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Abstract

We derived and analyzed a new numerical scheme for the Navier-Stokes equations by

using H(div) conforming finite elements. A great deal of effort was given to an establish-

ment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the

newly derived Sobolev inequalities were employed to provide a mathematical theory for

the H(div) finite element scheme. For example, it was proved that the new finite element

scheme has solutions which admit a certain boundedness in terms of the input data. A

solution uniqueness was also possible when the input data satisfies a certain smallness con-

dition. Optimal-order error estimates for the corresponding finite element solutions were

established in various Sobolev norms. The finite element solutions from the new scheme

feature a full satisfaction of the continuity equation which is highly demanded in scientific

computing.
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1. Introduction

We are concerned with numerical solutions of the Navier-Stokes equations: find a pair of

unknown functions (u; p) satisfying

−ν∆u + u · ∇u + ∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where ν denotes the fluid viscosity; ∆, ∇, and ∇· denote the Laplacian, gradient, and divergence

operators, respectively; Ω ⊂ R
n is the region occupied by the fluid; f = f(x) ∈ [L2(Ω)]n is the

unit external volumetric force acting on the fluid at x ∈ Ω.

The commonly used finite element methods for the Navier-Stokes problem (1.1)-(1.3) are

based on a variational equation which is obtained by testing the momentum equation (1.1) by

functions in [H1
0 (Ω)]n and the continuity equation (1.2) by functions in L2(Ω) (see Section 2

for their definition). The corresponding finite element method requires a pair of finite element

spaces which are conforming in H1 × L2 and satisfy the inf-sup condition of Babus̆ka [3] and
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Brezzi [4]. These constraints result in finite element approximations, denoted by (uh; ph), which

hardly satisfy the continuity equation

∇ · uh(x) = 0, ∀ x ∈ Ω. (1.4)

Readers are referred to [19] and [9] for more details regarding the approximation methods and

their properties.

The recent development in discontinuous Gelerkin methods [2, 5–7, 11, 12, 14] provides new

means in solving the incompressible problems numerically. However, the corresponding finite

element solutions are usually totally discontinuous and fail to satisfy the continuity equation

(1.4) immediately [13, 23, 26, 30].

Eq. (1.4) requires that the numerical solution uh be a member of the Sobolev space H(div; Ω).

Therefore, the discontinuous Galerkin methods [13,23,26,30] may not be appropriate when (1.4)

needs to be satisfied. On the other hand, the H1×L2 conforming finite element methods require

the total continuity of uh, which is beyond what is required for a satisfaction of (1.4). There-

fore, it appears that the H(div) elements of Raviart-Thomas type [27] might be appropriate for

approximating the solution of the Navier-Stokes equations.

In [29], a finite element scheme for the Stokes equations was derived and analyzed by using

existing H(div) finite elements of the Raviart-Thomas type. The numerical solutions of the

finite element schemes developed in [29] satisfy the incompressibility constraint (1.2) exactly.

The goal of this paper is to continue our investigation in H(div) finite element methods by

extending the results of [29] to the Navier-Stokes equations. There are two main difficulties in

this extension. The first one lies on a treatment of the nonlinear term u · ∇u in designing a

numerical discretization scheme for (1.1)-(1.3). An up-winding approach shall be used to tackle

this difficulty, yielding a numerical scheme that should be stable for small viscosities. The

second difficult is associated with a mathematical analysis for the numerical scheme; namely,

one has to deal with the difficulties caused by discontinuity of the finite elements and the

corresponding integral forms over the element boundaries. Some Sobolev-type inequalities are

established to address this challenge.

This paper is organized as follows. In Section 2, we introduce some preliminaries and

notations for Sobolev spaces. A variational formula is presented in Section 3 for the Navier-

Stokes equations. In Section 4, we present a H(div) finite element method for the Navier-Stokes

equations, based on the variational formula developed in Section 3. In Section 5, we derive some

Sobolev-type inequalities for piecewise smooth functions. Section 6 is devoted to a mathematical

study of the finite element scheme. Here it was proved that the new finite element scheme has

solutions and the solutions are unique when the input data is sufficiently small. In Section 7, we

establish some optimal-order error estimates for the finite element approximations in a discrete

H1-norm for the velocity approximation and L2-norms for the pressure.

2. Preliminaries and Notations

Let D be any domain in R
n, n = 2, 3. For simplicity, we take the case n = 2 as a protocol

in the presentation and analysis. Extension to problems in three space variables is possible for

all the results to be presented in this manuscript.

We use standard definitions for the Sobolev spaces Hs(D) and their associated inner prod-

ucts (·, ·)s,D, norms ‖ ·‖s,D, and seminorms | · |s,D for s ≥ 0. For example, for any integer s ≥ 0,
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the seminorm | · |s,D is given by

|v|s,D =





∑

|α|=s

∫

D

|∂αv|2dD





1
2

with the usual notation

α = (α1, α2), |α| = α1 + α2, ∂α = ∂α1
x1

∂α2
x2

.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =





m
∑

j=0

|v|2j,D





1
2

.

The space H0(D) coincides with L2(D), for which the norm and the inner product are

denoted by ‖ · ‖D and (·, ·)D, respectively. When D = Ω, we shall drop the subscript D in

the norm and inner product notation. We also use L2
0(Ω) to denote the subspace of L2(Ω)

consisting of functions with mean value zero.

The space H(div; Ω) is defined as the set of vector-valued functions on Ω which, together

with their divergence, are square integrable; i.e.,

H(div; Ω) =
{

v : v ∈ [L2(Ω)]2,∇ · v ∈ L2(Ω)
}

.

The norm in H(div; Ω) is defined by

‖v‖H(div;Ω) =
(

‖v‖2 + ‖∇ · v‖2
)

1
2 .

Let K ⊂ Ω be a triangle or quadrilateral. For any smooth vector-valued functions w and

v, it follows from the divergence theorem that

∫

K

(−∆w) · vdK = (∇w,∇v)K −

∫

∂K

∂w

∂nK
· v ds, (2.1)

where ds represents the boundary element, nK is the outward normal direction on ∂K, and

(∇w,∇v)K =

2
∑

i,j=1

∫

K

∂wi

∂xj

∂vi

∂xj
dK.

Let τK be the tangential direction to ∂K so that nK and τk form a right-hand coordinate

system. It follows from the representation

v = (v · nK)nK + (v · τK)τK

that
∂w

∂nK
· v =

∂(w · nK)

∂nK
(v · nK) +

∂(w · τK)

∂nK
(v · τK). (2.2)
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3. A Variational Formula

Let Th be a finite element partition of the domain Ω with mesh size h. Assume that the

partition Th is quasi-uniform; i.e., it is regular and satisfies the inverse assumption (see [10]).

Define the finite element spaces Vh and Wh for the velocity and pressure respectively by

Vh = {v ∈ H(div; Ω) : v|K ∈ Vr(K), ∀K ∈ Th, v · n|∂Ω = 0}

and

Wh = {q ∈ L2
0(Ω) : q|K ∈ Wm(K), ∀K ∈ Th},

where n is the outward normal direction on the boundary of Ω, Vr(K) is a space of vector-valued

polynomials on the element K with index r ≥ 1, and Wm(K) is a set of polynomials on the

element K with index m ≥ 0.

To derive a weak formulation for the Navier-Stokes equations, we shall test the Navier-Stokes

system (1.1)-(1.2) by discontinuous finite element functions in Vh and Wh, respectively. The

first obvious equation is given by testing Eq. (1.2) against any q ∈ Wh, yielding

(∇ · u, q) = 0. (3.1)

A second equation can be obtained by testing the momentum equation (1.1) against any v ∈ Vh.

The main body of this section is devoted to a discussion of the momentum equation, particularly

the treatment of the nonlinear term u · ∇u.

To this end, let us multiply Eq. (1.1) by any v ∈ Vh and use (2.1) to obtain

∑

K∈Th

(

ν(∇u,∇v)K − ν

∫

∂K

∂u

∂nK
· v ds + (u · ∇u,v)K

)

− (p,∇ · v) = (f ,v),v), (3.2)

where we have also used the integration by parts to deduce
∫

Ω

∇p · vdΩ = −(p,∇ · v).

