] (4.12)

is a first order asymptotic-preserving scheme for the two-temperature problem (4.1)-(4.2), and is
equilibrium-exact.
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Remark 4.1. It is well known that

2uj+1uj

uj+1+uj
=uj+ 1

2
+O(h2)

on the plane. Yet we only have

(ru)j+ 1
2
=

2(ru)j+1(ru)j

(ru)j+1+(ru)j
=(ru)j+ 1

2
+O(h)

near r= 0 with an analogous estimate procedure in Appendix A. However we see from
Appendix B that this does not affect the AP property of the schemes in the cylinder case.

Remark 4.2. Discrete diffusion coefficient (4.5) is based on cylindrical harmonic aver-
age (Choice 1). For schemes with a more familiar choice - “physical” harmonic average

(Choice 2), e.g., (rDR)i j+ 1
2
= rj+ 1

2

2DRi j+1DRij

DRi j+1+DRij
, the AP property is also valid.

We can name the schemes in (4.11) and (4.12) similarly by combining their spatial and
temporal discretizations. For instance, Scheme (a-Bnd1-IB) stands for the scheme with
(a-Bnd1) spatial discretization (Choice 1 as discrete diffusion coefficient, formula (a) as
discrete interior flux-limiter, first-order discrete boundary flux-limiter) and IB temporal
discretization.

Remark 4.3. For the fully discrete schemes in Sections 2 and 4, the consistency error tends
to zero with respect to the spatial step length h and temporal step length τ independently
of ε, hence they are asymptotic-preserving.

From Table 3 in Appendix B, we see that for schemes with Choice 1, although the
discrete boundary flux-limiters using Bnd1 and Bnd2 themselves have first order and
second order accuracy respectively, the truncation error for the corresponding discrete
diffusion operator may be very different, even not consistent in some cases. Generally
speaking, schemes with Bnd1 are less accurate than Bnd2 at the points adjacent to the
boundary. It is lucky that in the case of our spherical and cylindrical symmetric problem,
the schemes are all AP since we have homogeneous Neumann boundary condition (2.4)
and then the schemes have perfect consistent error. But if one considers a cylindrical
coordinate problem having nonhomogeneous Neumann boundary condition, then the
schemes with discrete diffusion coefficient Choice 1 and discrete boundary flux-limiter
Bnd1 are not AP, or at least, not well-behaved AP schemes, since at the points near the
polar axis, the errors of the schemes are O(1), which may damage the calculation accu-
racy to some extent. A numerical example is given in Appendix C to demonstrate this
case.

5 Numerical tests

Here we perform numerical experiments to investigate the behavior of the fully discrete
schemes and verify the theoretical results. We devise related problems with exact solu-
tions and scaled problem with reference solutions to accomplish the quantitative probe.
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The IB time discretization is employed due to its superiority over the LI method [15]. The
numerical results coincide well with our theoretical analysis.

We first check the accuracy of the schemes in spherical geometry. In these tests, we
take the mesh ratio λ= τ

h2 =0.1, and set the convergence error tolerance as 10−12 without
particular remark. Let “error-E” and “error-T” respectively represent the discrete maxi-
mum norm errors for energy and temperature.

In Sections 2 and 4, we have classified the schemes into several types according to
their spatial discrete strategy. Since only fully discrete schemes with IB time evolution are
discussed in this section, they inherit the names as there without confusion. For example,
here “a-Bnd1” will be an abbreviation of “a-Bnd1-IB”, which stands for a scheme with (a-
Bnd1) spatial discretization and IB temporal discretization.

Example 5.1. Consider the model with energy exchange but no scaling parameter

∂E

∂t
− 1

r2

∂

∂r

(
r2DR

∂E

∂r

)
=σa(B−E)+ f1(r,t),

∂T

∂t
=−σa(B−E)+ f2(r,t), (5.1)

on spatial domain (0,1). Here B, σa and DR are defined in (2.3) with ε=1. The additional
terms are supposed to be

f1(r,t)=−4(r4+1)e−4t−(r+1)e−t+(r+1)(r4+1)e−t

−[9(r+1)−6e6t+16r6(r4+1)−2]
3
2

{
[108r(r+1)−1+180]r2(r+1)−6e2t

+[256r4(r4+1)−1+128]r8(r4+1)−2e−4t
}

,

f2(r,t)=−(r+1)(r4+1)e−4t.

