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Abstract. The blood flow model admits the steady state, in which the flux gradient is
non-zero and is exactly balanced by the source term. In this paper, we present a high
order well-balanced finite difference weighted essentially non-oscillatory (WENO)
scheme, which exactly preserves the steady state. In order to maintain the well-
balanced property, we propose to reformulate the equation and apply a novel source
term approximation. Extensive numerical experiments are carried out to verify the
performances of the current scheme such as the maintenance of well-balanced proper-
ty, the ability to capture the perturbations of such steady state and the genuine high
order accuracy for smooth solutions.
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1 Introduction

In this paper, we are interested in numerical computing the blood flow model in arteries
by high order schemes. Numerical simulations with high order accuracy for the blood
flow model have wide applications in medical engineering [1, 2]. In one spatial dimen-
sion, the blood flow model takes the following system of hyperbolic balanced laws [3]:
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where A=πR2 is the cross-sectional area with R being the radius of the vessel, Q= Au
denotes the discharge, u means the flow velocity, ρ stands for the blood density and K
represents the arterial stiffness. In addition, A0=πR2

0 is the cross section at rest (u=0m/s)
with R0 being the radius of the vessel, which may be variable in the case of aneurism,
stenosis or taper.

The important property of the model (1.1) is that it admits the steady state, also called
mechanical equilibrium, where the flux gradient is exactly balanced by the source term:

u=0 and A=A0. (1.2)

Under the above steady state (1.2), the flux gradient is non-zero and is exactly balanced
by the source term. Consequently, it is desirable to maintain the balancing between the
flux gradient and the source term at the discrete level. In general, the standard numer-
ical schemes generally fail to satisfy the discrete version of this balance exactly at the
steady state, even introduce spurious oscillations, unless the mesh size is extremely re-
fined. However, the mesh refinement procedure is not applicable for practical problems
due to the very high computational cost. In 1996, Greenberg et al. [4] originally intro-
duced the well-balanced schemes, which can preserve exactly the steady state solutions
up to machine accuracy at the discrete level. Moreover, well-balanced schemes can cap-
ture small perturbations well even on relatively coarse meshes [5]. It is important to note
that many attempts have been concentrated on the well-balanced schemes for the shal-
low water equations using different approaches, see among others [6–11] and references
therein.

In recent years, there have been many interesting attempts on the well-balanced
schemes for the blood flow model. For example, Delestre and Lagrée [12] presented
a well-balanced finite volume scheme based on the conservative governing equation-
s [13–15]. Müller et al. [16] constructed a well-balanced high order finite volume scheme
for the blood flow in elastic vessels with varying mechanical properties. Recently, Murillo
et al. [17] have presented an energy-balanced approximate solver with upwind discretiza-
tion for the source term. More recently, Wang et al. [18] have presented a well-balanced
finite difference WENO scheme based on the splitting algorithm of the source term.

The key objective of this research is to develop an efficient high order well-balanced
finite difference WENO scheme based on a reformation of the source term to avoid the
splitting of the source term as in [18]. Rigorous numerical analysis as well as extensive
numerical experiments all verify the satisfaction of the well-balanced property of the re-
sulting scheme. In order to obtain well-balanced finite difference WENO schemes, we
firstly reformulate the source term in an equivalent form, then construct linear finite d-
ifference operator coupled with modification of the flux splitting. The above procedures
lead to an efficient WENO scheme compared with the WENO scheme in [18]. In ad-
dition, this WENO scheme keeps high order accuracy for smooth solutions, and enjoys
steep discontinuity transition at the same time.

This paper is organized as follows: we briefly review the key idea of the finite differ-
ence WENO schemes in Section 2. In Section 3, we propose a high order well-balanced
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finite difference WENO scheme for the blood flow model. Extensive numerical experi-
ments are carried out in Section 4. Some conclusions are given in Section 5.

2 A review of high order finite difference WENO schemes

The first finite difference WENO scheme was introduced in 1996 by Jiang and Shu [19]
for hyperbolic conservation laws. More detailed information of WENO schemes can be
found in the lecture note [20]. For the latest advances regarding WENO schemes, we
refer to the review [21].