The fact that v ∈ Vh implies that v · nK is continuous across each interior boundary. Thus, it

follows from (2.2) that

∑

K∈Th

∫

∂K

∂u

∂nK
· v ds =

∑

K∈Th

∫

∂K

∂(u · τK)

∂nK
v · τK ds. (3.3)

For convenience, we introduce a product space

Xh =
∏

K∈Th

[H1(K)]2

and the following notation:

(∇hw,∇hq) =
∑

K∈Th

(∇w,∇q)K , ∀ w,q ∈ Xh.

By substituting (3.3) into (3.2) we obtain

ν(∇hu,∇hv) +
∑

K∈Th

(u · ∇u,v)K − (p,∇ · v)

−ν
∑

K∈Th

∫

∂K

∂(u · τK)

∂nK
v · τKds = (f ,v). (3.4)
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We now reformulate the boundary integrals in (3.4). Let e be an interior edge shared by two

elements K1 and K2, and n1 and n2 be unit normal vectors on e pointing exterior to K1 and

K2, respectively. Denote by τ1 and τ2 the two tangential directions which make the right-hand

coordinate systems with n1 and n2, respectively. We define the average {·} and jump [[ · ]] on e

for vector-valued functions w as follows:

{ε(w)} =
1

2
(n1 · ∇(w · τ1)|∂K1 + n2 · ∇(w · τ2)|∂K2) ,

[[w]] = w|∂K1 · τ1 + w|∂K2 · τ2.

For a boundary edge e = ∂K1 ∩ ∂Ω, the above two operations must be modified by

{ε(w)} = n1 · ∇(w · τ1)|∂K1 , [[w]] = w|∂K1 · τ1.

Let Eh denote the union of the boundaries of all elements K in Th. For sufficiently smooth

u (e.g., u ∈ H
3
2 (Ω)), by grouping terms associated with each edge e ∈ Eh it is not hard to see

that
∑

K∈Th

∫

∂K

∂(u · τK)

∂nK
v · τKds =

∑

e∈Eh

∫

e

{ε(u)}[[v]]ds. (3.5)

Next we present a treatment of the nonlinear term
∑

K∈Th
(u · ∇u,v)K by adding some

stabilization terms. To avoid any possible confusion, we remark that u · ∇v should be viewed

as a row vector u times a matrix ∇v from left with

∇v =

[

∂x1v1 ∂x1v2

∂x2v1 ∂x2v2

]

.

Let us introduce a trilinear form on Xh × Xh × Xh as follows:

ask(u,v,w) :=
1

2

(

∑

K∈Th

(u · ∇v,w)K −
∑

K∈Th

(u · ∇w,v)K

)

. (3.6)

This trilinear form is skew symmetric in the last two variables. Through a straight forward use

of integration by parts, one arrives at the following identity (see, e.g. [17]):

∑

K∈Th

(u · ∇v,w)K = ask(u,v,w) −
1

2

∑

K∈Th

((∇ · u)v,w)K

+
1

2

∑

K∈Th

∫

∂K

(u · n)(v ·w)ds (3.7)

for all u,v,w ∈ Xh. If particular, if u,v ∈ Xh ∩ [H1
0 (Ω)]2 and ∇ · u = 0, then

∑

K∈Th

(u · ∇v,w)K = ask(u,v,w) +
1

2

∑

K∈Th

∫

∂K

(u · n)(v · w)ds. (3.8)

Since v = 0 on the boundary of Ω, we have

1

2

∑

K∈Th

∫

∂K

(u · n)(v · w)ds =
1

2

∑

e∈E0
h

∫

e

u · n(vL · wL − vR · wR)ds, (3.9)
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where E0
h is the collection of all interior edges, n is an orientation of e ∈ E0

h, wL is the trace

of w on e as seen from the left, and wR is the trace of w on e as seen from the right. More

precisely, wL and wR are defined as follows:

wL(x) = lim
t→0+

w(x − tn), wR(x) = lim
t→0+

w(x + tn).

Note that v ∈ [H1
0 (Ω)]2 implies vL = vR on each interior edge e. It follows that

vL ·wL − vR ·wR = vR ·wL − vL ·wR.

Substituting the above into (3.9) yields

1

2

∑

K∈Th

∫

∂K

(u · n)(v · w)ds =
1

2

∑

e∈E0
h

∫

e

u · n(vR · wL − vL · wR)ds, (3.10)

which, together with (3.8), implies

∑

K∈Th

(u · ∇v,w)K = ask(u,v,w) +
1

2

∑

e∈E0
h

∫

e

u · n(vR · wL − vL · wR)ds (3.11)

for any w ∈ Xh and u,v ∈ Xh ∩ [H1
0 (Ω)]2 with ∇ ·u = 0. The right-hand side of (3.11) can be

further stabilized as follows:

∑

K∈Th

(u · ∇v,w)K

= ask(u,v,w) +
1

2

∑

e∈E0
h

∫

e

u · n(vR ·wL − vL ·wR)ds + γ
∑

e∈Eh

∫

e

|u · n|[[v]][[w]]ds, (3.12)

where γ > 0 is a stabilization parameter.

The right-hand side of (3.12) provides a suitable weak form for the nonlinear inertial term

of the Navier-Stokes equations. For this purpose, we introduce a quasi-trilinear form as follows:

a1(u,v,w) := ask(u,v,w) +
1

2

∑

e∈E0
h

∫

e

u · n(vR ·wL − vL ·wR)ds

+γ
∑

e∈E0
h

∫

e

|u · n|[[v]][[w]]ds. (3.13)

In particular, if u is the weak solution of the Navier-Stokes equations (1.1)-(1.3) with sufficient

regularity (e.g., u ∈ H
3
2 +ǫ(Ω) with ǫ > 0), then by substituting (3.5) and (3.13)/(3.12) into

(3.4) we obtain

ν(∇hu,∇hv) + a1(u,u,v) − (∇ · v, p) − ν
∑

e∈Eh

∫

e

{ε(u)}[[v]]ds = (f ,v) (3.14)

for all v ∈ Vh. As in the usual discontinuous finite element method, we further stabilize

Eq. (3.14) by adding the following term to its left-hand side:

Sβ(u,v) := ν
∑

e∈Eh

∫

e

(

αh−1
e [[v]][[u]] − β{ε(v)}[[u]]

)

ds, (3.15)
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where α > 0 is another stabilization parameter, β = ±1, and he is the length of the edge e. It

is easy to see that Sβ(u,v) = 0 for any u ∈ [H1
0 (Ω)]2 and v ∈ Vh. It follows that a variational

form for the momentum equation in the Navier-Stokes system can be given as follows:

ν(∇hu,∇hv) + Sβ(u,v) + a1(u,u,v) − (∇ · v, p) − ν
∑

e∈Eh

∫

e

{ε(u)}[[v]]ds = (f ,v).

For simplification of notation, we introduce a functional space

V (h, s) = Vh +
∏

K∈Th

[

Hs(K)2 ∩ H1
0 (Ω)2

]

, s >
3

2
(3.16)

and two bilinear forms

dβ(u,v) = ν(∇hu,∇hv) + Sβ(u,v) − ν
∑

e∈Eh

∫

e

{ε(u)}[[v]]ds (3.17)

and

b(v, q) = (∇ · v, q)

on V (h, s) × V (h, s) and V (h, s) × L2
0(Ω), respectively. Notice that dβ(·, ·) is symmetric for

β = 1. To summarize, our variational form is given by seeking u ∈ V (h, s) and p ∈ L2
0(Ω) such

that

dβ(u,v) + a1(u,u,v) − b(v, p) = (f ,v), ∀ v ∈ V (h, s), (3.18)

b(u, q) = 0, ∀ q ∈ L2
0(Ω). (3.19)

With the conditions specified in this paper, it can be proved that the standard weak solution

(u; p) of the Navier-Stokes problem belongs to V (h, s) for some s > 3
2 ; readers are referred

to [15,16,21,25] for details on solution regularity. Therefore, the variational problem (3.18) and

(3.19) has at least one solution and this solution also satisfies the Navier-Stokes equations. It

should be possible to show that all solutions of (3.18) and (3.19) also satisfy the Navier-Stokes

equations in a weak sense. Details are left to readers for verification.