Its exact solution is T=(r+1)e−t, E=(r4+1)e−4t.
Numerical errors in the maximum norm for the schemes with different discrete diffu-

sion coefficient choices and boundary flux-limiter approaches at t=1.5 are listed in Table
1. Apparently, Schemes (a)-(c) and (ap)-(cp) with Bnd2 are convergent at order 2 as an-
ticipated, and their error data are far less than those with Bnd1. Schemes (d), (e) are also
second order convergent.

There are numerous examples exhibiting the ascendancy of Bnd2 over Bnd1 left out
here for depiction brevity. Hence we report the subsequent spherical tests only with
Bnd2. Also, schemes with coefficient Choice 1 behave slightly better than Choice 2. A
possible reason is that when taking into account the discrete flux continuity, by using
Choice 1 the diffusion coefficient r2DR is treated as a whole instead of only partly (DR)
as by Choice 2 and hence may be more precise in some cases. Hence we only give the
results of the former from now on.
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Table 1: Numerical accuracy of energy and temperature for Example 5.1.

scheme mesh 50 100 200 400 order

a-Bnd1 error-E 2.11326e-4 6.68223e-5 2.00863e-5 5.73098e-6 1.73485

error-T 4.47000e-3 1.44350e-3 4.37018e-4 1.24973e-4 1.72019

b-Bnd1 error-E 2.06952e-4 6.56592e-5 1.97748e-5 5.64866e-6 1.73175

error-T 4.38020e-3 1.41862e-3 4.30258e-4 1.23179e-4 1.71739

c-Bnd1 error-E 1.79104e-4 5.79613e-5 1.76547e-5 5.07524e-6 1.71373

error-T 3.80605e-3 1.25373e-3 3.84251e-4 1.10684e-4 1.70126

a-Bnd2 error-E 5.35985e-5 1.32304e-5 3.25552e-6 8.02956e-7 2.02024

error-T 1.16037e-3 2.88120e-4 7.10071e-5 1.75212e-5 2.01645

b-Bnd2 error-E 4.83237e-5 1.18834e-5 2.91090e-6 7.15186e-7 2.02609

error-T 1.04698e-3 2.58832e-4 6.34917e-5 1.56057e-5 2.02267

c-Bnd2 error-E 1.61164e-5 3.10009e-6 5.66505e-7 1.01682e-7 2.43611

error-T 3.50744e-4 6.75748e-5 1.23508e-5 2.21629e-6 2.43538

ap-Bnd1 error-E 2.34406e-4 7.18977e-5 2.12251e-5 5.99067e-6 1.76338

error-T 4.94387e-3 1.55243e-3 4.61791e-4 1.30640e-4 1.74732

bp-Bnd1 error-E 2.30097e-4 7.07407e-5 2.09142e-5 5.90840e-6 1.76111

error-T 4.85598e-3 1.52771e-3 4.55046e-4 1.28847e-4 1.74534

cp-Bnd1 error-E 2.02737e-4 6.31066e-5 1.88014e-5 5.33572e-6 1.74926

error-T 4.29541e-3 1.36440e-3 4.09206e-4 1.16368e-4 1.73534

ap-Bnd2 error-E 6.78096e-5 1.67022e-5 4.11780e-6 1.01814e-6 2.01916

error-T 1.46549e-3 3.63645e-4 8.98190e-5 2.22180e-5 2.01450

bp-Bnd2 error-E 6.26068e-5 1.53622e-5 3.77383e-6 9.30421e-7 2.02410

error-T 1.35409e-3 3.34533e-4 8.23187e-5 2.03037e-5 2.01981

cp-Bnd2 error-E 3.09235e-5 6.64287e-6 1.43608e-6 3.17515e-7 2.20191

error-T 6.71928e-4 1.44820e-4 3.13284e-5 6.92735e-6 2.19995

d error-E 4.35889e-5 1.08858e-5 2.72067e-6 6.80130e-7 2.00067

error-T 9.45407e-4 2.37203e-4 5.93527e-5 1.48417e-5 1.99774

e error-E 4.56714e-5 1.14019e-5 2.84938e-6 7.12290e-7 2.00089

error-T 9.90264e-4 2.48427e-4 6.21594e-5 1.55434e-5 1.99781

Example 5.2. Now consider a more complex model with both energy exchange and scal-
ing parameter as follows,

ε2 ∂E

∂t
−ε2 1

r2

∂

∂r

(
r2DR

∂E

∂r

)
=σa(T

4−E)+ f1(r,t,ε),

ε2 ∂T

∂t
=−σa(T

4−E)+ f2(r,t,ε), (5.2)

where B, σa and DR are specified with (2.3). The domain of interest is (0,1). The boundary
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and initial conditions respectively read

∂E

∂r
(0,t,ε)=0, E(1,t,ε)=(1+A)2[sin(αt+B)+2]2;

T(r,0,ε)=(r3+A)−
1
2 (sinB+2)

1
2 ,

E(r,0,ε)=(r3+A)2(sinB+2)2.