For the sake of simplicity, we assume that the grid points {xj} are uniformly dis-
tributed with cell size ∆x= xj+1−xj and we denote the cells by Ij =

[
xj−1/2,xj+1/2

]
with

xj+1/2= xj+∆x/2 being the center of the cell Ij.
Firstly, we take the one-dimensional (1D) scalar hyperbolic conservation laws

ut+ f (u)x =0 (2.1)

as an example to illustrate the finite difference WENO schemes. For conservative
schemes, we apply the conservative flux difference to approximate the flux gradient
f (u)x, i.e.,

f (u)x

∣∣
x=xj

≈ 1

∆x

(
f̂ j+ 1

2
− f̂ j− 1

2

)
.

Denote the point value u
(

xj,t
)

by uj(t), we obtain the following high order semi-discrete
conservative finite difference schemes

d

dt
uj(t)=− 1

∆x

(
f̂ j+ 1

2
− f̂ j− 1

2

)
, (2.2)

where f̂ j+ 1
2

is the numerical flux to approximate hj+ 1
2
=h(xj+ 1

2
) with high order accuracy.

Here h(x) is implicitly defined as in [19]

f (u(x))=
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ)dξ.

In addition, we take upwinding into account to maintain the numerical stability and
split a general flux into two parts

f (u)= f+(u)+ f−(u),

where
d f+(u)

du
≥0 and

d f−(u)
du

≤0.

Herein, we take the simple Lax-Friedrichs flux

f±(u)=
1

2
( f (u)±αu), (2.3)
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where α=maxu

∣∣ f ′(u)
∣∣. With respect to whether the maximum is taken globally (along the

line of computation) or locally, we call this scheme as the Lax-Friedrichs WENO scheme
(denoted by WENO-LF). With respect to f+(u) and f−(u), we can get numerical fluxes

f̂+
j+ 1

2

and f̂−
j+ 1

2

using the WENO reconstruction, respectively. Finally, we get the numerical

flux as follows
f̂ j+ 1

2
= f̂+

j+ 1
2

+ f̂−
j+ 1

2

.

By means of the WENO reconstruction procedure, f̂+
j+ 1

2

is expressed as [19]

f̂+
j+ 1

2

=
r

∑
k=0

ωkqr
k

(
f+j+k−r ,··· , f+j+k

)
, (2.4)

where ωk is the nonlinear weight, f+i = f+(ui), i= j−r,··· , j+r, and

qr
k

(
g0,··· ,gr

)
=

r

∑
l=0

ar
k,lgl (2.5)

is the low order approximation to f̂+
j+ 1

2

on the kth stencil Sk=(xj+k−r,··· ,xj+k), k=0,1,··· ,r,

and ar
k,l , 0≤ k,l≤ r are constant coefficients, see [20] for more details.

The nonlinear weights ωk in (2.4) are designed to yield (2r+1)th-order accuracy in
smooth regions of the solution. In [19, 20], the nonlinear weight ωk is formulated as

ωk =
αk

∑
r
l=0αl

with αk =
Cr

k

(ε
WENO

+ ISk)
2

, k=0,1,··· ,r, (2.6)

where Cr
k is the linear weight, ε

WENO
is a small constant used here to avoid the denom-

inator becoming zero, and ε
WENO

= 10−6 is used in all test cases in this paper. ISk is a
smoothness indicator of f+(u) on stencil Sk, k=0,1,··· ,r, and we employ the smoothness
indicators proposed in [19, 20], i.e.,

ISk =
r

∑
l=1

∫ x
j+ 1

2

x
j− 1

2

(∆x)2l−1
(

q
(l)
k

)2
dx,

where q
(l)
k is the lth-derivative of qk(x) which is the reconstruction polynomial of f+(u)

on stencil Sk such that

1

∆x

∫

Ii

qk(x)dx= f+i , i= j+k−r,··· , j+k.

