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Abstract

In this paper, a novel class of exponential Fourier collocation methods (EFCMs) is

presented for solving systems of first-order ordinary differential equations. These so-called

exponential Fourier collocation methods are based on the variation-of-constants formula,

incorporating a local Fourier expansion of the underlying problem with collocation meth-

ods. We discuss in detail the connections of EFCMs with trigonometric Fourier colloca-

tion methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs),

Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an es-

sential extension of these existing methods. We also analyse the accuracy in preserving

the quadratic invariants and the Hamiltonian energy when the underlying system is a

Hamiltonian system. Other properties of EFCMs including the order of approximations

and the convergence of fixed-point iterations are investigated as well. The analysis given

in this paper proves further that EFCMs can achieve arbitrarily high order in a routine

manner which allows us to construct higher-order methods for solving systems of first-

order ordinary differential equations conveniently. We also derive a practical fourth-order

EFCM denoted by EFCM(2,2) as an illustrative example. The numerical experiments

using EFCM(2,2) are implemented in comparison with an existing fourth-order HBVM,

an energy-preserving collocation method and a fourth-order exponential integrator in the

literature. The numerical results demonstrate the remarkable efficiency and robustness of

the novel EFCM(2,2).
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1. Introduction

This paper is devoted to analysing and designing novel and efficient numerical integrators

for solving the following first-order initial value problems

u′(t) +Au(t) = g(t, u(t)), u(0) = u0, t ∈ [0, tend], (1.1)

where g : R × Rd → Rd is an analytic function, A is assumed to be a linear operator on

a Banach space X with a norm ‖·‖, and (−A) is the infinitesimal generator of a strongly

continuous semigroup e−tA on X (see, e.g. [27]). This assumption of A means that there exist

two constants C and ω satisfying

∥∥e−tA
∥∥
X←X

≤ Ceωt, t ≥ 0. (1.2)

An analysis about this result can be found in [27]. It is noted that if X is chosen as X = Rd

or X = C
d, then the linear operator A can be expressed by a d × d matrix. Accordingly in

this case, e−tA is exactly the matrix exponential function. It also can be observed that the

condition (1.2) holds with ω = 0 provided the field of values of A is contained in the right

complex half-plane. In the special and important case where A is skew-Hermitian or Hermitian

positive semidefinite, we have C = 1 and ω = 0 in the Euclidean norm, independently of the

dimension d. If A originates from a spatial discretisation of a partial differential equation, then

the assumption of A leads to temporal convergence results that are independent of the spatial

mesh.

It is known that the exact solution of (1.1) can be represented by the variation-of-constants

formula

u(t) = e−tAu0 +

∫ t

0

e−(t−τ)Ag(τ, u(τ))dτ. (1.3)

For oscillatory problems, the exponential subsumes the full information on linear oscillations.

This class of problems (1.1) frequently rises in a wide variety of applications including engineer-

ing, mechanics, quantum physics, circuit simulations, flexible body dynamics and other applied

sciences (see, e.g. [10,16,24,27,39,41,44,47]). Parabolic partial differential equations with their

spatial discretisations and highly oscillatory problems are two typical examples of the system

(1.1) (see, e.g. [30–34, 42]). Linearizing stiff systems u′(t) = F (t, u(t)) also yields examples of

the form (1.1) (see, e.g. [15, 25, 28]).

Based on the variation-of-constants formula (1.3), the numerical scheme for (1.1) is usually

constructed by incorporating the exact propagator of (1.1) in an appropriate way. For example,

interpolating the nonlinearity at the known value g(0, u0) yields the exponential Euler approx-

imation for (1.3). Approximating the functions arising by rational approximations leads to

implicit or semi-implicit Runge–Kutta methods, Rosenbrock methods or W-schemes. Recently,

the construction, analysis, implementation and application of exponential integrators have been

studied by many researchers, and we refer the reader to [3, 11–13, 16, 37, 45], for example. Ex-

ponential integrators make explicit use of the quantity Au of (1.1), and a systematic survey of

exponential integrators is referred to [27].

Based on Lagrange interpolation polynomials, exponential Runge-Kutta methods of collo-

cation type are constructed and their convergence properties are analysed in [26]. In [40], the

authors developed and researched a novel type of trigonometric Fourier collocation methods

(TFCMs) for second-order oscillatory differential equations q′′(t) + Mq(t) = f(q(t)) with a

principal frequency matrix M ∈ Rd×d. These new trigonometric Fourier collocation methods
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take full advantage of the special structure brought by the linear termMq, and its construction

incorporates the idea of collocation methods, the variation-of-constants formula and the local

Fourier expansion of the system. The results of numerical experiments in [40] showed that the

trigonometric Fourier collocation methods are much more efficient in comparison with some al-

ternative approaches that have previously appeared in the literature. On the basis of the work

in [26,40], in this paper we make an effort to conduct the research of novel exponential Fourier

collocation methods (EFCMs) for efficiently solving first-order differential equations (1.1). The

construction of the novel EFCMs incorporates the exponential integrators, the collocation meth-

ods, and the local Fourier expansion of the system. Moveover, EFCMs can be of an arbitrarily

high order, and when A → 0, EFCMs reduce to the well-known Hamiltonian Boundary Value

methods (HBVMs) which have been studied by many researchers (see, e.g. [6–8]). It is also

shown in this paper that EFCMs are an extension of Gauss methods, Radau IIA methods and

TFCMs.

The paper is organized as follows. We first formulate the scheme of EFCMs in Section 2.

Section 3 discusses the connections of the novel EFCMs with HBVMs, Gauss methods, Radau

IIA methods and TFCMs. In Section 4, we analyse the properties of EFCMs. Section 5 is

concerned with constructing a practical EFCM and reporting four numerical experiments to

demonstrate the excellent qualitative behavior of the novel approximation. Section 6 includes

some conclusions.

2. Formulation of EFCMs

In this section, we present the formulation of exponential Fourier collocation methods

(EFCMs) for systems of first-order differential equations (1.1).