Its exact solution is T=(r3+A)
1
2 [sin(αt+B)+2]

1
2 , E=(r3+A)2[sin(αt+B)+2]2. The ad-

ditional terms can be written accordingly, i.e.,

f1(r,t,ε)=2ε2αcos(αt+B)(r3+A)2[sin(αt+B)+2]

−ε2
{

9(r3+A)−3[sin(αt+B)+2]−3+36ε2r4(r3+A)−2
}− 3

2

{
27r(23r3+8A)(r3+A)−3[sin(αt+B)+2]−1

+432ε2r5(4r3+A)(r3+A)−2[sin(αt+B)+2]2
}

,

f2(r,t,ε)=
1

2
ε2αcos(αt+B)(r3+A)

1
2 [sin(αt+B)+2]−

1
2 .

In this test, we set A=0.5ε, B=1+ε and α=2, and take the error tolerance as 10−10.
We check the numerical errors at t= 0.1 with ε being 1, 0.1, 0.01, 0.001 and 0.0001, and
find they all converge at order 2. As examples, Figs. 1-2 respectively present the results
for ε=1 and 0.0001.

Example 5.3. We use reference solutions of the scaled non-equilibrium radiation diffu-
sion problem (2.2) to continue the accuracy tests. Let the spatial domain be (0,1). For
its zero-th order asymptotic equation (3.1), we take the following boundary and initial
conditions

∂E(0)

∂r
(0,t)=0, E(0)(1,t)=

1

3
e−t+

2

3
;

T(0)(r,0)=1, E(0)(r,0)=1.

For its first order asymptotic equation (3.2), we take them as

∂E(1)

∂r
(0,t)=0, E(1)(1,t)=2e−t+2;

T(1)(r,0)=1, E(1)(r,0)=4.

Furthermore, we take T(0)+εT(1) and E(0)+εE(1) as initial and boundary conditions for
the scaled problem (2.2), i.e.,

∂E

∂r
(0,t,ε)=0, E(1,t,ε)=

1

3
e−t+

2

3
+ε(2e−t+2);

T(r,0,ε)=1+ε, E(r,0)=1+4ε.
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Figure 1: Numerical accuracy of energy (left) and temperature (right) with ε=1 for Example 5.2.
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Figure 2: Numerical accuracy of energy (left) and temperature (right) with ε=0.0001 for Example 5.2.

We take the numerical solutions obtained on a refined mesh with h=1/3200 as refer-
ence solutions, and assess the errors between the numerical solutions and the reference
solutions with various asymptotic parameters. We observed that the choice of scaling
parameter does not affect the second order accuracy of the schemes. As an example,
Fig. 3 depicts the results at t=0.1 with ε=10−2 and 10−12. Similar behavior appears with
ε=1/200, 1/400, 1/800, etc.

In the following, we consider the accuracy of the schemes for the cylindrical symmet-
ric problems on a unit square, and take the number of spatial cells as 8×8, 16×16, 32×32
and 64×64. Denote h=h1=h2 and the mesh ratio as λ= τ

h2 . Considering the discrete flux
continuity property, only Schemes (a)-(c) are applied in these tests.
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Figure 3: Numerical accuracy of energy and temperature with ε= 10−2 (left) and 10−12 (right) for Example
5.3.

Example 5.4. Consider the model with additional source terms

ε2 ∂E

∂t
−ε2 ∂

∂x

(
DR

∂E

∂x

)
−ε2 1

r

∂

∂r

(
rDR

∂E

∂r

)
=σa(B−E)+ f1(x,r,t,ε),

ε2 ∂T

∂t
=−σa(B−E)+ f2(x,r,t,ε), (5.3)

where B, σa and DR are defined in (2.3). The additional terms read

f1(x,r,t,ε)=2ε2 A(x2+r2+C)2
[

sin(At+B)+
3

2

]
cos(At+B)

−ε2

{
9(x2+r2+C)−3

[
sin(At+B)+

3

2

]−3

+16ε2(x2+r2)(x2+r2+C)−2

}− 3
2

{
36(x2+r2+C)−3(8x2+8r2+3C)

[
sin(At+B)+

3

2

]−1

+128ε2(x2+r2+C)−2(x2+r2)(3x2+3r2+C)
[

sin(At+B)+
3

2

]2
}

,

f2(x,r,t,ε)=
1

2
ε2 A(x2+r2+C)

1
2

[
sin(At+B)+

3

2

]− 1
2
cos(At+B).

