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Abstract

We investigate the problem of computing electromagnetic guided waves in a closed,
inhomogeneous, pillared three-dimensional waveguide at a given frequency. The problem
is formulated as a generalized eigenvalue problem. By modifying the sesquilinear form
associated with the eigenvalue problem, we provide a new convergence analysis for the
finite element approximations. Numerical results are reported to illustrate the performance
of the method.

Mathematics subject classification: 65N30, 35L15
Key words: Waveguide, Eigenvalue, Inf-Sup condition.

1. Introduction

We consider in this paper a closed waveguide defined by a right cylinder with cross section
Ω, a bounded, Lipschitz, simply connected polyhedral domain in R2. The waveguide is filled
with inhomogeneous media whose electromagnetic properties are described by the real-valued
functions ε and µ. We assume the magnetic permeability µ = µ0, the magnetic permeability in
vacuum, and the dielectric permittivity ε is piecewise constant and has no variation along the
waveguide. More precisely, let Ω1 ⊂ Ω be an open domain, Ω2 = Ω\Ω̄1. We assume

ε(x) =

{
ε1ε0 in Ω1,

ε2ε0 in Ω2,

where ε0 is the dielectric permittivity in vacuum.
The waveguide problem is to find solutions to Maxwell equations which are of the general

form {
E(x, x3, t) = (E(x), E3(x))ei(ωt−βx3)

H(x, x3, t) = (H(x), H3(x))ei(ωt−βx3)
(1.1)

where x ∈ Ω and the x3-axis is along the waveguide, ω > 0 is the angular frequency of the guided
wave, β is the constant of propagation, E and H are electric and magnetic field components in
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the plane of the cross section, and E3 and H3 are electric and magnetic components along the
waveguide.

With ansatz (1.1), the second order three dimensional Maxwell equations expressed in terms
of electric field (E, E3) reduce to the following two-dimensional equations (cf. e.g. [11]):

∇× (∇× E) − iβ∇E3 − (ω2ε0µ0)εE = −β2E in Ω, (1.2)
∇ · (εE) − iβεE3 = 0 in Ω. (1.3)

For simplicity, perfect electric conductor boundary conditions are imposed

E× n = 0, E3 = 0 on ∂Ω, (1.4)

where n is the unit outer normal to ∂Ω.
Advances in various branches of photonics technologies have established the need for the de-

velopment of numerical and approximate methods for the analysis of a wide range of waveguide
structures that are not amenable to exact analytical studies [5]. The problem (1.2)-(1.3) is an
eigenvalue problem. Either ω or β is assumed to be known, and the goal is to find all possible
pairs which consist of the other missing constant β or ω and the corresponding field (E, E3).
The case with a given real-valued β has been extensively studied in the literature (see e.g. [8],
[2] and the references therein). More physically relevant case with a given ω to find unknown
β is recently studied in [11], in which the eigenvalue problem is studied under the assumption
that the frequency ω does not belong to the spectrum of the variational eigenvalue problems
associated with the curl-curl and div-grad operators. We remark that since the spectrum of
these two operators are generally unknown, this assumption on ω cannot be verified in practical
applications.

In this paper we are going to provide a new convergence analysis for the eigenvalue problem
(1.2)-(1.3) which removes the restrictions on the frequency ω in [11]. This is achieved by
modifying the sesquilinear form associated with the variational formulation of (1.2)-(1.3). The
key technical difficulty is the proof of the inf-sup condition of the modified sesquilinear form
which allows us to use the general framework for the approximation of the eigenvalue problems
developed in [1]. We introduce a finite element method which uses the lowest order Nedelec
edge element and standard conforming linear finite element to approximate (E, E3), respectively.
This choice of finite elements is shown in [11] to exclude spurious modes. Here again the discrete
inf-sup condition is proved without any restrictions on the frequency ω and the mesh sizes. We
also report several numerical experiments to illustrate the performance of the method studied
in this paper.

2. The Continuous Problem

We begin with introducing the Hilbert space X = H0(curl; Ω) ×H1
0 (Ω) which is equipped

with the norm

‖(V, q)‖X = ‖V ‖curl,Ω + ‖ q ‖H1(Ω) ∀(V, q) ∈ X.

Here ‖V ‖curl,Ω = (‖∇×V ‖2
L2(Ω) + ‖V ‖2

L2(Ω))
1/2 is the norm of the space H(curl; Ω) which is

defined as the collection of all functions V in L2(Ω) such that ‖V ‖curl,Ω <∞. H0(curl; Ω) con-
sists of functions V in H(curl; Ω) whose tangential component V×n vanishes on the boundary
∂Ω.