4. Finite Element Approximations and Their Properties

The solution of (3.18) and (3.19), hence the solution of the Navier-Stokes equations (1.1)-

(1.3), can be approximated by restricting V (h, s) and L2
0(Ω) to properly-defined subspaces such

as the finite element spaces Vh and Wh associated with a prescribed finite element partition

Th. The resulting approximation, denoted by (uh; ph) ∈ Vh × Wh, is given as solution of the

following discrete equations:

dβ(uh,v) + a1(uh,uh,v) − b(v, ph) = (f ,v), ∀ v ∈ Vh (4.1)

b(uh, q) = 0, ∀ q ∈ Wh. (4.2)

There are two main issues for the finite element scheme (4.1) and (4.2). The first one is

on an efficient computation of (uh; ph), the second is about qualitative properties of the finite

element approximation, such as solution existence, uniqueness, and convergence as the mesh

size h tends to zero. While both issues are equally important, we would like to focus our

attention on the second one in the rest of this paper.
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Our mathematical analysis for the finite element scheme (4.1) and (4.2) needs two discrete

norms, denoted by ||| · |||1 and ||| · |||, in the linear space V (h, s) which are defined as follows

|||v|||21 = |v|21,h +
∑

e∈Eh

h−1
e ‖[[v]]‖2

e, (4.3)

|||v|||2 = |||v|||21 +
∑

e∈Eh

he‖{ε(v)}‖2
e, (4.4)

where |v|21,h =
∑

K∈Th
|v|21,K and ‖v‖e =

(∫

e |v|
2ds
)

1
2 is the standard norm in L2(e). It is clear

that the norm ||| · |||1 resembles the usual H1-norm of the Sobolev space H1(Ω) for piecewise H1

functions.

Let K be an element with e as an edge and p > 1 be any real number. It is well-known that

there exists a constant C = C(p) such that for any function g ∈ H1(K),

‖g‖p
Lp(e) ≤ C

(

h−1
K ‖g‖2

Lp(K) + hp−1
K ‖∇g‖p

Lp(K)

)

, (4.5)

where, and in what follows of this paper, hK stands for the size of K. Observe that the quasi-

uniformity of Th implies that hK is proportional to he for all the edges/faces e ⊂ ∂K. In

particular, with p = 2 one has for any v ∈ Vh,

he‖{ε(v)}‖2
e ≤ C

(

‖∇v‖2
K + h2

K‖∇2v‖2
K

)

.

The standard inverse inequality can be employed to the last term of the above inequality,

yielding

he‖{ε(v)}‖2
e ≤ C‖∇v‖2

K

for some constant C independent of the mesh size h. Consequently, there is a constant C

independent of h such that

|||v||| ≤ C0|||v|||1, ∀v ∈ Vh. (4.6)

This shows that the two norms ||| · |||1 and ||| · ||| are equivalent in the finite element space Vh.

In addition to the norms introduced in this section, our theoretical analysis for the finite

element scheme (4.1) and (4.2) requires some Sobolev-type inequalities for functions which are

piecewise smooth. Details are provided in the next section.

5. Sobolev-type Inequalities for Piecewise Smooth Functions

Let D ⊂ R
n be an open bounded domain in the n-dimensional space R

n, n ≥ 2, and W 1,p(D)

be the usual Sobolev space with p ∈ (1,∞). We recall the following trace inequality: for any

f ∈ W 1,p(D) and p ∈ (1, n) one has

‖f‖Lp̃(∂D) ≤ C(D, p)‖f‖1,p,D, (5.1)

where p̃ = (n − 1)p/(n − p) and ‖ · ‖1,p,D stands for the usual Sobolev norm in W 1,p(D). The

dependence of the constant C(D, p) with respect to the size of the domain D can be explicitly

estimated when applied to finite element partitions.

Lemma 5.1. Let Th be a quasi-regular finite element partition of an open bounded domain

Ω ⊂ R
n, n ≥ 2. Then there exists a constant C(p) such that for any K ∈ Th and w ∈ W 1,p(K)

with p ∈ (1, n) and p̃ = (n−1)p
n−p one has

‖w‖Lp̃(∂K) ≤ C(p)
(

h−1
K ‖w‖Lp(K) + ‖∇w‖Lp(K)

)

, (5.2)
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where hK is the diameter of the element K.

Proof. To figure out the dependence, let K̂ be a reference element with an affine mapping

F̂ that maps K̂ to K:

F̂ : K̂ → K.

For any function w ∈ W 1,p(K), denote by ŵ the composition of w and F̂ :

ŵ(x̂) = w ◦ F̂ (x̂), x̂ ∈ K̂.

Let hK be the diameter of K, then the usual scaling argument can be applied to yield

‖w‖Lp̃(∂K) ≤ Ch
n−1

p̃

K ‖ŵ‖Lp̃(∂K̂).

Applying the trace inequality (5.1) to the right-hand side of the above inequality we arrive at

‖w‖Lp̃(∂K) ≤ C(K̂, p)h
n−1

p̃

K ‖ŵ‖1,p,K̂ . (5.3)

Now we go back to the original element K through the affine map F̂ :

‖ŵ‖p

1,p,K̂
=

∫

K̂

|ŵ|pdK̂ +

∫

K̂

|∇̂ŵ|pdK̂

≤ Ch−n
K

∫

K

|w|pdK + Ch−n+p
K

∫

K

|∇w|pdK. (5.4)

Substituting (5.4) into (5.3) yields

‖w‖Lp̃(∂K) ≤ C(K̂, p)h
n−1

p̃

K

(

h−n
K

∫

K

|w|pdK + h−n+p
K

∫

K

|∇w|pdK

)1/p

= C(K̂, p)

(

h−p
K

∫

K

|w|pdK +

∫

K

|∇w|pdK

)1/p

,

which is the desired estimate (5.2). �

Lemma 5.2. Let q ∈ (1,∞) be any real number and q̂ = nq
n+q−1 . There exists a constant C

such that for any w ∈
∏

K∈Th
W 1,q̂(K) we have

(

∑

e∈Eh

he‖w‖q
Lq(e)

)
1
q

≤ C‖w‖Lq(Ω) + Ch
1
q

(

∑

K∈Th

‖∇w‖q̂
Lq̂(K)

)
1
q̂

. (5.5)

Proof. Since q̂ ≡ nq
n+q−1 , it is not hard to verify that for n > 1 one has

1 < q̂ < n, q =
(n − 1)q̂

n − q̂
.

Thus, it follows from (5.2) (with p̃ = q and p = q̂) that

‖w‖Lq(e) ≤ C
(

h−1
K ‖w‖Lq̂(K) + ‖∇w‖Lq̂(K)

)

. (5.6)

Next by observing q̂ ≤ q and n/q̂ − n/q = (q − 1)/q we have from the Hölder inequality

‖w‖Lq̂(K) ≤ Ch
n
q̂
−n

q

K ‖w‖Lq(K)

= Ch
q−1

q

K ‖w‖Lq(K).
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Substituting the above into (5.6) yields

‖w‖Lq(e) ≤ C

(

h
− 1

q

K ‖w‖Lq(K) + ‖∇w‖Lq̂(K)

)

.

It follows that

he ‖w‖q
Lq(e) ≤ C

(

‖w‖q
Lq(K) + hK‖∇w‖q

Lq̂(K)

)

.

Summing over all the edges leads to
∑

e∈Eh

he ‖w‖q
Lq(e) ≤ C‖w‖q

Lq(Ω) + C
∑

K∈Th

hK‖∇w‖q
Lq̂(K)

. (5.7)

Note that the following inequality holds true

m
∑

j=1

|aj |
λ ≤





m
∑

j=1

|aj |





λ

for any λ > 1. Thus,

∑

K∈Th

hK‖∇w‖q
Lq̂(K)

≤

(

∑

K∈Th

h
q̂

q

K‖∇w‖q̂
Lq̂(K)

)
q

q̂

.

Substituting the last inequality into (5.7) gives

∑

e∈Eh

he ‖w‖q
Lq(e) ≤ C‖w‖q

Lq(Ω) + C

(

∑

K∈Th

h
q̂
q

K‖∇w‖q̂
Lq̂(K)

)
q

q̂

, (5.8)

which implies the desired inequality (5.5). �

Let p > 1 and s > 1 be two real numbers, q and t be the conjugate of p and s respectively

(i.e., 1/p + 1/q = 1 and 1/s + 1/t = 1). Introduce the following space:

J(s, p; Ω) := Ls(Ω) ∩

(

∏

K∈Th

W 1,p(K)

)

.