Assume homogeneous Neumann condition on the lower boundary, and homogeneous
Dirichlet condition on the other boundaries. The exact solution is T = (x2+r2+

C)
1
2 [sin(At+B)+ 3

2 ]
1
2 ,E=(x2+r2+C)2[sin(At+B)+ 3

2 ]
2.

Table 2 illustrates the numerical accuracy of energy and temperature at t= 0.1 with
λ=0.8. Herein we take A= 1

2+
1
2 ε, B= 1

4+
1
4 ε and C= 1

4+
1
4 ε with ε=1.0. It confirms our
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Table 2: Numerical accuracy of energy and temperature for Example 5.4.

scheme mesh 8×8 16×16 32×32 64×64 order

a-Bnd1 error-E 3.16140e-1 1.43906e-1 6.33243e-2 2.58477e-2 1.20415

error-T 6.26703e-3 2.80127e-3 1.25224e-3 5.21854e-4 1.19535

b-Bnd1 error-E 3.07663e-1 1.40196e-1 6.23468e-2 2.55735e-2 1.19621

error-T 6.01473e-3 2.72490e-3 1.23241e-3 5.16121e-4 1.18091

c-Bnd1 error-E 2.90300e-1 1.42022e-1 6.50832e-2 2.65307e-2 1.15060

error-T 5.79617e-3 2.80578e-3 1.30262e-3 5.39738e-4 1.14159

a-Bnd2 error-E 1.33787e-1 3.29249e-2 8.06861e-3 1.96754e-3 2.02913

error-T 4.73797e-3 1.13443e-3 2.84326e-4 7.09406e-5 2.02051

b-Bnd2 error-E 1.25742e-1 3.10775e-2 7.58797e-3 1.84673e-3 2.02978

error-T 4.14687e-3 9.83102e-4 2.44145e-4 6.08721e-5 2.03003

c-Bnd2 error-E 5.40569e-2 1.75176e-2 5.02465e-3 1.18245e-3 1.83821

error-T 1.42962e-3 3.33560e-4 7.91853e-5 1.94559e-5 2.06643

ap-Bnd1 error-E 4.12699e-1 1.86933e-1 7.70108e-2 3.00573e-2 1.25977

error-T 1.01553e-2 3.89534e-3 1.56813e-3 6.25086e-4 1.21801

bp-Bnd1 error-E 4.03268e-1 1.83133e-1 7.58687e-2 2.97805e-2 1.25310

error-T 9.59699e-3 3.81629e-3 1.54736e-3 6.19279e-4 1.31797

cp-Bnd1 error-E 3.86986e-1 1.85064e-1 7.79779e-2 3.07415e-2 1.21801

error-T 8.07454e-3 3.90334e-3 1.61808e-3 6.43053e-4 1.21679

ap-Bnd2 error-E 2.55663e-1 7.97832e-2 2.37343e-2 6.82070e-3 1.74273

error-T 9.79132e-3 3.05514e-3 9.33932e-4 2.76544e-4 1.71531

bp-Bnd2 error-E 2.48043e-1 7.79046e-2 2.32527e-2 6.70361e-3 1.73650

error-T 9.14776e-3 2.87347e-3 8.87094e-4 2.64533e-4 1.70397

cp-Bnd2 error-E 1.57483e-1 6.17811e-2 1.96298e-2 5.71421e-3 1.59483

error-T 3.79126e-3 1.69783e-3 6.07963e-4 1.96851e-4 1.42250

schemes with Choice 1 and Bnd2 have second order accuracy in the mass, which perform
much better than schemes with Bnd1 with obvious decrease of the error data. In this
test, they look even better than those with Bnd2 and familiar physical harmonic average
Choice 2. It may be reasonable considering the global treatment of diffusion coefficient of
Choice 1 since we measure the maximum errors on the whole domain instead of only near
the polar axis. Also their convergence performance may be influenced by the parameters
of the concrete coefficient and source terms and the spatial and temporal step lengths.
The later seems to converge with an order around 1.5-1.7 instead of 2. It is not strange
anyway, since ∂E

∂r 6= 0 on the upper boundary, we know from Appendix B the error of
the IB schemes with Choice 2 is O(ε2h+h2+τ) at the points adjacent to this boundary,
which may affect the global accuracy accordingly. There are other tests show they have
comparable results.
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Example 5.5. Consider (5.3) with homogeneous Dirichlet condition on the left, right and
upper boundaries, and homogeneous Neumann condition on the lower boundary. Its
exact solution is T=sinθ,E=sin4θ. The additional terms can be written accordingly, i.e.,

f1(x,r,t,ε)=4ε2 Asin3 θcosθ

−8ε2[9sin−6θ+64ε2(x2+r2)cot2θ]−
3
2

[108(x2+r2)sin−4θcos2θ+128ε2(x2+r2)sinθcos3 θ

+512ε2(x2+r2)2cos4 θ+27sin−3θcosθ−18(x2+r2)sin−2θ],

f2(x,r,t,ε)=ε2 Acosθ.

