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Abstract

Let Sk denote the least-squares symmetric solution set of the matrix equation AX B =
C, where A, B and C are given matrices of suitable size. To find the optimal approximate
solution in the set Sk to a given matrix, we give a new feasible method based on the
projection theorem, the generalized SVD and the canonical correction decomposition.
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1. Introduction

Denote by R™*™ the set of real m x n matrices, and SR™*"™ the set of symmetric matrices in
R™ ™. In this paper, we consider the following problem:

Problem 1.1. Given A€ R™*", B€ R"*P, C € R™*P gnd X* € SR™™™. Let

Sg={X|X € SR™", |AXB—-C| = min |[AYB-C|}.
YeSRan
Find X € SE such that
1% - X = puin X - X7,
E

where || - || denotes the Frobenius norm.

In other word, Sg is the least-squares symmetric solution set of the matrix equation
AXB =C, (1.1)

and X is the optimal approximate least-squares symmetric solution of the matrix equation (1.1)
to the given matrix X*.

The consistency conditions of the matrix equation (1.1) with the symmetric solution were
given by Chu [1] (see also Dai [3]), and the symmetric solutions can also be obtained by using
the generalized singular value decomposition (GSVD) when the matrix equation is consistent.
For the matrix equation (1.1), Wang and Chang [17] gave the least-squares symmetric solution
by using GSVD; Liao and Bai [12] and Deng [5] considered the least-squares solution over
the symmetric positive semi-definite matrices and positive semi-definite matrices, respectively;
and Yuan [19] also gave the minimum-norm least-squares symmetric solution for the consistent
matrix equation (1.1) by using the canonical correlation decomposition (CCD).

* Received December 15, 2005; final revised September 1, 2006; accepted October 1, 2006.
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The problem of finding a nearest matrix in the least-squares symmetric solution set of a
matrix equation to a given matrix in the sense of the Frobenius norm, that is, Problem 1.1
in this paper, is called the matrix nearness problem. The matrix nearness problem is initially
proposed in the processes of test or recovery of linear systems due to incomplete dates or
revising dates. A preliminary estimate X™* of the unknown matrix X can be obtained by the
experimental observation values and the information of statical distribution. There are many
important results on the discussions of the matrix nearness problem associated with other
matrix equations, we refer the reader to [2, 4, 8, 9, 10, 15] and references therein.

In this paper, we develop an efficient method to solve Problem 1.1. Our approach is based on
the projection theorem in Hilbert space, GSVD and CCD of matrix pairs. It can be essentially
divided into three parts: First, we find a least-squares solution Xy of the matrix equation
(1.1) by using GSVD; then utilizing the solution Xy and the projection theorem, we transfer
Problem 1.1 to a problem of finding the optimal approximate symmetric solution of a consistent
matrix equation; finally, we find the optimal approximate symmetric solution of the consistent
matrix equation by using CCD.

The paper is organized as follows. After introducing some necessary notations and several
useful lemmas in Section 2, we will discuss Problem 1.1 in Section 3, and give the expression
of its solution. Then, in Section 4, we give the numerical algorithm to compute the solution of
Problem 1.1. Numerical experiments will be carried out in Section 4.

2. Notations and Lemmas

The notation used in this paper can be summarized as follows: the set of all n xn orthogonal
matrices in R"*" is denoted by OR™ ™. Denote by I the unit matrix. AT, tr(A) and rank(A)
respectively denote the transpose, the trace and the rank of the matrix A. For A = (a;;) €
R™*™ B = (b;j) € R™*", A« B represents the Hadamard product of the matrices A and B,
that is, A% B = (ai;bi;j)mxn- Let (A, B) represent the inner product of the matrices A and B,
that is, (A, B) = tr(BTA). Then R™*" is a Hilbert inner product space, and the norm of a
matrix produced by the inner product is the Frobenius norm.

We first state the concepts of the GSVD and CCD, which are essential tools for deriving
the solution of Problem 1.1. See [6, 7, 11, 13, ?, 16] for details.