The following lemma provides an estimate for the Ls-norm of functions in J(s, p; Ω):

Lemma 5.3. Let p > 1 and s > 1 be two real numbers, q and t be the conjugate of p and s

respectively. Assume that n/(n − 1) < s ≤ np/(n − p). Then for any function w ∈ J(s, p; Ω),

the following estimate holds true

‖w‖Ls(Ω) ≤ C(ǫ)

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
1
p

+ǫh
1

q(s−1) ‖w‖Lq̂(s−1)(Ω) , (5.9)

where ǫ > 0 is an arbitrary, but positive real number and q̂ = nq/(n + q − 1). In particular, if

s additionally satisfies s ≤ np/(n − 1), then one has

‖w‖Ls(Ω) ≤ C

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
1
p

. (5.10)



420 J.P. WANG, X.S. WANG AND X. YE

Proof. For any w ∈ J(s, p; Ω), we consider the following auxiliary problem: Find g ∈ W 2,t(Ω)

such that g = 0 on the boundary ∂Ω of Ω and

−∆g = sgn(w)|w|s−1 in Ω, (5.11)

where sgn(·) is the sign function with values 1, 0,−1 when the argument is positive, vanishing,

or negative, as appropriate. Without loss of generality (if necessary, one may consider the same

problem on a domain covering Ω with w being extended by zero outside of Ω), we may assume

that Ω has a very smooth boundary so that the problem (5.11) has a unique solution with the

following a priori estimates:

‖g‖2,t ≤ C‖w‖s−1
Ls(Ω), (5.12)

and

‖g‖2,q̂ ≤ C‖w‖s−1
Lq̂(s−1)(Ω)

, (5.13)

where ‖w‖Lq̂(s−1)(Ω) formally stands for the “norm” of w even though q̂(s − 1) ≥ 1 may fail to

be true.

Now, multiplying (5.11) by w and then integrating over the domain Ω gives

‖w‖s
Ls(Ω) =

∫

Ω

(−∆g)wdΩ =
∑

K∈Th

∫

K

(−∆g)wdK

=
∑

K∈Th

(∫

K

∇g · ∇wdK −

∫

∂K

∂g

∂n
w

)

≤

∣

∣

∣

∣

∣

∑

K∈Th

∫

K

∇g · ∇wdK

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

e∈Eh

∫

e

∂g

∂n
[[w]]de

∣

∣

∣

∣

∣

, (5.14)

where we have used the Green’s formula in the second line. The first term on the right-hand

side of (5.14) can be estimated by using the Hölder’s inequality:

∣

∣

∣

∣

∣

∑

K∈Th

∫

K

∇g · ∇wdK

∣

∣

∣

∣

∣

≤
∑

K∈Th

‖∇g‖Lq(K)‖∇w‖Lp(K)

≤ ‖∇g‖Lq(Ω)

(

∑

K∈Th

‖∇w‖p
Lp(K)

)
1
p

. (5.15)

To deal with the second term of (5.14), we use the Hölder’s inequality to arrive at

∣

∣

∣

∣

∣

∑

e∈Eh

∫

e

∂g

∂n
[[w]]de

∣

∣

∣

∣

∣

≤
∑

e∈Eh

∥

∥

∥

∥

∂g

∂n

∥

∥

∥

∥

Lq(e)

‖[[w]]‖Lp(e)

≤

(

∑

e∈Eh

he

∥

∥

∥

∥

∂g

∂n

∥

∥

∥

∥

q

Lq(e)

)
1
q
(

∑

e∈Eh

h1−p
e ‖[[w]]‖p

Lp(e)

)
1
p

. (5.16)

Applying the estimate (5.5) to the first factor of (5.16) we obtain

∣

∣

∣

∣

∣

∑

e∈Eh

∫

e

∂g

∂n
[[w]]de

∣

∣

∣

∣

∣

≤ C
[

‖∇g‖Lq(Ω) + h
1
q ‖∇2g‖Lq̂(Ω)

]

[

∑

e∈Eh

h1−p
e ‖[[w]]‖p

Lp(e)

]
1
p

. (5.17)
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Now substituting (5.17) and (5.15) into (5.14) yields

‖w‖s
Ls(Ω) ≤ ‖∇g‖Lq(Ω)

(

∑

K∈Th

‖∇w‖p
Lp(K)

)
1
p

+C
(

‖∇g‖Lq(Ω) + h
1
q

∥

∥∇2g
∥

∥

Lq̂(Ω)

)

[

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

]
1
p

≤ C ‖∇g‖Lq(Ω)

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
1
p

+Ch
1
q

∥

∥∇2g
∥

∥

Lq̂(Ω)

[

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

]
1
p

. (5.18)

The condition n
n−1 < s ≤ np

n−p implies the following:

t =
s

s − 1
< n, q ≤

nt

n − t
.

Thus, we have from the usual Sobolev embedding theorem that

‖∇g‖Lq(Ω) ≤ C‖∇g‖W 1,t(Ω),

which, together with (5.12), yields

‖∇g‖Lq(Ω) ≤ C‖w‖s−1
Ls(Ω).

Substituting the above estimate and (5.13) into (5.18) gives

‖w‖s
Ls(Ω) ≤ C ‖w‖s−1

Ls(Ω)

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
1
p

+Ch
1
q ‖w‖s−1

Lq̂(s−1)(Ω)

[

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

]
1
p

. (5.19)

The estimate (5.19) further leads to

‖w‖s
Ls(Ω) ≤ C

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
s
p

+Ch
1
q ‖w‖s−1

Lq̂(s−1)(Ω)

[

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

]
1
p

. (5.20)

Note that for any a, b ≥ 0 and positive m and n with m−1 + n−1 = 1 one has

ab ≤ am + bn.
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Applying the last inequality to the last term of (5.20) with a = ǫs−1h
1
q ‖w‖s−1

Lq̂(s−1)(Ω) and

m = t ≡ s/(s − 1) yields

‖w‖s
Ls(Ω) ≤ C

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
s
p

+ǫsh
t
q ‖w‖s

Lq̂(s−1)(Ω) + Cǫs(1−s)

[

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

]
s
p

, (5.21)

where ǫ > 0 is an arbitrary, but positive real number. The inequality (5.21) implies the desired

estimate (5.9).

As to the inequality (5.10), we observe that for s ≤ np
n−1 one has

q̂(s − 1) ≤ s.

It follows that

‖w‖Lq̂(s−1)(Ω) ≤ C ‖w‖Ls(Ω) .

Substituting the last inequality into (5.9) yields

(

1 − Cǫh
1

q(s−1)

)

‖w‖Ls(Ω)

≤ C

(

∑

K∈Th

‖∇w‖p
Lp(K) +

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

)
1
p

+ Cǫ(1−s)

[

∑

e∈Eh

h1−p
e

∫

e

|[[w]]|pde

]
1
p

.

By choosing ǫ sufficiently small such that
(

1 − Cǫht/s
)

≥ 1
2 one obtains the desired estimate

(5.10). �

The next two corollaries emphasize the case p = 2 for the estimates established in Lemmas

5.3 and 5.2.

Corollary 5.1. Let n be the dimension of the domain Ω and q̂ = 2n/(n + 1). Then the follow-

ing results hold true.

1. For any real number s satisfying n
n−1 < s ≤ 2n

n−1 , there is a constant C such that for any

function w ∈ J(s, 2; Ω) one has

‖w‖Ls(Ω) ≤ C(ǫ)

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

+ǫh
1

2(s−1) ‖w‖Lq̂(s−1)(Ω) , (5.22)

where ǫ > 0 is an arbitrary, but positive real number.

2. For any real number s satisfying n
n−1 < s ≤ 2n

n−1 , there is a constant C such that for any

function w ∈ J(s, 2; Ω) one has

‖w‖Ls(Ω) ≤ C

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

. (5.23)
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Proof. The estimate (5.22) is a direct application of (5.9) when p = 2. Similarly, the estimate

(5.23) stems from (5.10) since the condition s ≤ np/(n − 1) is satisfied when p = 2. �

Corollary 5.2. Let n be the dimension of the domain Ω, q̂ = 2n/(n + 1), and s be a real

number such that
n

n − 1
< s ≤

2n

n − 2
. (5.24)

Let ŝ = ns/(n + s − 1). Then the following results hold true.