We take θ= x2+r2+At+B, A=2+ε, B= 1
3+

1
3 ε, and measure the numerical errors at

t=0.1 with λ=0.64 and various ε. They all converge at about order 2. As examples, Fig. 4
depicts the results with ε=1 and 10−12.
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Figure 4: Numerical accuracy of energy and temperature with ε=1 (left) and 10−12 (right) for Example 5.5.

Finally, we examine the asymptotic-preserving property of the schemes by using
reference solutions. We briefly review some conceptions here to ease the description
later [16]. Let T,E, T(0),E(0) and T(1),E(1) respectively stand for the solutions of the dis-
crete scaled equation and its zero-th and first order discrete asymptotic equations. And
define T−T(0), E−E(0) and T−[T(0)+εT(1)], E−[E(0)+εE(1)] as the zero-th and first order
discrete asymptotic errors correspondingly. When ε tends to 0, if the zero-th and first or-
der discrete asymptotic errors converge as O(ε) and O(ε2) respectively, then the scheme
is first order asymptotic-preserving.

Example 5.6. Consider the scaled spherical non-equilibrium radiation diffusion problem
(2.2) in Example 5.3.

We take ε as 1/100, 1/200, 1/400 and 1/800, and still use the numerical solutions with
h=1/3200 as reference solutions. Figs. 5 and 6 respectively display the maximum norm
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Figure 5: The zero-th order discrete asymptotic errors with h=1/50 (left) and h=1/3200 (right) for Example
5.6.
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Figure 6: The first order discrete asymptotic errors with h=1/50 (left) and h=1/3200 (right) for Example 5.6.

zero-th and first order discrete asymptotic errors for energy and temperature at t = 0.1
with various spatial steps (e.g., h= 1/50 and 1/3200). Evidently they converge at order
1 and 2 respectively. Moreover, the convergence behavior is independent of the time and
spatial steps as the scaling parameter tends to zero. Hence the schemes are first order
asymptotic-preserving as theoretical prediction, and adaptive to equilibrium as well as
non-equilibrium radiation diffusion problems.

Example 5.7. We use reference solutions to test the asymptotic property of the cylindrical
schemes. Consider the scaled non-equilibrium radiation diffusion problem (4.1)-(4.2). A
group of boundary and initial conditions of its zero-th order asymptotic equation (4.3)
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read

E(0)(0,r,t)=
1

6

( r

3
e−rt− r

3
+1
)

, E(0)(1,r,t)=

(
e−1+

1

6

)( r

3
e−rt− r

3
+1
)

;

∂E(0)

∂r
(x,0,t)=0, E(0)(x,1,t)=

(
1

3
e−t+

2

3

)(
xe−x+

1

6

)
;

T(0)(x,r,0)=

(
xe−x+

1

6

) 1
4

, E(0)(x,r,0)= xe−x+
1

6
. (5.4)

Those of its first order asymptotic equation (4.4) are

E(1)(0,r,t)=

(
1

3

) 1
2
(

2re−rt−2r+
20

3

)
, E(1)(1,r,t)=

(
e−1+

1

3

) 1
2
(

2re−rt−2r+
20

3

)
;

∂E(1)

∂r
(x,0,t)=0, E(1)(x,1,t)=

(
2e−t+

14

3

)(
xe−x+

1

3

) 1
2

;

T(1)(x,r,0)=
5

3

(
xe−x+

1

3

) 1
2
(

xe−x+
1

6

)− 3
4

, E(1)(x,r,0)=
20

3

(
xe−x+

1

3

) 1
2

. (5.5)

Correspondingly, we take T(0)+εT(1) and E(0)+εE(1) as initial and boundary conditions
of (4.1).

We take the numerical solutions obtained on a 128×128 spatial mesh as reference
solutions. This is not an ideal choice since the mesh is still rough anyway. But with its
help we can show the errors are decreasing as the mesh becomes finer, which is a hint of
convergence. A favorable fact is that for asymptotic test with discrete asymptotic errors,
the reference solutions are not necessary. Fig. 7 exhibits the maximum zero-th and first
order discrete asymptotic errors of energy and temperature on a 32×32 mesh. Evidently
they are first and second order convergent respectively. There are similar results with
other spatial and temporal steps. Hence we argue the schemes are first order asymptotic-
preserving.