Let A € R™*"™ and B € R"*P. Then the GSVD of the matrix pair (A4, BT) is given by

A=U%sM and BT =VXpM, (2.1)

where U € OR™*"™ and V € ORP*P; M € R™ ™ is a nonsingular matrix; and

I 0 0 0 Opirtyxr 0 0 0
Ya= 0 Sa 0 0 and Xp = 0 Sk 0 0
0 0 O(mfrfs)x(kfrfs) 0 0 0 I(kfrfs) 0

are block matrices, with the diagonal matrices S4 and Sp being given by
Sa =diag(ay,ag, - ,as) >0 and Sp = diag(f1, P2, -+ ,0s) > 0.

Here
k =rank(AT,B), r =k —rank(B), s=rank(A)+rank(B) - k.
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We further partition the orthogonal matrices

U=( U Uy Us ) and V=( W . 0B)

2.2
r s m-—r—s p+r—k s k—r—s (2:2)
compatibly with the block row partitioning of ¥4 and X, respectively.
The CCD of the matrix pair (AT, B) is given by
AT =Q(E4,0)Ey" and B=Q(Ep,0)E3", (2.3)
where Q € OR™™"; E4 € R™*™ and Eg € RP*P are nonsingular matrices; and
L 0 0 I, 0 0
0 C4 O 0 Iy 0
= _ 0 0 O and e — 0 0 Ih_ g
7o 0 o 7 0 o 0
0 Da O 0 0 0
0 0 Iy 0 0 0
are block matrices, with the diagonal matrices C'4 and D4 being given by
Ca =diag(p1, pro, -+ ypus) >0 and D =diag(Ai, Aa, -+, Asr) > 0.
Here,
g=rank(A) =r"+s +t, h=rank(B),
7' = rank(A) + rank(B) — rank(A",B), s =rank(AB) -1’
We further partition the nonsingular matrices
EA = ( A1 AQ A3 A4 ) and EB = ( Bl BQ B3 B4 ) (2 4)
st m-—y r & h—v" -5 p—h ’

compatibly with the block column partitioning of (£4,0) and (Ep,0), respectively.
The following lemmas are important for deriving an analytical formula of the solution of
Problem 1.1.

Lemma 2.1. (THE PROJECTION THEOREM [18]) Let X be an inner product space, M be a
subspace of X, and M= be the orthogonal complement subspace of M. For a given x € X, if
there exists an mo € M such that ||z — mg|| < ||lx — m| holds for any m € M, then mg is
unique and mqg € M is the unique minimization vector in M if and only if (x —mo)LM, i.e.,
(x —mg) € M+,

Lemma 2.2. Given matrices F = (fi;) € R'**', E = (e;j) € R¥*" and G = (g;5) € R* Y.
Let
CA:diag(/j/h/j/Qf" 7/1/8') and DA:dia/g()‘17)‘27"' 7)‘8')

be given diagonal matrices of positive diagonal entries, satisfying u? +X2 =1 (i =1,...,s),
and define
p(Y) =Y = FII? + |03 (E — DaY™) = G|1%.
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Then there exists a unique matriz Y = (§;;) € RY**" such that

e(Y)=_min o(Y).
YER? Xs

Moreover, the matrix Y possesses the analytical expression

Y = [FC3+ E"Dj—GTDAC) (2.5)
Proof. For the given matrices, we have
~ . 1 Aj
(V) = (G5 — fis)* + (—eji — iy — 90)°].
Hj Hj

,J

Because go(f/) is a convex, continuous and differentiable function with respect to the ~t' s’ vari-
ables g;; (i=1,...,t', j=1,...,s’), we easily know that ¢(Y)=min if and only if %:0. It
ij

then follows from direct computations that

?jij :fij/ﬁ?‘i‘eji)\j_gij)\j,uj; izl,...,ﬁ/, j:L...,S/. (26)
By rewriting (2.6) in matrix form, we immediately obtain (2.5). O
Lemma 2.3. Given matrices F = (fi;) € SR***, E = (e;;) € R*** and G = (gij) € R**~.
Let

Ca= diag(ﬂlaﬂ% T 7#5’) and Da = diag(Ah)‘Qa T 7>‘S')
be given diagonal matrices of positive diagonal entries, satisfying u? +X? =1 (i =1,...,s"),
and define
W(Y) =Y — F|* +2|[E"D;" — YCaDy' - G|

Then there exists a unique matriz Y = (9:) € SRS such that

(V)= min ().
YeSRs Xs

Moreover, the matrix % possesses the analytical expression
Y = K % [DAFD 4 + DYETCy + C4ED% — DAGDAC A — DACAGT D?], (2.7)
where K = (k;j) € R is defined by

1

kij = 3
EARD L

t,j=1,...,s.