2.1. Local Fourier expansion

We first restrict the first-order differential equations (1.1) to the interval [0, h] with any

h > 0:

u′(t) +Au(t) = g(t, u(t)), u(0) = u0, t ∈ [0, h]. (2.1)

Consider the shifted Legendre polynomials {P̂j}∞j=0 satisfying

∫ 1

0

P̂i(x)P̂j(x)dx = δij , deg
(
P̂j

)
= j, i, j ≥ 0,

where δij is the Kronecker symbol. We then expand the right-hand-side function of (2.1) as

follows:

g(ξh, u(ξh)) =
∞∑

j=0

P̂j(ξ)κj(h, u), ξ ∈ [0, 1]; κj(h, u) :=

∫ 1

0

P̂j(τ)g(τh, u(τh))dτ. (2.2)

The system (2.1) now can be rewritten as

u′(ξh) +Au(ξh) =

∞∑

j=0

P̂j(ξ)κj(h, u), u(0) = u0. (2.3)

The next theorem gives its solution.
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Theorem 2.1. The solution of (2.1) can be expressed by

u(t) = ϕ0(−tA)u0 + t
∞∑

j=0

Ij(tA)κj(t, u), (2.4)

where t ∈ [0, h] and

Ij(tA) :=

∫ 1

0

P̂j(z)e
−(1−z)tAdz =

√
2j + 1

j∑

k=0

(−1)j+k (j + k)!

k!(j − k)!
ϕk+1(−tA). (2.5)

Here the ϕ-functions (see, e.g., [24, 25, 27, 28]) are defined by:

ϕ0(z) = ez, ϕk(z) =

∫ 1

0

e(1−σ)z
σk−1

(k − 1)!
dσ, k = 1, 2, . . . .

Proof. It follows from the variation-of-constants formula (1.3) that

u(t) = e−tAu0 +

∫ t

0

e−(t−τ)Ag(τ, u(τ))dτ

= ϕ0(−tA)u0 + t

∫ 1

0

e−(1−z)tAg(zt, u(zt))dz.

Replacing the function g(zt, u(zt)) in the integral by (2.2) yields

u(t) = ϕ0(−tA)u0 + t

∫ 1

0

e−(1−z)tA
∞∑

j=0

P̂j(z)κj(t, u)dz

= ϕ0(−tA)u0 + t

∞∑

j=0

∫ 1

0

P̂j(z)e
−(1−z)tAdzκj(t, u),

which gives the formula (2.4) by letting Ij(tA) =
∫ 1

0
P̂j(z)e

−(1−z)tAdz.

According to the definition of shifted Legendre polynomials in the interval [0, 1]:

P̂j(x) = (−1)j
√
2j + 1

j∑

k=0

(
j

k

)(
j + k

k

)
(−x)k, j = 0, 1, . . . , x ∈ [0, 1], (2.6)

we arrive at

Ij(tA) =

∫ 1

0

P̂j(z)e
−(1−z)tAdz

=

∫ 1

0

(−1)j
√
2j + 1

j∑

k=0

(
j

k

)(
j + k

k

)
(−z)ke−(1−z)tAdz

=
√
2j + 1

j∑

k=0

(−1)j+k

(
j

k

)(
j + k

k

)∫ 1

0

zke−(1−z)tAdz

=
√
2j + 1

j∑

k=0

(−1)j+k (j + k)!

k!(j − k)!
ϕk+1(−tA).
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2.2. Discretisation

The authors in [8] made use of interpolation quadrature formulae and gave the discretisation

for initial value problems. Following [8], two tools are coupled in this part. We first truncate

the local Fourier expansion after a finite number of terms and then compute the coefficients of

the expansion by a suitable quadrature formula.

We now consider truncating the Fourier expansion, a technique which originally appeared

in [8]. This can be achieved by truncating the series (2.4) after n (n ≥ 2) terms with the stepsize

h and V := hA:

ũ(h) = ϕ0(−V )u0 + h

n−1∑

j=0

Ij(V )κj(h, ũ), (2.7)

which satisfies the following initial value problem:

ũ′(ξh) +Aũ(ξh) =
n−1∑

j=0

P̂j(ξ)κj(h, ũ), ũ(0) = u0.

The key challenge in designing practical methods is how to deal with κj(h, ũ) effectively. To

this end, we introduce a quadrature formula using k abscissae 0 ≤ c1 ≤ . . . ≤ ck ≤ 1 and being

exact for polynomials of degree up to m − 1. It is required that m ≥ k in this paper, and we

note that many existed quadrature formulae satisfy this requirement, such as the well-known

Gauss–Legendre quadrature and the Radau quadrature. We thus obtain an approximation of

the form

κj(h, ũ) ≈
k∑

l=1

blP̂j(cl)g(clh, ũ(clh)), j = 0, 1, . . . , n− 1, (2.8)

where bl for l = 1, 2, . . . , k are the quadrature weights. It is noted that since the number of the

integrals κj(h, ũ) is n, it is assumed that k ≥ n. Therefore, we have m ≥ n.

Consequently, the approximation gives

∆j(h, ũ) := κj(h, ũ)−
k∑

l=1

blP̂j(cl)g(clh, ũ(clh))

=

∫ 1

0

P̂j(τ)g(τh, ũ(τh))dτ −
k∑

l=1

blP̂j(cl)g(clh, ũ(clh)).

Since the quadrature is exact for polynomials of degree m − 1, its remainder depends on the

m-th derivative of the integrand P̂j(τ)g(τh, u(τh)) with respect to τ . Therefore, we obtain

∆j(h, ũ) = C

∫ 1

0

dm
(
P̂j(τ)g(τh, ũ(τh))

)

dτm
|τ=ζω(τ)dτ,

where C is a constant, ζ (ζ ∈ [0, 1]) depends on τ , and ω(τ) =
k∏

i=1

(τ − ci). Taking account of

P̂
(k)
j (τ) = 0 for k > j, we obtain, for 0 ≤ j ≤ n− 1,

∆j(h, ũ) =C

∫ 1

0

P̂j(ζ)ĝ
(m)(ζh)ω(τ)dτhm + Cm

∫ 1

0

P̂ ′j(ζ)ĝ
(m−1)(ζh)ω(τ)dτhm−1

+ · · ·+ C

(
m

j

)∫ 1

0

P̂
(j)
j (ζ)ĝ(m−j)(ζh)ω(τ)dτhm−j = O(hm−j),
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with the notation ĝ(k)(ζh) = g(k)(ζh, ũ(ζh)). This guarantees that each ∆j(h, ũ) has good

accuracy for any j = 0, 1, . . . , n − 1. Choosing k large enough, along with a suitable choice of

cl, bl for l = 1, 2, . . . , k, allows us to approximate the given integral κj(h, ũ) to any degree of

accuracy.