6 Conclusion and perspectives

We study the fully discrete AP schemes for non-equilibrium radiation diffusion problems
in one-dimensional spherical symmetric geometry, and extend the results to problems
in two-dimensional cylindrical symmetric geometry. In the scheme design, we apply
finite volume method to handle the singularity at the origin and the polar axis and to
guarantee the local conservative property, in which asymmetric second order accurate
spatial approach is used for the boundary flux-limiters in the diffusion operators, and
discrete schemes with higher order global accuracy are attained. By formal analysis,
we prove these schemes are first order asymptotic-preserving. By contriving artificial
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Figure 7: The zero-th (left) and first (right) order discrete asymptotic errors for Example 5.7.

solutions, we quantitatively validate the accuracy and asymptotic-preserving property
of the schemes with numerical tests, and confirm their applicability for both equilibrium
and non-equilibrium radiation diffusion problems.

In Appendix A, the second order accuracy of the harmonic average in the spherical
coordinate system is demonstrated. Containing the geometry feature, the discrete diffu-
sive coefficient differs slightly from the familiar average obtained from pure physics flux
continuity, but it gives similar and better numerical results in numerical tests. However,
it is frustrating that we can only show the first order instead of the second order accuracy
of the harmonic average near the polar axis in the corresponding cylindrical case. Maybe
there are some delicate details or other tools to weed through the confusion we are not
aware of. Or the schemes are not strictly second order in theory. Nevertheless this will
not influence the AP property of the cylindrical schemes even with only first order spa-
tial accuracy theoretically. As a supplement, we also present the truncation error of the
discrete diffusion operators in Appendix B.

The study can be extended from first order temporal accurate schemes (i.e., schemes
with O(τ) temporal accuracy as τ → 0) to second order (O(τ2)) temporal accurate im-
plicit schemes. For multi-dimensional (cylindrical) problems, a natural way to accelerate
their solutions is to use splitting algorithms such as operator-splitting discretizations or
fractional-step time evolutions [29]. In this case, it is delicate to design the splitting strat-
egy and boundary treatment for each splitting step to acquire perfect global consistent
error to construct AP schemes. Also the ideas contribute to studying AP schemes on
skewed and unstructured meshes.
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Appendix A

This appendix is devoted to demonstrate the second order accuracy for harmonic average
approach in spherical geometry.

Let u be a continuous function with enough smoothness. In the following, denote

ui=u(ri), ui+ 1
2
=u(ri+ 1

2
) and (r2u)i+ 1

2
= 2(r2u)i+1(r

2u)i

(r2u)i+1+(r2u)i
. Our object is to get

(r2u)i+ 1
2
=(r2u)i+ 1

2
+O(h2). (A.1)

We start from Taylor’s expansion,

(r2u)i+1=(r2u)i+ 1
2
+

h

2
(r2u)′

ri+ 1
2
+

h2

8
(r2u)′′

rri+ 1
2
+

h3

48
(r2u)′′′

rrri+ 1
2
+O(h4),

(r2u)i =(r2u)i+ 1
2
− h

2
(r2u)′

ri+ 1
2
+

h2

8
(r2u)′′

rri+ 1
2
− h3

48
(r2u)′′′

rrri+ 1
2
+O(h4),

therefore

(r2u)i+1(r
2u)i=

[
(r2u)i+ 1

2
+

h2

8
(r2u)′′

rri+ 1
2

]2

−
[

h

2
(r2u)′

ri+ 1
2
+

h3

48
(r2u)′′′

rrri+ 1
2

]2

+O(h4)

[
(r2u)i+ 1

2
+

h

2
(r2u)′

ri+ 1
2
+O(h2)

]
,

(r2u)i+1+(r2u)i=2(r2u)i+ 1
2
+

h2

4
(r2u)′′

rri+ 1
2
+O(h4).

Noticing that

(r2u)′r =2ru+r2u′
r, (r

2u)′′rr =2u+4ru′
r+r2u′′

rr,

(r2u)′′′rrr=6u′
r+6ru′′

rr+r2u′′′
rrr,

we arrive at

(r2u)i+ 1
2
=(r2u)i+ 1

2

I1

I2
, (A.2)

where

I1=


1+

h2

8

(r2u)′′
rri+ 1

2

(r2u)i+ 1
2




2

−


h

2

(r2u)′
ri+ 1

2

(r2u)i+ 1
2

+
h3

48

(r2u)′′′
rrri+ 1

2

(r2u)i+ 1
2




2

+O(h2),

I2=1+
h2

8

(r2u)′′
rri+ 1

2

(r2u)i+ 1
2

+O(h2).
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When r lies far from the origin, i.e., r≫h, it is obvious that

I1=1+O(h2), I2=1+O(h2),

hence (A.1) holds.