1. There is a constant C such that for any function w ∈ J(s, 2; Ω):

(

∑

e∈Eh

he‖w‖s
Ls(e)

)
1
s

≤ C(ǫ)

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

+ǫh
1

2(s−1) ‖w‖Lq̂(s−1)(Ω) + Ch
1
s

(

∑

K∈Th

‖∇w‖ŝ
Lŝ(K)

)
1
ŝ

, (5.25)

where ǫ > 0 is an arbitrary, but positive real number.

2. If, in addition, s satisfies s ≤ 2n/(n − 1), then there exists a constant C such that

[

∑

e∈Eh

he‖w‖s
Ls(e)

]
1
s

≤ C

[

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

]
1
2

. (5.26)

Proof. With q = s and q̂ = ŝ we have from (5.5) of Lemma 5.2 that

(

∑

e∈Eh

he‖w‖s
Ls(e)

)
1
s

≤ C‖w‖Ls(Ω) + Ch
1
s

(

∑

K∈Th

‖∇w‖ŝ
Lŝ(K)

)
1
ŝ

. (5.27)

The first term on the right-hand side of (5.27) can be estimated by using (5.22). The combined

inequality is exactly the desired estimate (5.25).

To derive (5.26), we use (5.23) to bound the first term of the right-hand side of (5.27) (note

that the condition for this application is satisfied!), yielding

(

∑

e∈Eh

he‖w‖s
Ls(e)

)
1
s

≤ C

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

+Ch
1
s

(

∑

K∈Th

‖∇w‖ŝ
Lŝ(K)

)
1
ŝ

. (5.28)

The additional condition of s ≤ 2n/(n − 1) implies that ŝ ≤ 2. Thus, we have from the Hölder’s

inequality that
(

∑

K∈Th

‖∇w‖ŝ
Lŝ(K)

)
1
ŝ

≤ C

(

∑

K∈Th

‖∇w‖2
L2(K)

)
1
2

.

Substituting the above inequality into (5.28) gives the desired inequality (5.26). �

We end this section by establishing some estimates for functions in the finite element space

Vh.
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Corollary 5.3. Let n be the dimension of the domain Ω and s be an arbitrary real number

satisfying n
n−1 < s ≤ 2n

n−2 . Then there exists a constant C such that for any finite element

function w ∈ Vh one has

‖w‖Ls(Ω) ≤ C

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

, (5.29)

(

∑

e∈Eh

he‖w‖s
Ls(e)

)
1
s

≤ C

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

. (5.30)

Note that the right-hand sides of (5.29) and (5.30) are the discrete H1 norm |||w|||1 as defined

in (4.3).

Proof. Corollary 5.3 should be viewed as an application of the Corollaries 5.1 and 5.2 to

finite element functions. For simplicity, we adopt the notations used in Corollaries 5.1 and 5.2

without redefining them.

The estimate (5.22) holds true when w ∈ Vh is a finite element function. Without loss of

generality, we consider only the case q̂(s − 1) ≥ s. Note that the condition s ≤ 2n/(n − 2)

implies 2s + 2n − ns ≥ 0. Using the standard inverse inequality one obtains

h
1

2(s−1) ‖w‖Lq̂(s−1)(Ω) ≤ Ch( 1
2(s−1) + n

q̂(s−1)−
n
s )‖w‖Ls(Ω)

= Ch
2s+2n−ns

2s(s−1) ‖w‖Ls(Ω) ≤ C‖w‖Ls(Ω). (5.31)

Now substituting the above into (5.22) yields

‖w‖Ls(Ω) ≤ C(ǫ)

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

+ ǫC ‖w‖Ls(Ω) .

It follows that (5.29) holds true for appropriately chosen value of ǫ.

To derive (5.30), we observe that the estimate (5.25) is valid for w ∈ Vh. It suffices to treat

the last two terms on the right-hand side of (5.25). The Lq̂(s−1)-norm of w can be estimated

by using (5.31). The other term, which is

h
1
s ‖∇hw‖Lŝ(Ω) := h

1
s

(

∑

K∈Th

‖∇w‖ŝ
Lŝ(K)

)
1
ŝ

,

can be estimated by using the standard inverse inequality as follows:

h
1
s ‖∇hw‖Lŝ(Ω) ≤ Ch

1
s
+ n

ŝ
−n

2 ‖∇hw‖L2(Ω)

= Ch
2s+2n−ns

2s ‖∇hw‖L2(Ω) ≤ C‖∇hw‖L2(Ω).

Substituting the above and the estimate (5.31) into (5.25) yields

(

∑

e∈Eh

he‖w‖s
Ls(e)

)
1
s

≤ C(ǫ)

(

∑

K∈Th

‖∇w‖2
L2(K) +

∑

e∈Eh

h−1
e

∫

e

|[[w]]|2de

)
1
2

+ǫC ‖w‖Ls(Ω) + C

(

∑

K∈Th

‖∇w‖2
L2(K)

)
1
2

,

which, together with (5.29), verifies the desired inequality (5.30). �
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6. Theory for the Finite Element Method

6.1. Coercivity and boundedness

The goal of this subsection is to establish some properties for the bilinear form dβ(·, ·) and

the quasi-trilinear form a1(·, ·, ·) which were used in the discrete equation (4.1). Notice that

the quasi-trilinear form a1(·, ·, ·) disappears for Stokes problems, and the properties for the

bilinear form dβ(·, ·) has been well studied in [29]. Thus, our attention shall be focused on the

quasi-trilinear form a1(·, ·, ·).

Recall that the bilinear form dβ(·, ·) was defined by (3.17) and (3.15), and the following

ellipticity has been established in [29].

Lemma 6.1. Let dβ(·, ·) be defined as in (3.17). Then the following results hold true, regardless

of the dimension n > 1 for the domain Ω.

1. For the symmetric scheme β = 1, there exists a constant α0 independent of h such that

for any v ∈ Vh

dβ(v,v) ≥ να0|||v|||
2, (6.1)

provided that the stabilization parameter α in Sβ(·, ·) is sufficiently large.

2. For the non-symmetric case β = −1, it is easy to see that for any finite element function

v ∈ Vh one has

dβ(v,v) = ν(∇hv,∇hv) + να
∑

e∈Eh

h−1
e

∫

e

[[v]]
2
ds

≥ ν min(1, α)|||v|||21 ≥ ν min(1, α)/C0|||v|||
2
,

where the relation (4.6) has been employed in the last inequality. Thus, the coercivity (6.1)

holds true for the bilinear form dβ(·, ·) with any positive value of α when β = −1.

Since the symmetric case is conditionally coercive, we shall assume that the parameter α is

chosen appropriately so that the ellipticity (6.1) holds true. The advantage for the symmetric

scheme is that the resulting matrix from the bilinear form dβ(·, ·) is symmetric and positive

definite, and hence there are more tools available in solution techniques than non-symmetric

forms.

As to the quasi-trilinear form a1(u,v,w), we recall that it is defined by (3.13) and (3.6) as

follows:

a1(u,v,w) := ask(u,v,w) +
1

2

∑

e∈E0
h

∫

e

u · n(vR ·wL − vL ·wR)ds

+γ
∑

e∈E0
h

∫

e

|u · n|[[v]][[w]]ds, (6.2)

where

ask(u,v,w) :=
1

2

(

∑

K∈Th

(u · ∇v,w)K −
∑

K∈Th

(u · ∇w,v)K

)

. (6.3)
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For simplicity, we introduce the following notation

b1(u,v,w) :=
1

2

∑

e∈E0
h

∫

e

u · n(vR ·wL − vL ·wR)ds,

b2(u,v,w) := γ
∑

e∈E0
h

∫

e

|u · n|[[v]][[w]]ds.

(6.4)

It is clear from (6.2) that

a1(u,v,w)) = ask(u,v,w) + b1(u,v,w) + b2(u,v,w). (6.5)

It is also obvious that the trilinear form b1 can be rewritten as follows

b1(u,v,w) :=
1

2

∑

e∈E0
h

∫

e

u · n(vR · [[w]] − [[v]] · wR)ds. (6.6)

Lemma 6.2. Let a1(·, ·, ·) be defined by (6.5), (6.6), and (6.4). Regardless of the dimension

n > 1 for the domain Ω, for any u and v ∈ Vh we have

a1(u,v,v) = γ
∑

e∈E0
h

∫

e

|u · n|[[v]]
2
ds. (6.7)

The rest of this subsection is devoted to a discussion of boundedness for the bilinear form

dβ(·, ·) and the quasi-trilinear form a1(·, ·, ·) in the finite element spaces under consideration.