With (2.7) and (2.8), it is natural to consider the following numerical scheme

v(h) = ϕ0(−V )u0 + h

n−1∑

j=0

Ij(V )

k∑

l=1

blP̂j(cl)g(clh, v(clh)),

which exactly solves the initial value problem as follows:

v′(ξh) = −Av(ξh) +
n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh)), v(0) = u0. (2.9)

It follows from (2.9) that v(cih) for i = 1, 2, . . . , k satisfy the following first-order differential

equations:

v′(cih) +Av(cih) =

n−1∑

j=0

P̂j(ci)

k∑

l=1

blP̂j(cl)g(clh, v(clh)), v(0) = u0. (2.10)

Letting vi = v(cih), (2.10) can be solved by the variation-of-constants formula (1.3) of the form:

vi =ϕ0(−ciV )u0 + cih

n−1∑

j=0

Ij,ci(V )

k∑

l=1

blP̂j(cl)g(clh, vl), i = 1, 2, . . . , k,

where

Ij,ci(V ) :=

∫ 1

0

P̂j(ciz)e
−(1−z)ciV dz

=

∫ 1

0

(−1)j
√
2j + 1

j∑

k=0

(
j

k

)(
j + k

k

)
(−ciz)ke−(1−z)ciV dz

=(−1)j
√
2j + 1

j∑

k=0

(−ci)k
(
j

k

)(
j + k

k

)∫ 1

0

zke−(1−z)ciV dz

=(−1)j
√
2j + 1

j∑

k=0

(−ci)k
(j + k)!

k!(j − k)!
ϕk+1(−ciV ).

(2.11)

2.3. The exponential Fourier collocation methods

We are now in a position to present the novel exponential Fourier collocation methods for

systems of first-order differential equations (1.1).

Definition 2.1. The k-stage exponential Fourier collocation method with an integer n (denoted

by EFCM(k,n)) for integrating systems of first-order differential equations (1.1) is defined by

vi = ϕ0(−ciV )u0 + cih

k∑

l=1

bl

( n−1∑

j=0

Ij,ci(V )P̂j(cl)
)
g(clh, vl), i = 1, . . . , k, (2.12a)
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v(h) = ϕ0(−V )u0 + h

k∑

l=1

bl

( n−1∑

j=0

Ij(V )P̂j(cl)
)
g(clh, vl), (2.12b)

where h is the stepsize, V := hA, P̂j for j = 0, 1, . . . , n − 1 are defined by (2.6), and cl, bl
for l = 1, 2, . . . , k are the node points and the quadrature weights of a quadrature formula,

respectively. Here, n is an integer which is required to satisfy the condition: 2 ≤ n ≤ k. Ij(V )

and Ij,ci(V ) are determined by

Ij(V ) =
√
2j + 1

j∑

k=0

(−1)j+k (j + k)!

k!(j − k)!
ϕk+1(−V ),

Ij,ci(V ) = (−1)j
√
2j + 1

j∑

k=0

(−ci)k
(j + k)!

k!(j − k)!
ϕk+1(−ciV ).

Remark 2.1. Clearly, it can be observed that the EFCM(k,n) defined by (2.12) exactly inte-

grates the homogeneous linear system u′+Au = 0, thus it is trivially A-stable. The EFCM(k,n)

(2.12) approximates the solution of (1.1) in the time interval [0, h]. Obviously, the obtained

result v(h) can be considered as the initial condition for a new initial value problem and u(t)

can be approximated in the time interval [h, 2h]. In general, the EFCM(k,n) can be extended to

the approximation of the solution in an arbitrary interval [0, Nh], where N is a positive integer.

Remark 2.2. The novel EFCM(k,n) (2.12) developed here is a kind of exponential integrator

which requires the approximation of products of ϕ-functions with vectors. It is noted that

if A has a simple structure, it is possible to compute the ϕ-functions in a fast and reliable

way. Moveover, many different approaches to evaluating this action in an efficient way have

been proposed in the literature, see, e.g. [1, 2, 4, 22, 23, 27, 35, 36]. Furthermore, all the matrix

functions appearing in the EFCM(k,n) (2.12) only need to be calculated once in the actual

implementation for the given stepsize h. In Section 5, we will compare our novel methods with

some traditional collocation methods (which do not require the evaluation of matrix functions)

by four experiments. For each problem, we will display the work precision diagram in which

the global error is plotted versus the execution time. The numerical results given in Section 5

demonstrate the efficiency of our novel approximation.

3. Connections with Some Existing Methods

So far various effective methods have been developed for solving first-order differential equa-

tions and this section is devoted to exploring the connections between our novel EFCMs and

some other existing methods in the literature. It turns out that some existing traditional meth-

ods can be gained by letting A → 0 in the corresponding EFCMs or by applying EFCMs to

special second-order differential equations.

3.1. Connections with HBVMs and Gauss methods

Hamiltonian Boundary Value methods (HBVMs) are an interesting class of integrators,

which exactly preserve energy of polynomial Hamiltonian systems (see, e.g., [6–8]). We first

consider the connection between EFCMs and HBVMs.
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It can be observed that from (2.11) that when A→ 0, Ij(V ) and Ij,ci(V ) in (2.12) become

Ĩj := Ij(0) =

∫ 1

0

P̂j(z)dz =

{
1, j = 0,

0, j ≥ 1,

Ĩj,ci := Ij,ci(0) =

∫ 1

0

P̂j(ciz)dz.

This can be summed up in the following result.

Theorem 3.1. When A→ 0, the EFCM(k,n) defined by (2.12) reduces to

vi =u0 + cih
k∑

l=1

bl

( n−1∑

j=0

Ĩj,ci P̂j(cl)
)
g(clh, vl), i = 1, 2, . . . , k,

v(h) = u0 + h

k∑

l=1

blg(clh, vl),

(3.1)

which can be rewritten as a k-stage Runge-Kutta method with the following Butcher tableau

c1
... Ā = (āij)k×k =

(
bj

n−1∑
l=0

P̂l(cj)
∫ ci

0
P̂l(τ)dτ

)
k×k

ck

b1 · · · bk

(3.2)

This method is exactly the Hamiltonian Boundary Value Method HBVM(k,n) using the discreti-

sation researched in [6–8] for the first-order system

u′(t) = g(t, u(t)), u(0) = u0.

From the property of HBVM(k,n) given in [8], it follows that HBVM(k,k) reduces to a k-

stage Gauss-Legendre collocation method when a Gaussian distribution of the nodes (c1, · · · , ck)
is used. In view of this and as an straightforward consequence of Theorem 3.1, we obtain the

connection between EFCMs and Gauss methods. This result is described below.

Theorem 3.2. Under the condition that cl, bl for l = 1, 2, . . . , k are chosen respectively as the

node points and the quadrature weights of a k-point Gauss–Legendre quadrature over the interval

[0, 1], then the EFCM(k,k) defined by (2.12) reduces to the k-stage Gauss method presented

in [20] when A→ 0.

3.2. Connection between EFCMs and Radau IIA methods

The following theorem states the connection between EFCMs and Radau IIA methods.