Proof. For the given matrices, we have
P(Y) =3 [(?)m — fi)? + 25 i — K-0ii — gii)®
K2
+ P@ij — fii)? + 205550 — 52935 — 9i5)° + 2055 ei; — K0ij — 9;‘1‘)2} ~
i<j
Since w(?) is a convex, continuous and differentiable function with respect to the ‘(’/(é;—ﬂ)
variables §;; (1,7 =1,..., ), we easily know that w(?) = min if and only if %@ = 0. It then
ij
follows from direct computations that
NifijAj + Alejitty + pieighd — A2 gijAjig — Niptigi\; ,

Jii = j=1,...,5. 2.8
Uij Nt N , i,J s (2.8)

By rewriting (2.8) in matrix form, we immediately obtain (2.7). O
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3. The Solution of Problem 1.1

In this section, we derive an analytical expression for the solution of Problem 1.1. To this
end, we first transform the least-squares problem with respect to the matrix equation (1.1) to
a consistent matrix equation. This technique is precisely described in the following theorem.

Theorem 3.1. Suppose that the matrices A, B and C' are given in Problem 1.1. Let Xy be one
of the least-squares solutions of the matriz equation (1.1), and define

Cy= AXyB. (3.1)
Then the matriz equation
AXB = Cy (3.2)

is consistent over symmetric matrices, and its symmetric solution set is the same as the least-
squares symmetric solution set Sg of the matriz equation (1.1).

Proof. Let
S={Y|Y = AXB,X € SR™"}.

Then S is obviously a linear subspace of R™*P. Because X is a least-squares symmetric
solution of the matrix equation (1.1), from (3.1) we see that Cy € S and

ICo = Cll = [[AXoB - (|
= min [|[AXB-C|
XeSRnxn

= min ||Y - C||.
Yes
Now, by Lemma 2.1 we have
(Co—C)LS, or (Cop—C)eSt.

For X € SR™*", we know that (AX B — Cp) € S. It then follows that

IAXB — C|% = [(AXB — Co) + (Co — O)I3:

= [|[AXB — Gol[% + Co — C| -
Hence, the conclusion of this theorem holds true. ]
From Theorem 3.1, we easily see that the optimal approximate solution X of the consistent
matrix equation (3.2) to a given matrix X* is just the solution of Problem 1.1. Therefore,
solving Problem 1.1 essentially reduces to find Cj, or a least-squares solution X of the matrix

equation (1.1). Based on the GSVD (2.1) of the matrix pair (A, BT), the following theorem
gives such a matrix Cj.

Theorem 3.2. Suppose that the matrices A, B and C are given in Problem 1.1. Denote by
UTCV = (Cij)axs, with Cij =ULFCV;, i,5=1,2,3, (3.3)

where the matrices U; and V; (i=1,2,3) are given by (2.2). Then the following matriz Cy
corresponds a least-squares solution Xo of the matriz equation (1.1) and satisfies (3.1):

0 Ci2 Ci3

Co=U/[ 0 SaXsSp Oy | V7T, (3.4)
0 0 0
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where

Xop = ® % (SaCo2Sp + SpClySa) with & = ( )ESR, i j=1,...,5. (3.5)

1
o? B} + B7a]
Proof. From [17] we know that the least-squares solutions of the matrix equation (1.1) can
be given by using the GSVD of the matrix pair (A4, BT), and are of the following form

X11 C12S5" Ci3 X4
Sp'CL Xao  S;'Chs Xoa
Cly  CLSYy'  Xsz Xu
Xl X3 X3 Xu

X=M"1 M-t (3.6)

where the block matrix Xs; is defined by (3.5); X;; (i = 1,3,4) are arbitrary symmetric matrix
blocks; X4 (i = 1,2,3) are arbitrary matrix blocks. By substituting (2.1) and (3.6) into (3.1),
after concrete manipulations we can obtain (3.4). O