Set Enew
3 = −iβE3 in (1.3). To save the notation, E3 will represent Enew

3 for the reminder
of this paper. Let k2

0 = ω2ε0µ0. For Λ > 0, by adding ΛE on both sides of (1.2), we can
reformulate (1.2)-(1.3) with boundary condition (1.4) into the following variational form:
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For a given ω > 0, find all pairs (β, (E, E3)) ∈ C × X, such that, for any (V, q) ∈ X,

〈∇ × E,∇× V〉 + 〈(Λ − k2
0ε)E,V〉 + 〈∇E3,V〉 = (Λ − β2)〈E,V〉, (2.1)

〈∇q, εE〉 − 〈εE3, q〉 = 0. (2.2)

Here 〈·, ·〉 stands for the inner product of [L2(Ω)]2 or L2(Ω).
Now we introduce the sesquilinear forms a : X × X → C and b : X × X → C as follows: for

any (U, p), (V, q) ∈ X,

a((U, p), (V, q)) = 〈∇ × U,∇× V〉 + 〈(Λ − k2
0ε)U,V〉 + 〈∇p,V〉

−〈∇q, εU〉 + 〈εp, q〉,
b((U, p), (V, q)) = 〈U,V〉.

Then it is easy to see that (2.1)-(2.2) is equivalent to the following generalized eigenvalue
problem:

For a given ω > 0, find all pairs (λ, (E, E3)) ∈ C × X, such that

a((E, E3), (V, q)) = λb((E, E3), (V, q)) ∀(V, q) ∈ X. (2.3)

The addition of ΛE in (2.1) is solely for the ease of mathematical analysis. In particular,
it does not affect the practical computations. The following theorem is the main result of this
section.

Theorem 2.1. Assume that the parameter Λ satisfies

max(k2
0ε1, k

2
0ε2) < Λ ≤ k2

0(ε1 + ε2), (2.4)

then the sesquilinear form a(·, ·) satisfies the following properties:

(i) There exists a constant C > 0 such that

|a((U, p), (V, q))| ≤ C‖ (U, p) ‖X‖ (V, q) ‖X, ∀(U, p), (V, q) ∈ X. (2.5)

(ii) There exists a constant α1 > 0 such that, for any (U, p) ∈ X,

sup
(V,q)∈X

a((U, p), (V, q))
‖ (V, q) ‖X

≥ α1‖ (U, p) ‖X. (2.6)

(iii) There exists a constant α2 > 0 such that, for any (V, q) ∈ X,

sup
(U,p)∈X

a((U, p), (V, q))
‖ (U, p) ‖X

≥ α2‖ (V, q) ‖X. (2.7)

Proof. Without loss of generality, we may assume ε1 > ε2. For brevity we set ρ(x) =
Λ − k2

0ε(x) and ρi = Λ − k2
0εi, i = 1, 2. By the assumption (2.4), ρi > 0, i = 1, 2.

(2.5) is obvious. We now show the inf-sup condition (2.6). For any (U, p) ∈ X, define
φ ∈ H1

0 (Ω) as the weak solution of the problem

〈∇φ,∇ψ〉 = −
(

1 − ε2
ε1

) ∫
Ω2

U2 · ∇ψdx ∀ψ ∈ H1
0 (Ω), (2.8)
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where U2 = U|Ω2 . By taking ψ = φ in (2.8) we know that

‖∇φ ‖L2(Ω) ≤
(

1 − ε2
ε1

)
‖U2 ‖L2(Ω2). (2.9)

Now we set

V = U + θ∇p+ ∇φ, q =
1
ε1
p, (2.10)

where θ = 2( ε2
ε1

)2 1
ρ2

. It is obvious that (V, q) ∈ X. We have

a((U, p), (V, q)) = ‖∇× U ‖2
L2(Ω) + 〈ρU,U + θ∇p+ ∇φ〉

+〈∇p,U + θ∇p+ ∇φ〉 − 〈 ε
ε1

U,∇p〉 + 〈 ε
ε1
p, p〉.

By (2.8), we know that

〈∇p,U + ∇φ〉 − 〈 ε
ε1

U,∇p〉 = 0.

Moreover, by Cauchy-Schwarz inequality and (2.9), we obtain

θ|〈ρU,∇p〉| ≤ 1
2
θ‖∇p ‖2

L2(Ω) +
1
2
θ‖ ρU ‖2

L2(Ω),

|〈ρU,∇φ〉| ≤
(

1 − ε2
ε1

)
‖ ρU ‖L2(Ω)‖U2 ‖L2(Ω2)

= ρ1

(
1 − ε2

ε1

)
‖U1 ‖L2(Ω1)‖U2 ‖L2(Ω2) + ρ2

(
1 − ε2

ε1

)
‖U2 ‖2

L2(Ω2).