Theorem 3.3. Choose cl, bl for l = 1, 2, . . . , k respectively as the node points and the weights

of the Radau-right quadrature formula. Then the EFCM(k,k) defined by (2.12) reduces to a

k-stage Radau IIA method presented in [18] when A→ 0.
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Proof. It follows from Theorem 3.1 that when A → 0, the EFCM(k,k) defined by (2.12)

reduces to (3.1) with n = k. According to [18], the shifted Legendre polynomials {P̂j}∞j=0

satisfy the following integration formulae
∫ x

0

P̂0(t)dt = ξ1P̂1(x) +
1

2
P̂0(x),

∫ x

0

P̂m(t)dt = ξm+1P̂m+1(x) − ξmP̂m−1(x), m = 1, . . . , k − 2,

∫ x

0

P̂k−1(t)dt = βkP̂k−1(x) − ξk−1P̂k−2(x),

where

ξm =
1

2
√
4m2 − 1

, βk =
1

4k − 2
.

These formulae imply

Ā =




∫ c1

0
P̂0(τ)dτ . . .

∫ c1

0
P̂k−1(τ)dτ

...
...∫ ck

0 P̂0(τ)dτ . . .
∫ ck
0 P̂k−1(τ)dτ







b1P̂0(c1) . . . bsP̂0(cs)
...

...

b1P̂k−1(c1) . . . bsP̂k−1(cs)




=WXkQ,

where the matrix W is defined by

ωij = P̂j−1(ci), i, j = 1, . . . , k,

and the matrices Xk, Q are determined by

Xk =




1
2 −ξ1
ξ1 0 −ξ2

. . .
. . .

. . .

ξk−2 0 −ξk−1
ξk−1 βk



, Q =




b1P̂0(c1) . . . bsP̂0(cs)
...

...

b1P̂k−1(c1) . . . bsP̂k−1(cs)


 . (3.3)

Based on the fact that the Radau-right quadrature formula is of order 2k−1, we obtain that

polynomials P̂m(x)P̂n(x) (m + n ≤ 2k − 2) are integrated exactly by this quadrature formula,

i.e.,
k∑

i=1

biP̂m(ci)P̂n(ci) =

∫ 1

0

P̂m(x)P̂n(x)dx = δmn,

which means WQ = I. Therefore,

Ā =WXkW
−1.

Consequently, (3.2) now becomes

c1
... Ā =WXkW

−1

ck

b1 · · · bk

which is exactly the same as the scheme of Radau IIA method presented in [5] by using the

W-transformation.
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3.3. Connection between EFCMs and TFCMs

A novel type of trigonometric Fourier collocation methods (TFCMs) for second-order oscil-

latory differential equations

q′′(t) +Mq(t) = f(q(t)), q(0) = q0, q′(0) = q′0 (3.4)

has been developed and researched in [40]. These methods can attain arbitrary algebraic order

in a very simple way, which is very important for solving systems of second-order oscillatory

ODEs. This part is devoted to clarifying the connection between EFCMs and TFCMs.

We apply the TFCMs presented in [40] to (3.4) and denote the numerical solution by

(vT , uT )
⊺. According to the analysis in [40], it is known that the numerical solution satis-

fies the following differential equation

(
vT (ξh)

uT (ξh)

)′
=




uT (ξh)

−MvT (ξh) +
n−1∑
j=0

P̂j(ξ)
k∑

l=1

blP̂j(cl)f(vT (clh))


 (3.5)

with the initial value
(
vT (0), uT (0)

)⊺
= (q0, q

′
0)

⊺.

By appending the equation q′ = p, the system (3.4) can be turned into

(
q(t)

p(t)

)′
+

(
0 −I
M 0

)(
q(t)

p(t)

)
=

(
0

f(q(t))

)
,

(
q(0)

p(0)

)
=

(
q0
q′0

)
. (3.6)

We apply the EFCM(k,n) defined by (2.12) to the first-order differential equations (3.6) and

denote the corresponding numerical solution by (vE , uE)
⊺. From the formulation of EFCMs

presented in Section 2, it follows that (vE , uE)
⊺ is the solution of the system

(
vE(ξh)

uE(ξh)

)′
+

(
0 −I
M 0

)(
vE(ξh)

uE(ξh)

)
=




0
n−1∑
j=0

P̂j(ξ)
k∑

l=1

blP̂j(cl)f(vE(clh))


 (3.7)

with the initial value
(
vE(0), uE(0)

)⊺
= (q0, q

′
0)

⊺.

It is obvious that the system (3.7) as well as the initial condition is exactly the same as

(3.5). Therefore, we obtain the following theorem.

Theorem 3.4. The EFCM(k,n) defined by (2.12) reduces to a trigonometric Fourier collocation

method given in [40] when it is applied to solve the special first-order differential equations (3.6),

namely, the second-order oscillatory differential equations (3.4).

Remark 3.1. It follows from Theorems 3.1–3.4 that EFCMs are an effective extension of HB-

VMs, Gauss methods, Radau IIA methods and TFCMs. Consequently, EFCMs can be regarded

as a generalization of these existing methods in the literature.
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4. Properties of EFCMs

In this section, we turn to analysing the properties of EFCMs, including their accuracy in

preserving the Hamiltonian energy and the quadratic invariants once the underlying problem

is a Hamiltonian system, their algebraic order and convergence condition of the fixed-point

iteration.

The following result is needed in our analysis, and its proof can be found in [8].

Lemma 4.1. Let f : [0, h] → Rd have j continuous derivatives in the interval [0, h]. Then, we

obtain
∫ 1

0
P̂j(τ)f(τh)dτ = O(hj).

As a consequence of this lemma, we have

κj(h, v) =

∫ 1

0

P̂j(τ)g(τh, v(τh))dτ = O(hj).

4.1. The Hamiltonian case

Consider the following initial-value Hamiltonian systems

u′(t) = J∇H(u(t)), u(0) = u0 (4.1)

with the Hamiltonian function H(u) and the skew-symmetric matrix J . Under the condition

that

J∇H(u(t)) = g(t, u(t))−Au(t), (4.2)

the Hamiltonian systems (4.1) are identical to the first-order initial value problems of the form

(1.1). The following is an important example (see, e.g. [14, 40]):

H(p, q) =
1

2
p⊺p+

1

2
q⊺Mq + U(q),

where M is a symmetric and positive semi-definite matrix, and U is a smooth potential with

moderately bounded derivatives. This kind of Hamiltonian system frequently arises in ap-

plied mathematics, molecular biology, electronics, chemistry, astronomy, classical mechanics

and quantum physics, and it can be expressed by the following differential equation:

(
q

p

)′
+

(
0 −I
M 0

)(
q

p

)
=

(
0

−∇U(q)

)
,

which is exactly a first-order differential system of the form (1.1).

In what follows, we are concerned with the order of preserving the Hamiltonian energy when

EFCMs are applied to solve the Hamiltonian system (4.1)–(4.2).