The WENO reconstruction procedure for f̂−
j+ 1

2

is a mirror symmetry to that of f̂+
j+ 1

2

with respect to xj+ 1
2
. Consequently, the numerical flux f̂ j+ 1

2
is then calculated by
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2
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Ultimately, we obtain the semi-discrete scheme (2.2).

For hyperbolic systems of conservation laws, we usually apply the local character-
istic decomposition procedure with more computational cost to obtain good numerical
results, which is more robust than a component by component version. The complete
algorithm can be found in [20, 21].

For the temporal discretization, we apply the third order total variation diminishing
(TVD) Runge-Kutta method [22]

U(1)=Un+∆tF(Un), (2.7a)

U(2)=
3

4
Un+

1

4

(
U(1)+∆tF(U(1))

)
, (2.7b)

Un+1=
1

3
Un+

2

3

(
U(2)+∆tF(U(2))

)
, (2.7c)

with F(U) being the spatial operator.

3 An efficient WENO scheme for the blood flow model

In this section, we present a high order well-balanced finite difference WENO scheme
for the blood flow model (1.1). The key idea is to discretize the source term by a finite
difference WENO formula, which is consistent with that for the flux gradient.

3.1 Reformulation of the equation

In order to construct a well-balanced finite difference scheme, the first step is to refor-

mulate the source term KA
2ρ
√

π
√

A0
(A0)x in an equivalent form K

3ρ
√

π
A
A0
(A

3
2
0 )x and this step

is a key procedure of the current scheme. Therefore the original system (1.1) becomes as
follows 
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(3.1)

which can be denoted in a compact vector form

Ut+ f (U)x =S(A,A0),

where U = (A,Q)⊤ with the superscript ⊤ denoting the transpose, f (U) stands for the
flux and S(A,A0) represents the source term. The main motivation of such a modifica-
tion in (3.1) is to let the source term and the corresponding flux gradient share similar
discretization form in the case of the steady state (1.2).
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3.2 Novel source term approximation

Herein, the semi-discrete WENO scheme takes the form of

d

dt
Uj(t)+

1

∆xj

(
F̂j+ 1

2
− F̂j− 1

2

)
=Sj, (3.2)

but with slightly modified numerical fluxes and source term approximations outlined
below.

To present the basic idea of the modification, we first consider the situation when
the WENO scheme is applied without the flux splitting (e.g., WENO-Roe scheme) and
the local characteristic decomposition for the system of equations. Let’s compute the

numerical fluxes F̂j+ 1
2

as stated in Section 2. For the source term K
3ρ
√

π
A
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(A

3
2
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3
2
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2
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3
2
0 )j±k, and then approximate ((A

3
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Subsequently, we approximate the source term in the following form:
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2
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(̂

A
3
2
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2

∆x
. (3.3)

With the standard WENO numerical flux and the source term approximation stated
above, this WENO scheme without any further modification is actually well-balanced,
and we refer to Proposition 3.1 below for a detailed proof.

Subsequently, we look at the situation when the WENO reconstruction procedure in-
volves the local characteristic decomposition, which is often applied for the system of
equations including the Euler equations and shallow water equations for the sake of ro-
bustness. The local characteristic matrix R, consisting of the right eigenvectors of the
Jacobian matrix, is used to compute the numerical flux at point xj+ 1

2
. All the neighboring

point values of the vectors (Q, Q2

A + K
3ρ
√

π
A

3
2 )⊤j±k are all projected to the local characteristic

fields determined by R−1, and the WENO reconstruction is then completed in the char-
acteristic space. After the WENO reconstruction, the value will be projected back to the
physical space to obtain F̂j+ 1

2
. For the source term approximation, we mimic the process

and project the vector (0,A
3
2
0 )

⊤
j±k to the local characteristic fields to carry out the WENO

reconstruction. The reconstructed value is also projected back to obtain (
̂
A

3
2
0 )j± 1

2
for the

source term approximation.
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Finally, we consider WENO schemes with a Lax-Friedrichs flux splitting, denoted by
the WENO-LF scheme. The flux F(U) is separated into two parts:

F(U)=F+(U)+F−(U),

where

F±(U)=
1

2
(F(U)±αiU), (3.4)

with

αi=max
U

∣∣λi(U)
∣∣

for the i-th characteristic field and λi(U) being the i-th eigenvalue of the Jacobian matrix
∂F(U)/∂U. The ±αiU term contributes to the numerical viscosity, which is essential
for the numerical approximation of hyperbolic conservation laws. But such term may
destroy the well-balanced property at the steady state solution. Therefore, we propose to
modify the flux splitting as follows

F±(U)=
1

2

(
F(U)±αiŨ

)
, (3.5)

with Ũ given by

Ũ=(A−A0,Q)T.

At the steady state (1.2), Ũ becomes the constant, and the effect of this viscosity term
±αiŨ towards the approximation of F(U)x is zero. As the flux splitting WENO approx-
imation becomes F±(U)= F(U)/2 at the steady state, the well-balanced source term ap-
proximation can be obtained if we simply split the derivatives in the source term as:

(
0

A
3
2
0

)

x

=
1

2

(
0

A
3
2
0

)

x

+
1

2

(
0

A
3
2
0

)

x

, (3.6)

and apply the same WENO reconstruction procedure corresponding to F+ or F− to ap-

proximate them respectively. We then add up the resulting
(̂

A
3
2
0

)±
j+ 1

2
to obtain

(̂
A

3
2
0

)

j+ 1
2

=

(̂
A

3
2
0

)+

j+ 1
2

+

(̂
A

3
2
0

)−

j+ 1
2

. (3.7)

Remark 3.1. Herein, we only reformulate the source term in an equivalent form and
avoid the splitting of the source term as in [18]. In other words, there is only one deriva-
tive in the reformulation of the source term, while there are two derivatives with the
splitting of the source term in [18]. So the current finite difference WENO scheme is more
efficient than the one in [18].
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3.3 Well-balanced scheme

For the finite difference WENO scheme described above, we have

Proposition 3.1. For the blood flow model (1.1), reformulated in the form of (3.1), the
semi-discrete finite difference WENO scheme (3.2), with the standard WENO numerical
fluxes for WENO-Roe or modified numerical fluxes based on (3.5) for WENO-LF, com-
bined with the source term approximation stated in (3.3) for WENO-Roe or modified
source term approximation with (3.3), (3.6), (3.7) for WENO-LF, are well-balanced for the
steady state solution (1.2).

Proof. We take the WENO-Roe scheme as an example to prove the well-balanced prop-
erty. The proof of WENO-LF method follows the same way and is ignored here to save
space. At the steady state (1.2) where u=0 and A=A0, the flux F(U) becomes

F(U)=



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A
+
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3ρ
√

π
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3
2


=




0

K

3ρ
√

π
A

3
2


,

and the numerical flux F̂j+ 1
2

are obtained by the standard WENO reconstruction on F(U).

In addition, the source term approximation reduces to

( K

3ρ
√

π

A

A0

(
A

3
2
0

)
x

)
j
=
( K

3ρ
√

π

(
A

3
2
0

)
x

)
j
,

which is computed by the WENO reconstruction. Therefore, the flux and source term

approximation reduce to the same WENO reconstruction for
(

K
3ρ
√

π

(
A

3
2

)
x

)
j
due to A=A0,

and cancel with each other, which leads to the desired well-balanced property.

We now summarize the complete procedure of the high order well-balanced finite
difference WENO-LF scheme with the local characteristic decomposition for solving the
blood flow model (1.1):

Step 1 Reformulate the source term and rewrite the governing equations in the form
(3.1).

Step 2 Approximate the derivative term in the source term of momentum equation in
(3.1) by splitting them as in (3.6) and then applying the standard WENO proce-

dure with flux splitting on them to obtain
(̂

A
3
2
0

)
j+ 1

2
as in (3.7).

Step 3 At each time step, perform the usual WENO-LF approximation on the flux deriva-
tive F(U)x with a modified flux splitting.