First of all, we recall the following boundedness result [29] for the bilinear form dβ(·, ·) in the

linear space V (h, s) as defined in 3.16).

Lemma 6.3. Regardless of the dimension n > 1 for the domain Ω, there exists a constant C

independent of h such that

|dβ(w,v)| ≤ Cν|||w||||||v|||, ∀w,v ∈ V (h, s). (6.8)

As to the boundedness of the quasi-trilinear form a1(·, ·, ·), it suffices to establish some

results for each component in the decomposition (6.5). Our first result along this line concerns

the trilinear form ask(·, ·, ·).

Lemma 6.4. Let the trilinear form ask(·, ·, ·) be given as in (6.3). Assume that the dimension

n for the domain Ω is no more than 4 (i.e., n ≤ 4), then there exists a constant C such that

for any u,v,w ∈ Vh we have

|ask(u,v,w)| ≤ C|||u|||1 |||v|||1 |||w|||1. (6.9)

In particular, the same estimate (6.9) holds true for any u,v,w ∈ V (h, s) when n = 2.

Proof. It follows from (6.3) that

|ask(u,v,w)| ≤
1

2

∑

K∈Th

‖u‖L4(K)

(

‖w‖L4(K)‖∇v‖L2(K) + ‖v‖L4(K)‖∇w‖L2(K)

)

≤
1

2
‖u‖L4(Ω)

(

‖w‖L4(Ω)‖∇v‖L2(Ω) + ‖v‖L4(Ω)‖∇w‖L2(Ω)

)

.
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Using the inequality (5.29) in Corollary 5.3 with s = 4 (note that all the conditions are satisfied

with s = 4) we obtain

‖w‖L4(Ω) ≤ C|||w|||1 (6.10)

for any w ∈ Vh. Thus, there exists a constant C such that

|ask(u,v,w)| ≤ C|||u|||1|||v|||1|||w|||1

for any u,v,w ∈ Vh. This completes the proof of the lemma.

In the special case of n = 2, one may use the inequality (5.23) to arrive at the estimate

(6.10) for any w ∈ V (h, s). This shows that (6.9) holds true when the functional arguments

vary in V (h, s). �

Lemma 6.5. Let the trilinear form b1(·, ·, ·) be given as in (6.6). Assume that the dimension

n for the domain Ω is no more than 4 (i.e., n ≤ 4), then there exists a constant C such that

for any u,v,w ∈ Vh we have

|b1(u,v,w)| ≤ C|||u|||1 |||v|||1 |||w|||1. (6.11)

In particular, the same estimate (6.11) holds true for any u,v,w ∈ V (h, s) when n = 2.

Proof. The trilinear form b1(·, ·, ·) contains two parts in its definition, but it suffices to deal

with the first one as the second one can be handled similarly. To this end, we observe that

∣

∣

∣

∣

∣

∣

∑

e∈E0
h

∫

e

u · n(vR · [[w]])de

∣

∣

∣

∣

∣

∣

≤
∑

e∈E0
h

‖uR‖L4(e)‖vR‖L4(e)‖[[w]]‖L2(e)

≤





∑

e∈E0
h

he‖uR‖
4
L4(e)





1
4




∑

e∈E0
h

he‖vR‖
4
L4(e)





1
4




∑

e∈E0
h

h−1
e [[w]]

2
L2(e)





1
2

, (6.12)

which, together with the estimate (5.30) when applied to both u and v with s = 4, leads to

∣

∣

∣

∣

∣

∣

∑

e∈E0
h

∫

e

u · n(vR · [[w]])de

∣

∣

∣

∣

∣

∣

≤ C|||u|||1 |||v|||1 |||w|||1.

The inequality (5.26) can be used to deal with the case of n = 2 when the functional arguments

are no longer finite element functions. This completes the proof of the lemma. �

The same argument as in the proof of Lemma 6.5 can be applied to estimate the quasi-

trilinear form b2(·, ·, ·), yielding a boundedness result stated as follows.

Lemma 6.6. Let the quasi-trilinear form b2(·, ·, ·) be given as in (6.4). Assume that the di-

mension n for the domain Ω is no more than 4 (i.e., n ≤ 4), then there exists a constant C

such that for any u,v,w ∈ Vh we have

|b2(u,v,w)| ≤ C|||u|||1 |||v|||1 |||w|||1. (6.13)

In particular, the same estimate (6.13) holds true for any u,v,w ∈ V (h, s) when n = 2.
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To summarize, we have proved the following boundedness result for the quasi-trilinear form

a1(·, ·, ·).

Lemma 6.7. Let the quasi-trilinear form a1(·, ·, ·) be given as in (6.2). Assume that the di-

mension n for the domain Ω is no more than 4 (i.e., n ≤ 4). Then, there exists a constant C

independent of h such that

|a1(u,v,w)| ≤ C|||u|||1 |||v|||1 |||w|||1 (6.14)

for all u,w,v ∈ Vh. In particular, the same estimate (6.14) holds true for any u,v,w ∈ V (h, s)

when n = 2.

Readers are referred to [20, 24] for boundedness results for related trilinear forms. We

emphasize that, due to the absolute value in the form b2(·, ·, ·), the form a1(·, ·, ·) is not a trilinear

form. However, the definition of b2(·, ·, ·), together with the general inequality ||a|−|b|| ≤ |a−b|

for any real numbers a and b, implies the following inequality:

|b2(u,v,w) − b2(ū,v,w)| ≤ γ
∑

e∈E0
h

∫

e

|(u − ū) · n||[[v]]||[[w]]|ds.

It follows that there is a constant Ñ independent of h such that

|a1(u,v,w) − a1(ū,v,w)| ≤ Ñ |||u− ū|||1 |||v|||1 |||w|||1 (6.15)

for all u, ū,v,w ∈ Vh. The estimate (6.15) holds true for any u,v,w ∈ V (h, s) when n = 2.

6.2. Existence of finite element solutions

The Leray-Schauder fixed point theorem can be employed to justify solution existence for the

finite element scheme given by (4.1) and (4.2). To this end, we recall that the Leray-Schauder

fixed point theorem states that if a compact map F defined on the closure of an open convex

subset U of a normed linear space X containing the origin has the property that F (x) 6= λx for

all λ > 1 and all x on the boundary of U , then F must have a fixed point in the closure of U .

In applying the Leray-Schauder fixed point theorem to the finite element scheme (4.1) and

(4.2), we introduce a divergent free subspace Dh of Vh as follows:

Dh = {v ∈ Vh : ∇ · vh = 0}.

It is easy to see that the discrete problem (4.1) and (4.2) can be reformulated as seeking uh ∈ Dh

satisfying

dβ(uh,v) + a1(uh,uh,v) = (f ,v), ∀ v ∈ Dh. (6.16)

Let F : Dh → Dh be a nonlinear map so that for each wh ∈ Dh, ũh := F (wh) is given as the

solution of the following linear problem:

dβ(ũh,v) + a1(wh, ũh,v) = (f ,v), ∀ v ∈ Dh. (6.17)

The map F is clearly continuous and therefore is compact in the finite dimensional space Dh.

If λ > 0 and wh satisfies ũh = F (wh) = λwh, then we have from (6.17) that

λdβ(wh,v) + λa1(wh,wh,v) = (f ,v), ∀ v ∈ Dh. (6.18)
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By choosing in (6.18) v = wh, we come up with

λ (dβ(wh,wh) + a1(wh,wh,wh)) = (f ,wh), ∀ v ∈ Dh. (6.19)

It now follows from (6.1) and (6.7) that

λ



να0|||wh|||
2

+ γ
∑

e∈E0
h

∫

e

|wh · n|[[wh]]
2
ds



 ≤ |(f ,wh)|. (6.20)

By introducing a mesh-dependent norm

‖f‖∗,h = sup
v∈Dh

(f ,v)

|||v|||
, (6.21)

we have from (6.20) and (6.21) that

λ



να0|||wh|||
2
+ γ

∑

e∈E0
h

∫

e

|wh · n|[[wh]]
2
ds



 ≤ ‖f‖∗,h|||wh|||.

It follows that

λ ≤
‖f‖∗,h

α0ν|||wh|||
.