When r lies near the origin, r=O(h), there stands

1

I2
=


1+

h2

8

(r2u)′′
rri+ 1

2

(r2u)i+ 1
2



−1




1−


1+

h2

8

(r2u)′′
rri+ 1

2

(r2u)i+ 1
2



−1

O(h2)+O(h4)





=


1+

h2

8

(r2u)′′
rri+ 1

2

(r2u)i+ 1
2



−1

[1+O(h2)]. (A.3)

We have

(r2u)

[
h

2

(r2u)′r
(r2u)

+
h3

48

(r2u)′′′rrr

(r2u)

]2

=
1

u

[
hu+

hr

2
u′

r+
h3

8r
u′

r+
h3

8
u′′

rr+
h3r

48
u′′′

rrr

]2

=O(h2). (A.4)

Combining (A.2), (A.3) and (A.4), we get

(r2u)i+ 1
2
=(r2u)i+ 1

2
+

h2

8
(r2u)′′

rri+ 1
2
−O(h2)[1+O(h2)]+O(h2)

=(r2u)i+ 1
2
+O(h2).

Hence the conclusion is true.

A similar deduction shows the first order accuracy for harmonic average approach in
cylindrical geometry near the polar axis.

Appendix B

In this appendix we demonstrate the truncation error of the discrete diffusion operators.

By a lengthy manipulation, we derive the truncation error as follows

Gi=
1

h

(
2d̂i+1d̂i

d̂i+1+ d̂i

Ei+1−Ei

h
− 2d̂i d̂i−1

d̂i+ d̂i−1

Ei−Ei−1

h

)
−(dE′)′i

=Qi+O(h2)+O(ε2h2), i=2,3,··· , I−3, I−2,
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G1=
1

h

(
2d̂i+1d̂i

d̂i+1+ d̂i

Ei+1−Ei

h
− 2d̂id̃i−1

d̂i+ d̃i−1

Ei−Ei−1

h

)
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(d̂i+ d̂i−1)(d̂i+ d̃i−1)
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1
2
+O(h2)+O(ε2h2)

=

{
Q1+O(ε2)E′

1
2
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2
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1

h
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QI−1+O(ε2h)E′
I− 1

2
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where

Qi=
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+
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i −

1

4
(d′i)

2

]
+O(h4)

(
di+d′id

′′′
i

)
+O(h4)+O(h6)

}−1

,

and d̂i=DRi, or rDRi or r2DRi is defined as in Sections 2 and 4. For i=1 and I−1, d̃i=D̃Ri,

or r̃DRi or r̃2DRi, where r̃DRi =
ri√

(3σ)2
i +ε2χ̃i

, etc.

We denote Qi as Qsi or Qci in the case of spherical or cylindric symmetric geometry.
Near the origin or symmetric axis, generally, Qsi=O(h+ε2h2), Qci=O(1+ε2h); elsewhere
Qi =O(h2+ε2h2). When E′

0 =0, we have Qsi =O(h2+ε2h3) or Qci =O(h+ε2h2) near the
origin or symmetric axis, and E′

1
2

=O(h). When E′
I =0, we have E′

I− 1
2

=O(h).

Combining these acquaintances, we present the truncation error of the discrete dif-
fusion operator (corresponding to Choice 1 in the sphere and cylinder cases) in Table
3.

In the case of Choice 2, e.g., the familiar physical harmonic average as (2.15) and (2.16)
in the sphere case and as described in Remark 4.2 in the cylinder case, the truncation er-
ror order for discrete diffusion operator is analogous to that in planar geometry. Hence
theoretically, with Bnd2 and homogeneous Neumann boundary condition (2.4), the two
ways of harmonic average deliver comparable accuracy in the sphere case, and the phys-
ical harmonic average (Choice 2) seems more precise than cylindrical harmonic average
(Choice 1) in the cylinder case near the polar axis. Our numerical tests coincide well with
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Table 3: Truncation error for discrete diffusion operator.