Theorem 4.1. Let the quadrature formula in (2.12) be exact for polynomials of degree up to

m− 1. Then, for the EFCM(k,n) when applied to the Hamiltonian system (4.1)–(4.2), we have

H(v(h)) = H(u0) +O(hr+1) with r = min{m, 2n}.
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Proof. It follows from (2.9) and (4.2) that

H(v(h))−H(u0) = h

∫ 1

0

∇H(v(ξh))⊺v′(ξh)dξ

=h

∫ 1

0

∇H(v(ξh))⊺
( n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))−Av(ξh)

)
dξ

=h

∫ 1

0

(
g(v(ξh)) −Av(ξh)

)⊺

J

( n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))−Av(ξh)

)
dξ

=h

∫ 1

0

(
g(v(ξh)) −Av(ξh)

)⊺

J

(
g(v(ξh)) −Av(ξh)

+

n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))− g(v(ξh))

)
dξ

=h

∫ 1

0

(
g(v(ξh)) −Av(ξh)

)⊺

J
(
g(v(ξh))−Av(ξh)

)
dξ

+ h

∫ 1

0

(
g(v(ξh))−Av(ξh)

)⊺

J

( n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))− g(v(ξh))

)
dξ.

Since J is skew-symmetric, we have

∫ 1

0

(
g(v(ξh)) −Av(ξh)

)⊺

J
(
g(v(ξh))−Av(ξh)

)
dξ = 0.

Thus

H(v(h))−H(u0)

=h

∫ 1

0

∇H(v(ξh))T
( n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))− g(v(ξh))

)
dξ

=h

∫ 1

0

∇H(v(ξh))T
( n−1∑

j=0

P̂j(ξ)
k∑

l=1

blP̂j(cl)g(clh, v(clh))−
+∞∑

j=0

P̂j(ξ)κj(h, v)

)
dξ

=− h

∫ 1

0

∇H(v(ξh))T
( n−1∑

j=0

P̂j(ξ)∆j(h, v) +

+∞∑

j=n

P̂j(ξ)κj(h, v)

)
dξ

=− h

n−1∑

j=0

∫ 1

0

∇H(v(ξh))T P̂j(ξ)dξ∆j(h, v)− h

+∞∑

j=n

∫ 1

0

∇H(v(ξh))T P̂j(ξ)dξκj(h, v).

From Lemma 4.1, we have

H(v(h))−H(u0)

=− h

n−1∑

j=0

O(hj × hm−j)− h

∞∑

j=n

O(hj × hj) = O(hm+1) +O(h2n+1),

which shows the result of the theorem. �
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4.2. The quadratic invariants

Quadratic invariants appear often in applications and we thus pay attention to the quadratic

invariants of (1.1) in this subsection. Consider the following quadratic function

Q(u) = u⊺Cu

with a symmetric square matrix C. It is an invariant of (1.1) provided u⊺C(g(t, u)− Au) = 0

holds.

Theorem 4.2. Let the quadrature formula in (2.12) be exact for polynomials of degree up to

m− 1, then

Q(v(h)) = Q(u0) +O(hr+1) with r = min{m, 2n}.

Proof. It follows from the definition of quadratic function Q that

Q(v(h)) −Q(u0)

=

∫ 1

0

dQ(v(ξh)) =

∫ 1

0

dQ(v(ξh))

dξ
dξ = 2h

∫ 1

0

v⊺(ξh)Cv′(ξh)dξ

=2h

∫ 1

0

v⊺(ξh)C

( n−1∑

j=0

P̂j(ξ)
k∑

l=1

blP̂j(cl)g(clh, v(clh))−Av(ξh)

)
dξ

=2h

∫ 1

0

v⊺(ξh)C

(
g(ξh, v(ξh)) −Av(ξh)

+

n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))− g(ξh, v(ξh))

)
dξ.

Since u⊺C(g(t, u)−Au) = 0, we obtain

Q(v(h))−Q(u0)

=2h

∫ 1

0

v⊺(ξh)C

( n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))− g(ξh, v(ξh))

)
dξ

=− 2h

∫ 1

0

v⊺(ξh)C

( n−1∑

j=0

P̂j(ξ)∆j(h, v) +

+∞∑

j=n

P̂j(ξ)κj(h, v)

)
dξ

=− 2h

n−1∑

j=0

∫ 1

0

v⊺(ξh)P̂j(ξ)dξC∆j(h, v)− 2h

+∞∑

j=n

∫ 1

0

v⊺(ξh)P̂j(ξ)dξCκj(h, v)

=− 2h

n−1∑

j=0

O(hj × hm−j)− 2h

∞∑

j=n

O(hj × hj) = O(hm+1) +O(h2n+1),

which proves the theorem. �
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4.3. Algebraic order

As the importance of different qualitative features, a discussion of the qualitative theory of

the underlying ODEs is given. Therefore, in this subsection, we analyse the algebraic order of

EFCMs in preserving the accuracy of the solution u(t).

To express the dependence of the solutions of

u′(t) = g(t, u(t))−Au(t)

on the initial values, we denote by u(·, t̃, ũ) the solution satisfying the initial condition u(t̃, t̃, ũ) =

ũ for any given t̃ ∈ [0, h] and set

Φ(s, t̃, ũ) =
∂u(s, t̃, ũ)

∂ũ
. (4.3)

Recalling the elementary theory of ordinary differential equations, we have the following stan-

dard result (see, e.g., [21])

∂u(s, t̃, ũ)

∂t̃
= −Φ(s, t̃, ũ)(g(t̃, ũ)−Aũ). (4.4)

The following theorem states the result on the algebraic order of the novel EFCMs.

Theorem 4.3. Let the quadrature formula in (2.12) be exact for polynomials of degree up to

m− 1. Then we have

u(h)− v(h) = O(hr+1) with r = min{m, 2n},

for the EFCM(k,n) defined by (2.12).

Proof. It follows from Lemma 4.1, (4.3) and (4.4) that

u(h)− v(h) = u(h, 0, u0)− u
(
h, h, v(h)

)
= −

∫ h

0

du
(
h, τ, v(τ)

)

dτ
dτ

=−
∫ h

0

[∂u
(
h, τ, v(τ)

)

∂t̃
+
∂u

(
h, τ, v(τ)

)

∂ũ
v′(τ)

]
dτ

=h

∫ 1

0

Φ
(
h, ξh, v(ξh)

)[
g
(
ξh, v(ξh)

)
− Av(ξh)− v′(ξh)

]
dξ

=h

∫ 1

0

Φ
(
h, ξh, v(ξh)

)[+∞∑

j=0

P̂j(ξ)κj(h, v)−Av(ξh)

−
n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh)) +Av(ξh)

]
dξ

=h

∫ 1

0

Φ
(
h, ξh, v(ξh)

)[+∞∑

j=0

P̂j(ξ)κj(h, v)−
n−1∑

j=0

P̂j(ξ)

k∑

l=1

blP̂j(cl)g(clh, v(clh))

]
dξ

=h

∫ 1

0

Φ
(
h, ξh, v(ξh)

)[ +∞∑

j=n

P̂j(ξ)κj(h, v) +

n−1∑

j=0

P̂j(ξ)∆j(h, v)

]
dξ
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=h

+∞∑

j=n

∫ 1

0

Φ
(
h, ξh, v(ξh)

)
P̂j(ξ)dξκj(h, v) + h

n−1∑

j=0

∫ 1

0

Φ
(
h, ξh, v(ξh)

)
P̂j(ξ)dξ∆j(h, v)

=h

( ∞∑

j=n

O(hj × hj) +

n−1∑

j=0

O(hj × hm−j)

)
= O(h2n+1) +O(hm+1)

=O(hmin{m,2n}+1).