Evidently, (3.4) shows that the matrix Cy given in Theorem 3.2 is unique, and only de-
pendent on the matrices A, B, and C, but independent of the least-squares solution Xy of the
matrix equation (1.1). Therefore, we can conclude that

ICo—C| = min ||AXB-C].
XeSRnxn

Based on Theorems 3.1 and 3.2, we can obtain the analytical expression of the solutions of

Problem 1.1 by using the CCD (2.3) of the matrix pair (AT, B). To state the results, we denote

EYCyEp = (Eij)axa, with E;; = ATCoB; i,j=1,2,3,4, (3.7)
where Cj is defined by (3.4), and the matrices A; and B; (i=1,2,3,4) are given by (2.4).

Theorem 3.3. Suppose that the matrices A, B,C and X* are given in Problem 1.1. Partition
the matriz QT X*Q compatibly to the block row partitioning of =4 and Zp into

QTX*Q = (X)exe, with X} =X;

3i

i,j=1,2,...,6, (3.8)

where the matriz Q is defined in (2.3). Then the unique solution X of Problem 1.1 can be
expressed as

En Ei2 Ei3 X14 Yis Ej
EL Voo C Y (Bas — DaAYSS) X3, (EL — ?EQCA)DQI EL
5= 0 E% (B33 — Y35TDA)CE1 Xék; X34 Y35 E3 QT (3.9)
X1i X34 34 Xi4 Xis Xis
v D" (B2 — OA?QE) Vb bord X35 X36
E3 E3a Ess3 Xid Xz Xée
where
Yis = (B, — E12Ca)D} ",
%,5 = X§5C% + EQTBDA — X;?’CADA, (310)

Voo = K % [DaX3yDa+ DAELCa + CaEyD% — D3 X3 DaCy — DaCaX3T D2,

with

- 1

=32 2 2
)\j + A7 Wi

/

K:(kij)ERSIXSI; kij i,j=1,...,5.
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Proof. From Theorems 3.1 and 3.2 we know that the least-squares symmetric solution set
of the matrix equation (1.1) is the same as the symmetric solution set of the consistent matrix
equation (3.2), with the matrix Ey being given by (3.4). From [19] we see that the solutions of
the consistent matrix equation (3.2) can be expressed as

Eun Er ?13 Y14 3215 ES
Ely, Y2 Xa3 Yar Xos Ei
FEL XL Ys3 Ysu Yss EL

X = T 3.11
@ Y1 3:22 Yi Y Yis  Yie @ ( )
Y5 X35 Ysi Y5 Yess  Yig
FEs1 Fs Ess YE Y Yes
where
Xos = O (Bas — DaYy)), (3.12)
Xos = ELD," —YnCaDL'

the matrix block Yi5 is defined by (3.10); Vi, (i = 2,3,6) are arbitrary symmetric matrix blocks;
and the other matrix blocks Y;; (4,7 = 1,2,6) are arbitrary.
It follows from (3.8) and (3.11) that

X =X = 1QTXQ - QTX*Q|

~ 2
En-X{y, Eo-X{y EBEis-X{ Yu-X{y Yi5-Xj5 EBj - Xf
Efy = Xi5 Yo —X5 Xog— X5y Yau-— X5 Xos— X5 Ef - X3
|| Bis—Xi3 Xgs—X3i Yas— Xy Yau— X§ Yas - X§ Egy— Xig
Vig—X{d Yo, - X5l Vi — X3 Yu - X§, Yis— Xip o Yie — Xjg
Vs - X{5 Xgg— X35 Y- Xgg Y5 - Xip o Ve — X5 Yae — X3
By~ Xil Ba— X3l Bw - X3 Y- Xil Y8 - XiT Yoo — Xig
Hence,
[|X — X*|| = min, VX €Sk
(see the definition of the matrix set Sg in Problem 1.1) if and only if
{ Yia = X7y, Yoa = X5y, Yau= X3y, Yis =Xi5, Yie = X, (3.13)
Yoo = X356, Yas = X335, Yaa = XJy, Ys5 = X355, Yo = X
1¥a5 = X351 + |C1 (Eog — DaYs5) = X35]|* = min, V¥ Va5 € R0 (3.14)
and
Yoo — X352 + 2| (EL, — YaoCu)D3' — X35]1? = min, V Yoy € SR¥*. (3.15)