Gi Plane-Bnd1 Plane-Bnd2 Sphere-Bnd1 Sphere-Bnd2 Cylinder-Bnd1 Cylinder-Bnd2

i 6=1, I−1

1) i≫1 O(h2+ε2h2) O(h2+ε2h2)

2) otherwise O(h2+ε2h2)

2.1) E′
0=0 O(h2+ε2h2) O(h+ε2h2)

2.2) E′
0 6=0 O(h+ε2h2) O(1)

i=1

1) E′
0=0 O(ε2h+h2) O(h2+ε2h2) O(ε2h+h2) O(h2+ε2h2) O(h+ε2h) O(h+ε2h2)

2) E′
0 6=0 O(ε2+h2) O(ε2h+h2) O(ε2+h) O(h+ε2h) O(1) O(1)

i= I−1

1) E′
I =0 O(ε2h+h2) O(h2+ε2h2) O(ε2h+h2) O(h2+ε2h2) O(ε2h+h2) O(h2+ε2h2)

2) E′
I 6=0 O(ε2+h2) O(ε2h+h2) O(ε2+h2) O(ε2h+h2) O(ε2+h2) O(ε2h+h2)

the first analysis, yet not produce evidence in support of the second one. Maybe there
are some latent mechanism to explore and more detailed analysis to make in the cylinder
case.

Appendix C

In this appendix we supply some numerical tests for non AP schemes. The schemes in-
spected are with discrete diffusion coefficient Choice 1 and discrete boundary flux-limiter
Bnd1, i.e., Schemes (a-Bnd1), (b-Bnd1) and (c-Bnd1). They are applied to a cylindrical
symmetrical problem with nonhomogeneous Neumann boundary condition.

Example C.1. Consider the radiation diffusion system (4.1)-(4.2) on spatial domain
(0,1)×(δ,1). For its zero-th order asymptotic equation (4.3), we suppose the boundary
and initial conditions are as follows

E(0)(0,r,t)=
1

6

( r

3
e−rt+

αr

3
+1
)

,

E(0)(1,r,t)=

(
e−1+

1

6

)( r

3
e−rt+

αr

3
+1
)

;

∂E(0)

∂r
(x,δ,t)=

(1−δt)e−δt+α

3

(
xe−x+

1

6

)
,

E(0)(x,1,t)=

(
1

3
e−t+

α+3

3

)(
xe−x+

1

6

)
;

T(0)(x,r,0)=

[
(α+1)r

3
+1

] 1
4
(

xe−x+
1

6

) 1
4

,

E(0)(x,r,0)=

[
(α+1)r

3
+1

](
xe−x+

1

6

)
. (C.1)
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For its first order asymptotic equation (4.4), we suppose

E(1)(0,r,t)=γ

(
1

3

) 1
2
(

2re−rt+βr+
20

3

)
,

E(1)(1,r,t)=γ

(
e−1+

1

3

) 1
2
(

2re−rt+βr+
20

3

)
;

∂E(1)

∂r
(x,δ,t)=γ[2(1−δt)e−δt+β]

(
xe−x+

1

3

) 1
2

,

E(1)(x,1,t)=γ

(
2e−t+

3β+20

3

)(
xe−x+

1

3

) 1
2

;

T(1)(x,r,0)=γ

[
(β+2)r

4
+

5

3

][
(α+1)r

3
+1

]− 3
4
(

xe−x+
1

3

) 1
2
(

xe−x+
1

6

)− 3
4

,

E(1)(x,r,0)=γ

[
(β+2)r+

20

3

](
xe−x+

1

3

) 1
2

. (C.2)

Then we take T(0)+εT(1) and E(0)+εE(1) as the initial and boundary conditions of the
system.

With α=−1, β=−2, γ= 1 and δ= 0 in (C.1) and (C.2), it represents the cylindrical
symmetrical problem with homogeneous Neumann boundary condition in Example 5.7,
for which the good behavior of the AP schemes with Bnd2 has been observed in Section
5.

In the following, by taking α=150, β=2, γ=400 and δ=0.0001, we detect the three
non-AP schemes on a system without natural boundary condition.

Fig. 8 plots the maximum zero-th and first order discrete asymptotic errors of the
schemes at t = 0.1 on a 32×32 mesh. Although the zero-th order discrete asymptotic
errors for energy seem linearly convergent, those for temperature do not. Moreover, the
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Figure 8: The zero-th (left) and first (right) order discrete asymptotic errors for Example C.1.
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Figure 9: The first order discrete “asymptotic” solution for Example C.1.

first order errors for neither energy nor temperature are second order convergent.
Fig. 9 illustrates the corresponding first order discrete “asymptotic” solution E(0)+

εE(1) with ε = 1/100, in which negative numerical energy appears at some points. It
demonstrates the schemes are not well-behaved asymptotic-preserving.
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