The proof is complete. �

Remark 4.1. This result means that choosing a suitable quadrature formula as well as a

suitable value of n in (2.12) can yield an EFCM of arbitrarily high order. This manipulation is

very simple and convenient, and it opens up a new possibility to construct higher–order EFCMs

in a simple and routine manner.

Remark 4.2. It is well known that rth-order numerical methods can preserve the Hamiltonian

energy or the quadratic invariant with at least rth degree of accuracy, but unfortunately it

follows from the analysis of Subsections 4.1 and 4.2 that our methods preserve the Hamiltonian

energy and the quadratic invariant with only rth degree of accuracy.

4.4. Convergence condition of the fixed-point iteration

It is worthy noting that usually the EFCM(k,n) defined by (2.12) constitutes of a system of

implicit equations for the determination of vi, and the iterative computation is required. In this

paper, we only consider using the fixed-point iteration in practical computation. Other iteration

methods such as waveform relaxation methods, Krylov subspace methods and preconditioning

will be analysed in a future research. For the convergence of the fixed-point iteration for the

EFCM(k,n) (2.12), we have the following result.

Theorem 4.4. Assume that g satisfies a Lipschitz condition in the variable u, i.e. there exists

a constant L with the property:

‖g(t, u1)− g(t, u2)‖ ≤ L ‖u1 − u2‖ .

If

0 < h <
1

LCr2(eω−1)
ω

max
i,j=1,··· ,k

ci|bj |
, (4.5)

then the fixed-point iteration for the EFCM(k,n) (2.12) is convergent. Here, C and ω are

constants independent of A. For a quadrature formula, generally speaking, not all of the node

points ci (i = 1, . . . , k) are equal to zero, and this ensures that max
i,j=1,··· ,k

ci|bj | 6= 0.

Proof. Following Definition 2.1, the first formula of (2.12) can be rewritten as

Q = e−cV u0 + hA(V )g(ch,Q), (4.6)

where c = (c1, . . . , ck)
⊺, Q = (v1, . . . , vk)

⊺, A(V ) = (aij(V ))k×k and aij(V ) are defined as

aij(V ) := cibj

n−1∑

l=0

Il,ci(V )P̂l(cj).
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It follows from (2.6) that |P̂j | ≤
√
2j + 1. We then obtain

‖aij(V )‖ ≤ ci|bj |
n−1∑

l=0

√
2l+ 1

∫ 1

0

|P̂l(ciz)|
∥∥∥e−(1−z)ciV

∥∥∥ dz

≤ ci|bj |
n−1∑

l=0

(2l+ 1)

∫ 1

0

∥∥∥e−(1−z)ciV
∥∥∥ dz.

Furthermore, we get

‖aij(V )‖ ≤ ci|bj |
n−1∑

l=0

(2l + 1)C

∫ 1

0

eω(1−z)dz = Cci|bj |r2(eω − 1)/ω,

which yields

‖A(V )‖ ≤ Cr2(eω − 1)

ω
max

i,j=1,··· ,k
ci|bj|.

Let

ϕ(x) = e−cV u0 + hA(V )g(ch, x).

Then we have

‖ϕ(x) − ϕ(y)‖ = ‖hA(V )g(ch, x)− hA(V )g(ch, y)‖ ≤ hL ‖A(V )‖ ‖x− y‖

≤ hL
Cr2(eω − 1)

ω
max

i,j=1,··· ,k
ci|bj| ‖x− y‖ ,

which shows that ϕ(x) is a contraction under the assumption (4.5). The well-known Contraction

Mapping Theorem then ensures the convergence of the fixed-point iteration. �

In what follows, we discuss the convergence of the fixed-point iteration for the HBVM(k,n)

(3.1) for solving (1.1). When the HBVM(k,n) (3.1) is applied to solve

u′(t) = g(t, u(t))−Au(t), u(0) = u0,

the scheme of HBVM(k,n) becomes

vi = u0 + cih

k∑

l=1

bl

( n−1∑

j=0

Ĩj,ciP̂j(cl)

)
(g(clh, vl)−Avl), i = 1, . . . , k,

v(h) = u0 + h
k∑

l=1

bl(g(clh, vl)−Avl). (4.7)

The first formula of (4.7) is also implicit and it requires the iterative computation as well. Under

the assumption that g satisfies a Lipschitz condition in the variable u, in order to analyse the

convergence for the fixed-point iteration for the formula (4.7), we denote the iterative function

by

ψ(x) = u0 + hÃ(g(ch, x)−Ax),
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where Ã = (ãij)k×k and ãij = cibj
n−1∑
l=0

Ĩl,ci P̂l(cj). Then we have

‖ψ(x) − ψ(y)‖ =
∥∥∥hÃ(g(ch, x)−Ax) − hÃ(g(ch, y)−Ay)

∥∥∥

≤ hL
∥∥∥Ã

∥∥∥ ‖x− y‖+ h
∥∥∥Ã

∥∥∥ ‖A‖ ‖x− y‖

≤ h(L+ ‖A‖) max
i,j=1,··· ,k

|ãij | ‖x− y‖ ,

which means that if

0 < h <
1

(L+ ‖A‖) max
i,j=1,··· ,k

|ãij |
,

then, the fixed-point iteration for the HBVM(k,n) is convergent.

Remark 4.3. It is very clear that the convergence of HBVM(k,n) when applied to u′(t) =

g(u(t))−Au(t) depends on ‖A‖ , and the larger ‖A‖ becomes, the smaller the stepsize is required.

Whereas, it is of prime importance to note that from (4.5), the convergence of EFCM(k,n) is

independent of ‖A‖. This fact implies that EFCMs have the better convergence condition

than HBVMs, especially when ‖A‖ is large, such as when the problem (1.1) is a stiff system.

This point will be numerically demonstrated by the experiments carried out in next section.

We also note that an efficient implementation of HBVMs has been considered in [7] and this

technique is suitable for stiff first–order and second–order problems.