By making use of Lemmas 2.2 and 2.3 we know that the solutions of (3.14) and (3.15) are of
the form

Va5 = X35C3 + E3;D4 — X35CaDa,
Voo = K % [DaX3,Da + DYE$HCa + CaE2y D% — D3 X3,D4Ca — DaCaX3E D).

Substituting these Y35, Va2 and (3.13) into (3.11) yields (3.9). O
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Remark 3.1. In Problem 1.1, if the matrix X* is not symmetric, then from
1% = XJ7 = X - (X7 + X2+ (X~ X TP, VX € S,
we know that the minimization problem
|[X — X*||=min VX € Sg
is equivalent to the following minimization problem
X — %(X* + XY =min VX € Si.

Therefore, without loss of generality, in following discussion we suppose that the matrix X™* is
symmetric in Problem 1.1.

4. A Numerical Algorithm for Solving Problem 1.1

Based on Theorem 3.3, we can establish an algorithm for finding the solution of Problem 1.1.

Algorithm for solving Problem 1.1
1. Input matrices A, B,C and X*.
2. Make the GSVD of the matrix pair (A4, BT) according to (2.1).
3. Partition the matrix UTCV = (Cj;)sx3 according to (3.3).
4. Compute X2 according to (3.5).
5. Compute Cj according to (3.4).
6. Make the CCD of the matrix pair (AT, B) according to (2.3).
7. Partition the matrices E4 and Ep according to (2.4).

8. Compute the matrix X according to (3.9).

Example 1. Let

Ao < ones(5,5) zeros(5,4) ) B < hankel(1:4) zeros(4,5) >
zeros(4,5) pascal(4) )’ zeros(5,4) zeros(5, 5)
o ( toeplitz(1:4) zeros(4,5) ) P ( eye(4) nes(4,5) )
B zeros(5,4) hilb(5) ’ ~\ ones(5,4) eye(5 ’

where hilb(n) and pascal(n) denote the n-th order Hilbert matrix and Pascal matrix, respec-
tively, and toeplitz(1 : n) and hankel(1 : n) denote the n-th order Toeplitz matrix and Hankel
matrix whose first row is (1,2, - ,n), respectively.
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By using MATLAB 6.5, we obtain

2.0000 1.6000 1.6000 2.0000 0 0 0O O O

2.0000 1.6000 1.6000 2.0000 0 0O 0O O O

2.0000 1.6000 1.6000 2.0000 0 0 0O O O

2.0000 1.6000 1.6000 2.0000 0 0 0O O O

Cop = 2.0000 1.6000 1.6000 2.0000 0 O 0 0 O

0 0 0 0 000 OO

0 0 0 0000 OO

0 0 0 0000 OO

0 0 0 0 000 OO

and
0.8258 —0.2692 —0.2480 —-0.2214 04129 0 0 0 O
—0.2692  0.6358 —0.3430 —0.3164 03179 0 0 0 O
—0.2480 —0.3430 0.6783 —0.2952 03391 0 0 0 O
—0.2214 —-0.3164 —-0.2952 0.7314 0.3657 0 O O O
X = 0.4129  0.3179  0.3391 0.3657 1 0 0 0 O
0 0 0 0 01 0 0O
0 0 0 0 0 01 0O
0 0 0 0 0 0010
0 0 0 0 0 00 01
By concrete computations, we have
AXB=C,, min |X—-X*|=][X - X"]| =4.4141.
XeSE

In addition, we also have

min  [|[AXB — C|| = ||Co — C|| = 5.7358
XeSRnxn
and
<CQ, Co — C) = t’I“(Cg(CQ — C)) = —4.7073 x 1074,

This demonstrates that the above-described algorithm is feasible for solving Problem 1.1.
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