Thus, λ < 1 holds true for any wh being on the boundary of the ball in Dh centered at the

origin with radius ρ > ‖f‖∗,h/(α0ν). Consequently, the Leray-Schauder fixed point theorem

implies that the nonlinear map F defined by (6.17) has a fixed point uh:

F (uh) = uh

in any ball centered at the origin with radius ρ > ‖f‖∗,h/(α0ν). This fixed point uh is clearly

a solution of the finite element scheme (6.16), which in turn provides a solution of the original

numerical scheme (4.1) and (4.2). The results can be summarized as follows.

Theorem 6.1. The finite element discretization scheme (6.16) has at least one solution uh

in the divergence-free subspace Dh. Moreover, all the solutions of (6.16) satisfy the following

estimates:

|||uh||| ≤
‖f‖∗,h

α0ν
(6.22)

and

γ
∑

e∈E0
h

∫

e

|uh · n|[[uh]]
2
ds ≤

‖f‖2
∗,h

2α0ν
. (6.23)

Proof. Note that uh ∈ Dh is a solution of (6.16) if and only if it is a fixed-point of the

nonlinear map F . Since F has at least one fixed point in the ball of Dh centered at the origin

with radius ρ = ‖f‖∗,h/(α0ν), then the finite element scheme (6.16) must have a solution and

all the solutions must satisfy the estimate (6.22).

It remains to establish the estimate (6.23). To this end, let uh be a solution of (6.16). By

choosing v = uh in (6.16) one arrives at

dβ(uh,uh) + a1(uh,uh,uh) = (f ,uh). (6.24)
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Again, using (6.1) and (6.7) one has

να0|||uh|||
2

+ γ
∑

e∈E0
h

∫

e

|uh · n|[[uh]]
2
ds ≤ ‖f‖∗,h|||uh|||. (6.25)

The right-hand side of (6.25) can be estimated as follows:

‖f‖∗,h|||uh||| ≤
α0ν

2
|||uh|||

2
+

1

2α0ν
‖f‖2

∗,h.

Substituting the above into (6.25) yields

να0

2
|||uh|||

2
+ γ

∑

e∈E0
h

∫

e

|uh · n|[[uh]]
2
ds ≤

‖f‖2
∗,h

2α0ν
, (6.26)

which implies the desired estimate (6.23). �

6.3. A uniqueness result

The analysis here follows the idea presented in Girault and Raviart [19] on solution unique-

ness for the Navier-Stokes equations. Let uh and ūh ∈ Dh be two solutions of the finite element

scheme (6.16). Since both uh and ūh satisfy the nonlinear equation (6.16), then one has

dβ(uh,v) + a1(uh,uh,v) = dβ(ūh,v) + a1(ūh, ūh,v)

for all v ∈ Dh. By introducing eh = uh − ūh, the above equation can be rewritten as

dβ(eh,v) + a1(uh,uh,v) − a1(ūh, ūh,v) = 0.

Observe that

a1(uh,uh,v) − a1(ūh, ūh,v) = a1(uh, eh,v) + a1(uh, ūh,v) − a1(ūh, ūh,v).

Thus, for any v ∈ Dh

dβ(eh,v) + a1(uh, eh,v) = a1(ūh, ūh,v) − a1(uh, ūh,v).

In particular, by letting v = eh, we have from (6.1) and (6.7) that

να0|||eh|||
2

+ γ
∑

e∈E0
h

∫

e

|uh · n|[[eh]]
2
ds ≤ |a1(uh, ūh, eh) − a1(ūh, ūh, eh)| .

Moreover, using (6.15) we arrive at the following estimate

να0|||eh|||
2

+ γ
∑

e∈E0
h

∫

e

|uh · n|[[eh]]
2
ds ≤ Ñ |||ūh||| |||eh|||

2
. (6.27)

Since ūh is a solution of (6.16), then the estimate (6.22) is applicable, i.e., |||ūu||| ≤ ‖f‖∗,h/(α0ν).

Substituting the above into the right-hand side of (6.27) yields

να0|||eh|||
2

+ γ
∑

e∈E0
h

∫

e

|uh · n|[[eh]]
2
ds ≤

Ñ‖f‖∗,h

α0ν
|||eh|||

2
. (6.28)

The estimate (6.28) implies obvious uniqueness under certain conditions. We summarize the

result as follows.



Finite Element Methods for the Navier-Stokes Equations by H(div) Elements 431

Theorem 6.2. Let a1(·, ·, ·) be given in (6.2) and define

Ñh = sup
u,ū,v,w∈Vh

|a1(u;v,w) − a1(ū;v,w)|

|||u − ū||||||v||||||w|||
. (6.29)

Assume that ρ ≡ Ñh‖f‖∗,h/(α0ν)2 < 1 holds true, where α0 is the ellipticity constant in (6.1)

and ‖f‖∗,h is given by (6.21). Then the finite element discretization scheme (6.16) has at most

one solution in the divergence-free subspace Dh.

7. Error Estimates

In this section we shall establish the error estimates for the finite element schemes (4.1)-

(4.2). Our main objective is to derive an optimal-order error estimate for the pressure in L2(Ω)

and the velocity in the discrete H1-norm given by (4.4). For simplicity, we consider only the

case of two space variables (i.e., n = 2); problems in higher dimensions such as n = 3 and n = 4

can be handled by using the Sobolev-type inequalities presented in Section 5.

Assumption A1: There exists an operator Πh : (H1(Ω))2 → Vh such that

b(v − Πhv, q) = 0, ∀q ∈ Wh. (7.1)

In addition, the operator Πh is assumed to satisfy the following:

|v − Πhv|s,K ≤ Cht−s|v|t,K , ∀K ∈ Th, s = 0, 1, (7.2)

where the constant C depends only on the shape of K and 1 ≤ t ≤ r + 1.

Inequalities (4.5) and (7.2) imply

|||v − Πhv|||1 ≤ C‖v‖1.

Since |||v|||1 = |v|1 ≤ ‖v‖1 for v ∈ (H1
0 (Ω))2, it follows by the above and triangle inequalities

|||Πhv|||1 ≤ C‖v‖1. (7.3)

For our finite element formulations, the inf-sup condition given in Brezzi’s framework would

read as follows: there exists a positive constant β, independent of h, such that

sup
v∈Vh

b(v, q)

|||v|||
≥ β‖q‖, ∀q ∈ Wh. (7.4)

To verify (7.4), we first use the operator Πh to obtain

sup
v∈Vh

b(v, q)

|||v|||
≥ sup

v∈(H1
0 (Ω))2

b(Πhv, q)

|||Πhv|||
= sup

v∈(H1
0 (Ω))2

b(v, q)

|||Πhv|||
. (7.5)

Observe that by using (7.3), and (4.6), we have for all v ∈ (H1
0 (Ω))2

|||Πhv||| ≤ C|||Πhv|||1 ≤ C‖v‖1. (7.6)

Thus, substituting (7.6) into the inequality (7.5) gives

sup
v∈Vh

b(v, q)

|||v|||
≥ C−1 sup

v∈(H1
0 (Ω))2

b(v, q)

‖v‖1
≥ β‖q‖,



432 J.P. WANG, X.S. WANG AND X. YE

where we have used the inf-sup condition for the continuous case [9, 19].

Our error analysis requires a use of the L2 projection from L2
0(Ω) to the finite element space

Wh, which is denoted by Qh. In addition, we need the following error equation: for all v ∈ Vh

and q ∈ Wh one has

dβ(u − uh,v) + a1(u,u,v) − a1(uh,uh,v) − b(v, p − ph) = 0, (7.7)

b(u − uh, q) = 0. (7.8)

The above error equations can be obtained from subtracting (4.1)-(4.2) from (3.18)-(3.19). We

recall that the exact solution of (1.1)-(1.3) satisfies the following boundedness

‖u‖1 ≤ µ−1‖f‖−1, (7.9)

where, as usual

‖f‖−1 = sup
v∈[H1

0(Ω)]n

(f ,v)

‖v‖1
.

The following is an error estimate for the velocity approximation in the discrete H1 norm.