5. A Practical EFCM and Numerical Experiments

As an illustrative example of EFCMs, we choose the 2-point Gauss–Legendre quadrature as

the quadrature formula in (2.12), that is exact for all polynomials of degree ≤ 3. This means

that k = 2 in the k-point Gauss–Legendre quadrature and this case gives

c1 =
3−

√
3

6
, c2 =

3+
√
3

6
, b1 =

1

2
, b2 =

1

2
. (5.1)

Then we choose n = 2 in (2.12) and denote the corresponding exponential Fourier collocation

method as EFCM(2,2). After some calculations, the scheme of this method can be expressed

by

v1 = ϕ0(−c1V )u0 +
h

6

(√
3ϕ1(−c1V ) + (3− 2

√
3)ϕ2(−c1V )

)
g(c1h, v1)

+
3− 2

√
3

6
h
(
ϕ1(−c1V )− ϕ2(−c1V )

)
g(c2h, v2), (5.2a)

v2 = ϕ0(−c2V )u0 +
3 + 2

√
3

6
h
(
ϕ1(−c2V )− ϕ2(−c2V )

)
g(c1h, v1)

+
h

6

(
−
√
3ϕ1(−c2V ) + (3 + 2

√
3)ϕ2(−c2V )

)
g(c2h, v2), (5.2b)

v(h) = ϕ0(−V )u0 +
h

2

(
(1 +

√
3)ϕ1(−V )− 2

√
3ϕ2(−V )

)
g(c1h, v1)
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+
h

2

(
(1 −

√
3)ϕ1(−V ) + 2

√
3ϕ2(−V )

)
g(c2h, v2). (5.2c)

When A → 0, the method EFCM(2,2) reduces to HBVM(2,2) given in [8], which coincides

with the two-stage Gauss method given in [20]. Various examples of EFCMs can be obtained

by choosing different quadrature formula and different values of n, and we do not go further on

this point in this paper for brevity.

In order to show the efficiency and robustness of the fourth order method EFCM(2,2), the

integrators we select for comparisons are also of order four and we denote them as follows:

• EFCM(2,2): the EFCM(2,2) method of order four derived in this section;

• HBVM(2,2): the Hamiltonian Boundary Value Method of order four in [8] which coincides

with the two-stage Gauss method in [20];

• EPCM5s4: the fourth-order energy-preserving collocation method (the case s = 2) in

[17] with the integrals approximated by the Lobatto quadrature of order eight, which is

precisely the “extended Labatto IIIA method of order four” in [29];

• EERK5s4: the explicit five-stage exponential Runge–Kutta method of order four derived

in [25].

It is noted that the first three methods are implicit and we use one fixed-point iteration in

the practical computations for showing the work precision diagram (the gloal error versus the

execution time) as well as energy conservation for a Hamiltonian system. For each problem,

we also present the requisite total numbers of iterations for implicit methods when choosing

different error tolerances in the fixed-point iteration. In all the numerical experiments, the

matrix exponential is calculated by the algorithm given in [1].

Problem 1. We first consider the Hénon-Heiles Model which is created for describing stellar

motion (see, e.g., [9, 20]). The Hamiltonian function of the system is given by

H(p, q) =
1

2
(p21 + p22) +

1

2
(q21 + q22) + q21q2 −

1

3
q32 .

This is identical to the following first-order differential equations




q1

q2

p1

p2




′

+




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0







q1

q2

p1

p2




=




0

0

−2q1q2

−q21 + q22



.

The initial values are chosen as

(
q1(0), q2(0), p1(0), p2(0)

)⊺
=

(√
11

96
, 0, 0,

1

4

)⊺

.

It is noted that we use the result of the standard ODE45 in MATLAB as the true solution for

this problem and the next problem. We first solve the problem in the interval [0, 1000] with

different stepsizes h = 1/2i, i = 2, 3, 4, 5. The work-precision diagram is presented in Figure

5.1 (i). Then, we integrate this problem with the stepsize h = 1.5 in the interval [0, 3000]. See
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Table 5.1: Results for Problem 1. The total numbers of iterations for different error tolerances (tol).

Methods tol = 10−6 tol = 10−8 tol = 10−10 tol = 10−12

EFCM(2,2) 2000 2000 2000 3000

HBVM(2,2) 2000 3000 3769 4000

EPCM5s4 2000 3000 4000 4999
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Problem 1: the work−precision diagram
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Problem 1: energy conservation

 

 

EFCM(2,2)
HBVM(2,2)
EPCM5s4
EERK5s4

(i) (ii)

Fig. 5.1. Results for Problem 1. (i): The log-log plot of the maximum global error (GE) over the

integration interval against the execution time. (ii): The logarithm of the global error of Hamiltonian

GEH = |Hn −H0| against t.

Figure 5.1 (ii) for the energy conservation for different methods. We also solve the problem in

[0, 10] with h = 0.01 by the three implicit methods and display the total numbers of iterations

in Table 5.1 for different error tolerances (tol) chosen in the fixed-point iteration.

Problem 2. The Fermi–Pasta–Ulam problem is an important model for simulations in statis-

tical mechanics which is considered in [14, 19, 20, 43, 46]. It is a Hamiltonian system with the

Hamiltonian

H(x, y) =
1

2

2m∑
i=1

y2i +
ω2

2

m∑
i=1

x2m+i +
1

4

[
(x1 − xm+1)

4

+
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i)
4 + (xm + x2m)4

]
.

This results in

(
x

y

)′
+

(
02m×2m −I2m
M 02m×2m

)(
x

y

)
=

(
0

−∇U(x)

)
, t ∈ [0, tend], (5.3)

where

M =

(
0m×m 0m×m

0m×m ω2Im×m

)
,

U(x) =
1

4

[
(x1 − xm+1)

4 +
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i)
4 + (xm + x2m)4

]
.
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Table 5.2: Results for Problem 2. The total numbers of iterations for different error tolerances (tol).

Methods tol = 10−6 tol = 10−8 tol = 10−10 tol = 10−12

EFCM(2,2) 2000 2080 2998 3027

HBVM(2,2) 6801 9291 10980 13912

EPCM5s4 9937 11925 14844 16945
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Fig. 5.2. Results for Problem 2. (i): The log-log plot of the maximum global error (GE) over the

integration interval against the execution time. (ii): The logarithm of the global error of Hamiltonian

GEH = |Hn −H0| against t.

We choose

m = 3, ω = 50, x1(0) = 1, y1(0) = 1, x4(0) =
1

ω
, y4(0) = 1,

and choose zero for the remaining initial values. The system is integrated in the interval [0, 10]

with the stepsizes h = 1/2k, k = 3, 4, 5, 6. We plot the work-precision diagram in Figure 5.2

(i). Then, we solve this problem in the interval [0, 1000] with the stepsize h = 1/10 and present

the energy conservation in Figure 5.2 (ii). Here, it is noted that we do not plot some points

in Figure 5.2 when the errors of the corresponding numerical results are too large. Similar

situation occurs in the next two problems. Furthermore, we solve the problem in [0, 10] with

h = 0.01 to show the convergence rate of iterations for the three implicit methods. Table 5.2

lists the total numbers of iterations for different error tolerances.