Step 4 Evaluate the source term at the current time step by (3.3) using the derivative term
approximation from Step 2.



30 S. G. Qian, G. Li, X. Q. Lv and F. J. Shao / Adv. Appl. Math. Mech., 10 (2018), pp. 22-40

Step 5 Add up the residues of the numerical flux and source term approximations, and
forward in time by Runge-Kutta methods.

4 Numerical results

In this section, we carry out extensive numerical experiments to demonstrate the per-
formance of the proposed well-balanced WENO scheme. In all the computations, we
apply the third order TVD Runge-Kutta method (2.7). The CFL number is taken as 0.6
for stability criteria.

4.1 To test the order of accuracy

We apply this example to test the order of accuracy of the resulting method. We take the
following initial conditions:

A(x,0)=sin2(πx), Q(x,0)=sin(πx)+cos(πx) and A0(x)=cos2(πx),

on a computational domain [0,2] based on the following parameters: K = 1×108Pa/m,
ρ=1060kg/m3.

We impose this problem with periodic boundary conditions at the two endpoints.
Then, we solve this example up to t= 0.01s and get reference solutions on a mesh with
2000 cells. We present the errors and the order of accuracy in Table 1. It is clear that the
current method obtains the expected fifth order of accuracy.

Table 1: L1 errors and numerical orders of accuracy for the example of Section 4.1.

N
A Q

L1 error Order L1 error Order
25 1.75E-02 1.07E-02
50 2.17E-03 3.01 1.94E-03 2.46

100 3.25E-04 2.74 2.77E-04 2.81
200 2.32E-05 3.81 1.99E-05 3.80
400 9.30E-07 4.64 9.56E-07 4.38
800 3.09E-08 4.91 3.25E-08 4.88
1600 9.60E-10 5.01 9.94E-10 5.03

4.2 The ideal tourniquet

This example is similar with the dam break problem in shallow water equations, namely
Stoker’s solution [23]. Here, we consider the analogue of this problem in blood flow mod-
el: a tourniquet is applied and we remove it instantaneously. We consider the following
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Figure 1: The numerical solutions of the ideal tourniquet problem in Section 4.2 on a mesh with 200 cells at
t=0.005s. Radius (a) and discharge (b).

initial conditions

A(x,0)=

{
πR2

L, if x≤0,

πR2
R, otherwise,

and Q(x,0)=0,

on a computational domain [−0.04,0.04] based on the following parameters: K = 1×
107Pa/m, ρ=1060kg/m3, RL =5×10−3m, RR=4×10−3m and R0=3×10−3m.

We impose this problem with transmissive boundary conditions. Then, we solve this
example on the mesh with 200 cells up to t=0.005s and present the numerical solutions
against the exact ones in Fig. 1. It is clear that the numerical results fit well with the exact
ones and keep steep shock transitions.

4.3 Wave equation

The following quasi-stationary test case presented in [12] is chosen to demonstrate the
capability of the proposed scheme to compute the spreading of a small perturbation of a
steady state. In this case, we recover the behavior of the wave equation.

Herein, we apply the following initial data:

A(x,0)=





πR2
0, if x∈

[
0,

40L

100

]
∪
[

60L

100
,L

]
,

πR2
0

[
1+ǫsin

(
π

x−40L/100

20L/100

)]2

, if x∈
[

40L

100
,
60L

100

]
,

Q(x,0)=0,

on a computational domain [0,0.16] coupled with transmissive boundary conditions. The
following parameters have been used for this example: ǫ = 5×10−3, K = 108Pa/m, ρ =
1060kg/m3, R0=4×10−3m and L=0.16m.
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Figure 2: The initial radius of the wave equation in Section 4.3.
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Figure 3: The numerical solutions of the wave equation problem in Section 4.3 on a mesh with 100 cells. Radius
at t=0.002s (a), t=0.004s (b), and t=0.006s (c), respectively.