Theorem 7.1. Let (u; p) be the solution of (1.1)-(1.3) and (uh; ph) ∈ Vh×Wh be obtained from

(4.1)-(4.2). Assume that the Assumption A1 holds true. Let

ρ =
Ñh‖f‖∗,h

α2
0ν

2
,

where α0 is the ellipticity constant in (6.1) and ‖f‖∗,h is given by (6.21). Assume that ρ < 1 so

that the finite element scheme (4.1)-(4.2) has a unique solution. Then, there exists a constant

C independent of h such that

|||Πhu − uh||| ≤
C

(1 − ρ)α0ν

(

M|||u − Πhu||| + ‖p − Qhp‖0

)

(7.10)

and

γ
∑

e∈Eh

∫

e

[[Πhu − uh]]
2
ds ≤

C

(1 − ρ)α0ν

(

M|||u− Πhu||| + ‖p − Qhp‖0

)2

, (7.11)

where

M = ν +
‖f‖−1

ν
+

Ñ ‖f‖∗,h

α0ν
. (7.12)

Proof. Let

ξh = uh − Πhu, ηh = ph − Qhp (7.13)

be the error between the finite element solution (uh; ph) and the projection (Πhu; Qhp) of the

exact solution. Denote by

ξ = u− Πhu, η = p − Qhp (7.14)

the error between the exact solution (u; p) and it projection. It follows from the error equations

(7.7) and (7.8) that

dβ(ξh,v) − b(v, ηh) = dβ(ξ,v) − b(v, η) + a1(u,u,v) − a1(uh,uh,v), (7.15)

b(ξh, q) = b(ξ, q) = 0 (7.16)
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for any v ∈ Vh and q ∈ Wh. By letting v = ξh in (7.15) and q = ηh in (7.16), the sum of (7.15)

and (7.16) gives

dβ(ξh, ξh) = dβ(ξ, ξh) − b(ξh, η) + a1(u,u, ξh) − a1(uh,uh, ξh). (7.17)

It is easy to see that

a1(u,u, ξh) − a1(uh,uh, ξh)

= a1(u,u, ξh) − a1(u,uh, ξh) + a1(u,uh, ξh) − a1(uh,uh, ξh)

= a1(u, ξ, ξh) − a1(u, ξh, ξh) + a1(u,uh, ξh) − a1(uh,uh, ξh).

Substituting the above equation into (7.17) yields

dβ(ξh, ξh) + a1(u, ξh, ξh)

= dβ(ξ, ξh) − b(ξh, η) + a1(u, ξ, ξh) + a1(u,uh, ξh) − a1(uh,uh, ξh). (7.18)

To estimate each term on the right-hand side of (7.18), we use the boundedness result (6.8) to

deduce

|dβ(ξ, ξh)| ≤ Cν|||ξ||||||ξh|||, (7.19)

and it is trivial to see the following

|b(ξh, η)| ≤ |||ξh|||1‖η‖0. (7.20)

As to the third term, we have from (6.14) that

|a1(u, ξ, ξh)| ≤ C|||u|||1|||ξ|||1|||ξh|||1

= C‖u‖1|||ξ|||1|||ξh|||1 ≤ Cν−1‖f‖−1|||ξ|||1|||ξh|||1, (7.21)

where we have used the estimate (7.9) in the last inequality. The last two terms on the right-

hand side of (7.18) can be handled by using (6.15) and (6.29) as follows:

|a1(u,uh, ξh) − a1(uh,uh, ξh)|

≤ |a1(u,uh, ξh) − a1(Πhu,uh, ξh)| + |a1(uh,uh, ξh) − a1(Πhu,uh, ξh)|

≤ Ñ |||ξ|||1|||uh|||1|||ξh|||1 + Ñh|||uh|||1|||ξh|||
2
.

Furthermore, using the boundedness estimate (6.22) one obtains

|a1(u,uh, ξh) − a1(uh,uh, ξh)| ≤
Ñ ‖f‖∗,h

α0ν
|||ξ|||1|||ξh|||1 +

Ñh‖f‖∗,h

α0ν
|||ξh|||

2
1. (7.22)

Now substituting the estimates (7.19)-(7.22) into (7.18) we obtain

dβ(ξh, ξh) + a1(u, ξh, ξh) ≤ Cν|||ξ||||||ξh||| + C|||ξh|||1‖η‖0 + Cν−1‖f‖−1|||ξ|||1|||ξh|||1

+
Ñ ‖f‖∗,h

α0ν
|||ξ|||1|||ξh|||1 +

Ñh‖f‖∗,h

α0ν
|||ξh|||

2
1

≤ C (M|||ξ||| + ‖η‖0) |||ξh||| +
Ñh‖f‖∗,h

α0ν
|||ξh|||

2
1. (7.23)

where M is given by (7.12). Thus, it follows from the coercivity (6.1) and the above estimate

that
(

να0 −
Ñh‖f‖∗,h

να0

)

|||ξh|||
2

+ a1(u, ξh, ξh) ≤ C(M|||ξ||| + ‖η‖0)|||ξh|||. (7.24)
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Using the notation and the condition of Theorem 6.2 we arrive at

(1 − ρ)α0ν|||ξh||| + a1(u, ξh, ξh) ≤ C (M|||ξ||| + ‖η‖0) ,

which, together with (6.7), implies

(1 − ρ)α0ν|||ξh|||
2
+ γ

∑

e∈E0
h

∫

e

|u · n|[[ξh]]
2
ds ≤ C (M|||ξ||| + ‖η‖0) |||ξh|||.

Using the inequality 2ab ≤ ǫa2 + ǫ−1b2 with ǫ = (1 − ρ)α0ν and a = |||ξh||| we obtain

(1 − ρ)α0ν|||ξh|||
2

+ 2γ
∑

e∈E0
h

∫

e

|u · n|[[ξh]]
2
ds ≤

C

(1 − ρ)α0ν
(M|||ξ||| + ‖η‖0)

2
.

This leads to the error estimates (7.10) and (7.11). �

The following is a result on the pressure approximation.

Theorem 7.2. Let (u; p) be the solution of (1.1)-(1.3) and (uh; ph) ∈ Vh×Wh be obtained from

(4.1)-(4.2). Under the assumptions of Theorem 7.1, there exists a constant C independent of

the mesh size h such that

‖Qhp − ph‖0 ≤ C(ν + P)|||u − uh||| + C‖p − Qhp‖0, (7.25)

where

P =
C‖f‖−1

ν
+

Ñ ‖f‖∗,h

α0ν
. (7.26)

An error estimate for the pressure approximation is easily given by combining (7.25) with (7.10).

Proof. To establish (7.25), we use the discrete inf-sup condition (7.4) and the error equation

(7.7) to obtain

‖ph − Qhp‖0 ≤ sup
v∈Vh

b(v, ph − Qhp)

|||v|||

= sup
v∈Vh

b(v, ph − p) + b(v, p − Qhp)

|||v|||

= sup
v∈Vh

dβ(u− uh,v) + a1(u,u,v) − a1(uh,uh,v) + b(v, p − Qhp)

|||v|||
. (7.27)

Since

|b(v, p − Qhp)| ≤ ‖p− Qhp‖0|||v|||,

we have from the boundedness (6.8) and the estimate (7.28) that

|dβ(u− uh,v) + a1(u,u,v) − a1(uh,uh,v) + b(v, p − Qhp)|

≤ (Cν|||u − uh||| + P|||u − uh||| + C‖p − Qhp‖0) |||v|||.

Substituting the above into (7.27) yields

‖ph − Qhp‖0 ≤ C(ν + P)|||u − uh||| + C‖p − Qhp‖0. �

The following Lemma was used in the proof of Theorem 7.2.
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Lemma 7.1. Let (u; p) be the solution of (1.1)-(1.3) and (uh; ph) ∈ Vh ×Wh be obtained from

(4.1)-(4.2). Under the assumptions of Theorem 7.1, for any w ∈ Vh we have

|a1(u,u,w) − a1(uh,uh,w)| ≤ P|||u− uh|||1|||w|||1, (7.28)

where P is given by (7.26).

Proof. Note that

a1(u,u,w) − a1(uh,uh,w) = a1(u,u− uh,w) + a1(u,uh,w) − a1(uh,uh,w).

Thus, it follows from (6.14) and (6.15) that

|a1(u,u,w) − a1(uh,uh,w)| ≤ C‖u‖1|||u− uh|||1|||w|||1 + Ñ |||u− uh|||1|||uh|||1|||w|||1.

Now we use the boundedness estimates (7.9) and (6.22) to obtain

|a1(u,u,w) − a1(uh,uh,w)| ≤

(

C‖f‖−1

ν
+

Ñ ‖f‖∗,h

α0ν

)

|||u− uh|||1|||w|||1,

which completes the proof. �
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