Problem 3. Consider the semilinear parabolic problem (which has been considered in [25])

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) +

1

1 + u(x, t)2
+Φ(x, t)

for x ∈ [0, 1] and t ∈ [0, 1], subject to homogeneous Dirichlet boundary conditions. The source

function Φ(x, t) is chosen in such a way that the exact solution of the problem is u(x, t) =

x(1 − x)et.

We discretise this problem in space by using second-order symmetric differences with 1000

grid points. The problem is solved in the interval [0, 1] with different stepsizes h = 1/2i, i =
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Table 5.3: Results for Problem 3. The total numbers of iterations for different error tolerances (tol).

Methods tol = 10−6 tol = 10−8 tol = 10−10 tol = 10−12

EFCM(2,2) 40 50 60 73

HBVM(2,2) 86 86 86 86

EPCM5s4 87 87 87 87

1.7 1.8 1.9 2 2.1
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Problem 3: the work−precision diagram
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Fig. 5.3. Results for Problem 3. The log-log plot of the maximum global error (GE) over the integration

interval against the execution time.

2, 3, 4, 5. The work-precision diagram is presented in Figure 5.3. Then, the problem is solved

in [0, 1] with h = 1
10 to show the convergence rate of iterations. See Table 5.3 for the total

numbers of iterations for different error tolerances.

Problem 4. In what follows, we consider a stiff partial differential equation: Allen–Cahn

equation. Allen–Cahn equation (see, e.g., [15,32]) is from the area of reaction-diffusion systems

and it is

ut − ǫuxx = u− u3, x ∈ [−1, 1]

with ǫ = 0.01 and initial conditions

u(x, 0) = 0.53x+ 0.47 sin(−1.5πx), u(−1, t) = −1, u(1, t) = 1.

We use a 30-point Chebyshev spectral method and then yield a system of ordinary differential

equations

Ut −AU = U − U3.

We apply the MATLAB function cheb from [38] for generation of the grid and obtain the

differentiation matrix A. Note that the differentiation matrix A in this example is full.

First, we solve this problem in the interval [0, 70] with different stepsizes h = 1
100 ,

1
200 ,

1
500 .

Time evolution for Allen-Cahn equation of different methods are presented in Figures 5.4 and

5.5. It is noted that the numerical results of HBVM(2,2) and EPCM5s4 are too large for

some stepsizes and thus there is no picture for this case, which means that these methods

cannot provide a satisfying simulation for this problem. It can be observed from Figure 5.5

that EERK5s4 does not produce a satisfying approximation uniformly, and when the stepsize
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Table 5.4: Results for Problem 4. The total numbers of iterations for different error tolerances (tol).

Methods tol = 10−6 tol = 10−8 tol = 10−10 tol = 10−12

EFCM(2,2) 400 435 608 800

HBVM(2,2) 526 793 1095 1644

EPCM5s4 886 1449 2826 4346

Fig. 5.4. Time evolution for Allen-Cahn equation. The x axis runs from x = −1 to x = 1 and the

t-axis runs from t = 0 to t = 70.

is decreased, it gives a good approximation. However, our method EFCM(2,2) produces a

consistent good approximation no matter which stepsize is chosen. Then, the problem is solved

in [0, 100] with h = 0.16/2i, i = 0, 1, 2, 3. For this problem, we use the result of the standard

ODE15s in MATLAB as the true solution. The work-precision diagram is presented in Fig. 5.6.

Finally, we solve the problem in [0, 1] with h = 1
200 to show the convergence rate of iterations.

See Table 5.4 for the total numbers of iterations for different error tolerances.

From the results, it can be clearly observed that the novel method EFCM(2,2) provides

a considerably more accurate numerical solution than other methods and preserves well the

Hamiltonian energy when solving Hamiltonian systems. Moreover, our method EFCM(2,2)

requires less fixed-point iterations than both HBVM(2,2) and EPCM5s4, which is important in

long-term computations.

Problem 4 is an important example for numerical solution of stiff PDEs which shows that

implicit exponential-type integrators are worth studying further.
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Fig. 5.5. Time evolution for Allen-Cahn equation. The x axis runs from x = −1 to x = 1 and the

t-axis runs from t = 0 to t = 70.
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Fig. 5.6. Results for Problem 4. The log-log plot of the global error (GE) over the integration interval

against the execution time.

6. Conclusions

In this paper, we formulated and analysed the novel methods EFCMs for solving systems

of first-order differential equations. The novel EFCMs are an efficient kind of exponential

integrators, and their construction takes full advantage of the variation-of-constants formula, the
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local Fourier expansion and collocation methods. We discussed the connections with HBVMs,

Gauss methods, Radau IIA methods and TFCMs. It turned out that the first three traditional

methods can be attained by letting A→ 0 in the corresponding EFCMs, and applying EFCMs

to the second-order oscillatory differential equation (3.4) yields TFCMs. The properties of

EFCMs were also analysed and it was shown that the new EFCMs can reach arbitrarily high

order in a very convenient and simple way. A practical scheme of EFCMs was constructed in this

paper. The numerical experiments were carried out and the results affirmatively demonstrate

that the novel EFCMs have excellent numerical behaviour in comparison with some existing

effective methods in the scientific literature.

This is a preliminary research on EFCMs for first-order ordinary differential equations and

the authors are clearly aware that there are still some issues which will be further considered:

• The error bounds and convergence properties of EFCMs for linear and semilinear problems

will be discussed in another work.

• For the EFCM(k,n) (2.12), it is assumed that k ≥ n in this paper. EFCMs with k < n will

be discussed and this case maybe not affect the computational cost associated with the

implementation of the methods for some special systems. Some equations and unknowns

in the methods may be removed and we will consider the efficient implementation of the

novel EFCMs in a future research.

• We only consider the fixed-point iteration for the EFCMs in this paper. Other iteration

methods such as waveform relaxation methods, Krylov subspace methods and precondi-

tioning as well as their actual implementation for EFCMs will be analysed in future.

• The shifted Legendre polynomials are chosen as an orthonormal basis to give the Fourier

expansion of the function g(t, u(t)). We observe that a different choice of the orthonormal

basis would modify the arguments presented in this paper. The scheme of the numerical

methods as well as their analysis is then modified accordingly. Different choices of the

orthonormal basis will be considered in future investigations.

• Another issue for future exploration is the application of our methodology in other differ-

ential equations such as Schördinger equations and other stiff PDEs.
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