The initial radius is presented in Fig. 2. We show the numerical solutions on a mesh
with 200 cells at t=0.002s, 0.004s, and 0.006s against the reference solutions, respectively
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in Fig. 3. These figures strongly suggest that the numerical solutions agree well with the
reference ones.

4.4 The man at eternal rest

The purpose of this example is to verify that the current WENO scheme indeed maintains
the well-balanced property.

Herein, we consider a configuration with no flow and with a change of radius R0(x),
this is the case for a dead man with an aneurism. Thus, for the initial conditions, the
section of the artery is not constant with the following form

R(x,0)=R0(x)=





R̃, if x∈ [0,x1]∪[x4,L],

R̃+
∆R

2

[
sin

(
x−x1

x2−x1
π−π

2

)
+1

]
, if x∈ [x1,x2],

R̃+∆R, if x∈ [x2,x3],

R̃+
∆R

2

[
cos

(
x−x3

x4−x3
π

)
+1

]
, if x∈ [x3,x4],

on the computational domain [0,0.14] with R̃ = 4×10−3m, ∆R = 10−3m, K = 108Pa/m,
ρ=1060kg/m3, L=0.14m, x1 =10−2m, x2 =3.05×10−2m, x3 =4.95×10−2m and x4 =7×
10−2m. In addition, the initial velocity is zero. We impose this problem with transmissive
boundary conditions and compute this example up to t=5s.

In order to show that the well-balanced property is maintained up to machine round
off error, tests are run using single, double and quadruple precisions, respectively. The
L1 and L∞ errors calculated for A, and Q are presented in Table 2. It can be clearly seen
that the L1 and L∞ errors are all at the level of round off errors associated with different
precisions, which verify that the current WENO scheme indeed maintains the steady
state (u=0) and thus its well-balanced property accordingly.

In Fig. 4, we present the radius at t= 5s on a mesh with 200 cells against a reference
solution obtained with a much refined 2000 cells. In addition, we run the same numerical
test using the non-well-balanced WENO scheme, with a straightforward integration of
the source term, and show their result in Fig. 4 for comparison. It is obvious that the
result of well-balanced WENO scheme is in good agreement with the reference solution
for the case, while non-well-balanced WENO scheme produces spurious oscillations.

Table 2: L1 and L∞ error for different precisions for the man at eternal rest.

Precision
L1 error L∞ error

A Q A Q
Single 1.14E-07 1.46E-07 4.98E-07 5.32E-07

Double 3.82E-16 2.82E-16 2.31E-16 2.45E-15
Quadruple 2.91E-31 5.69E-32 6.50E-33 8.52E-32
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Figure 4: The man at eternal rest problem in Section 4.4 at t=5s. The result of the well-balanced scheme with
200 and 2000 cells, and that of the non-well-balanced (denoted by non-WB) scheme with 200 cells.

4.5 Propagation of a pulse to an expansion

In this section, we test the case of a pulse in a section RR passing trough an expansion:
AL>AR, taking the following parameters: K=1.0×108Pa/m, L=0.16m, ρ=1060kg/m3,
RL=5×10−3m, RR=4×10−3m, ∆R=1.0×10−3m. We take a decreasing shape on a rather
small scale:

R0(x)=





RR+∆R, if x∈ [0,x1],

RR+
∆R

2

[
1+cos

(
x−x1

x2−x1
π

)]
, if x∈ [x1,x2],

RR, otherwise,

with x1 =
19L
40 , x2 =

L
2 . As initial conditions, we consider a fluid at rest (Q(x,0)= 0m3/s)

and the following perturbation of radius:

R(x,0)=





R0(x)

[
1+ǫsin

(
100

20L
π
(

x− 65L

100

))]
, if x∈

[
65L

100
,
85L

100

]
,

R0(x), otherwise,

with ǫ=5.0×10−3 and with transmissive boundary conditions.

In Fig. 5, we present the numerical results against the reference solutions at t=0.002s
and t = 0.006s. At first, we get two travelling waves, one spreading to the left and the
other one going to the right, as illustrated on Fig. 5 at time t=0.002s.

The numerical solutions are in good agreement with the reference ones and are com-
parable with those in [12].
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Figure 5: The numerical solutions of the propagation of a pulse to an expansion in Section 4.5 on a mesh with
100 cells. The errors R−R0 at t=0s (a), t=0.002s (b) and t=0.006s (c).

4.6 Propagation of a pulse from an expansion

Then, we consider a pulse propagating from an expansion. So, the parameters are the
same as in the Section 4.5, only the initial radius is changed:

R(x,0)=





R0(x)

[
1+ǫsin

(
100

20L
π

(
x− 15L

100

))]
, if x∈

[
15L

100
,
35L

100

]
,

R0(x), otherwise,

with ǫ= 5.0×10−3. Similarly, we also impose this problem with transmissive boundary
conditions.

In Fig. 6, we demonstrate the numerical results against the reference solutions at t=
0.002s and t= 0.006s. Similarly, the numerical solutions fit well with the reference ones
and are comparable with those in [12].
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Figure 6: The numerical solutions of the propagation of a pulse from an expansion in Section 4.6 on a mesh
with 100 cells. The errors R−R0 at t=0s (a), t=0.002s (b) and t=0.006s (c).

4.7 Wave damping

In this last test case, we look at the viscous damping term in the linearized momentum
equation. This is an analogue of the Womersley problem [24], we consider a periodic
signal at the inflow with a constant section at rest. We consider the following model
coupled with the linear friction term





At+Qx =0,

Qt+

(
Q2

A
+

K

3ρ
√

π
A

3
2

)

x

=
KA

2ρ
√

π
√

A0
(A0)x−C f

Q

A
,

(4.1)

where C f =8πν with ν being the blood viscosity. For the friction term −C f
Q
A , we directly

use its grid point value. We consider this example on the computational domain [0,3]
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subject to the given initial conditions
{

A(x,0)=πR2
0,

Q(x,0)=0,

companied by the following parameters: K=1×108Pa/m, ρ=1060kg/m3, R0=4×10−3m.
We solve this example up to t=25s.

Subsequently, we obtain a damping wave [12]

Q(t,x)=

{
0, if kr x>ωt,

Qampsin(ωt−kr x)ekix, if kr x≤ωt,
(4.2)

with

kr =

[
ω4

c4
0

+

(
ωC f

πR2
0c2

0

)2
] 1

4

cos

(
1

2
arctan

(
− C f

πR2
0ω

))
,

ki =

[
ω4

c4
0

+

(
ωC f

πR2
0c2

0

)2
] 1

4

sin

(
1

2
arctan

(
− C f

πR2
0ω

))
,

w=2π/Tpulse =2π/(0.5s),

c0=

√
k
√

A0

2ρ
√

π
=

√
kR0

2ρ
.

For the treatment of the boundary conditions, we impose the incoming discharge

Qb(t)=Qampsin(wt)m3/s,

at x= 0m with Qamp = 3.45×10−7m3/s being the amplitude of the inflow discharge. As
the flow is subcritical, the discharge is imposed at the outflow boundary, thanks to (4.2)
at x=3m.

In Fig. 7, we present the numerical results against the exact solutions at t= 25s with
different C f . It is obvious that the numerical solutions are in good agreement with the
exact solutions and are comparable with those in [12].

5 Concluding remarks

In this paper, we present a well-balanced finite difference WENO scheme to solve the
blood flow model based on the reformulation of the equation and a novel source term.
The current scheme maintains the well-balanced property for steady state, and at the
same time keeps its original high order accuracy. Extensive numerical examples are car-
ried out to demonstrate the well-balanced property, high order accuracy, and steep shock
transitions of the proposed methods. The research on the finite volume WENO schemes
are ongoing.
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Figure 7: The numerical solutions of the propagation of a pulse to and from an expansion in Section 4.7
on a mesh with 200 cells at t= 25s. The damping of a discharge wave with C f = 0 (a), C f = 0.000022 (b),

C f =0.000202 (c) and C f =0.005053 (d).
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