Thus

a((U, p), (V, q)) = ‖∇× U ‖2
L2(Ω) + 〈ρU,U〉 + 〈 ε

ε1
p, p〉 + θ‖∇p ‖2

L2(Ω)

+θ〈ρU,∇p〉 + 〈ρU,∇φ〉
≥ ‖∇× U ‖2

L2(Ω) +
1
2
θ‖∇p ‖2

L2(Ω) + 〈 ε
ε1
p, p〉

+ρ1‖U1 ‖2
L2(Ω1) + ρ2

ε2
ε1

‖U2 ‖2
L2(Ω2)

−1
2
θ‖ ρU ‖2

L2(Ω) − ρ1

(
1 − ε2

ε1

)
‖U1 ‖L2(Ω1)‖U2 ‖L2(Ω2).

It follows from ε2 < ε1 that ρ1 < ρ2 and

ρ1ε2 = Λε2 − k2
0ε1ε2 < Λε1 − k2

0ε1ε2 = ρ2ε1.

Moreover, since Λ ≤ k2
0(ε1 + ε2) by (2.4), we have

ρ2ε2 = Λε2 − k2
0ε

2
2 = ρ1ε1 + (ε2 − ε1)[Λ − k2

0(ε1 + ε2)] ≥ ρ1ε1.

Then, since θ = 2( ε2
ε1

)2 1
ρ2

, we have

ρ1 − 1
2
θρ2

1 = ρ1 −
(
ε2
ε1

)2
ρ2
1

ρ2
≥ ρ1

(
1 − ε2

ε1

)
,

ρ2

(
ε2
ε1

)
− 1

2
θρ2

2 = ρ2

(
ε2
ε1

) (
1 − ε2

ε1

)
≥ ρ1

(
1 − ε2

ε1

)
.



192 Z. CHEN AND J.H. YUAN

Thus

ρ1‖U1 ‖2
L2(Ω1) + ρ2

ε2
ε1

‖U2 ‖2
L2(Ω2)

−1
2
θ‖ ρU ‖2

L2(Ω) − ρ1

(
1 − ε2

ε1

)
‖U1 ‖L2(Ω1)‖U2 ‖L2(Ω2)

≥ 1
2
ρ1

(
1 − ε2

ε1

)
‖U ‖2

L2(Ω).

Therefore, a((U, p), (V, q)) ≥ C0‖ (U, p) ‖2
X
, for some constant C0 > 0. On the other hand, it is

easy to see from (2.9) that there exists a constant C > 0 such that ‖ (V, q) ‖X ≤ C‖ (U, p) ‖X.
This proves the desired result (2.6).

Now we turn to the proof of (2.7). For any (V, q) ∈ X, let ϕ ∈ H1
0 (Ω) be the weak solution

of the problem

〈k2
0ε∇ϕ,∇ψ〉 = 〈ρV,∇ψ〉 ∀ψ ∈ H1

0 (Ω). (2.11)

It is easy to see that

‖∇ϕ ‖L2(Ω) ≤ ρ2

k2
0ε2

‖V ‖L2(Ω). (2.12)

We set

U = k2
0V − ζ∇q + k2

0∇ϕ, p = Λq,

where ζ = k2
0ε2/ρ2. It is clear that (U, p) ∈ X, and we have

a((U, p), (V, q)) = ‖∇× V ‖2
L2(Ω) + 〈ρ(k2

0V − ζ∇q + k2
0∇ϕ),V〉 + 〈Λ∇q,V〉

−〈∇q, ε(k2
0V − ζ∇q + k2

0∇ϕ)〉 + Λ〈εq, q〉.
By (2.11) we have 〈ρ∇ϕ,V〉 = k2

0〈ε∇ϕ,∇ϕ〉 ≥ 0, and

〈Λ∇q,V〉 − 〈∇q, ε(k2
0V + k2

0∇ϕ)〉 = 〈(Λ − k2
0ε− ρ)V,∇q〉 = 0.

Thus

a((U, p), (V, q)) ≥ ‖∇× V ‖2
L2(Ω) + k2

0〈ρV,V〉 − ζ〈ρ∇q,V〉
+ζ〈ε∇q,∇q〉 + Λ〈εq, q〉.

By Cauchy-Schwarz inequality, we have

ζ|〈ρ∇q,V〉| ≤ 1
2
ζ〈ε∇q,∇q〉 +

1
2
〈ρ2ζε−1V,V〉

=
1
2
ζ〈ε∇q,∇q〉 +

1
2
k2
0〈
ρ

ε

ε2
ρ2
ρV,V〉

≤ 1
2
ζ〈ε∇q,∇q〉 +

1
2
k2
0〈ρV,V〉,

which implies that, for some constant C1 > 0, a((U, p), (V, q)) ≥ C1‖ (V, q) ‖2
X
. On the other

hand, it is easy to see from (2.12) that ‖ (U, p) ‖X ≤ C‖ (V, q) ‖X. This proves (2.7) and
completes the proof of the theorem.

It follows from Theorem 2.1 that there exists a unique bounded operator T X → X satisfying

a(T (U, p), (V, q)) = b((U, p), (V, q)) ∀(V, q) ∈ X, ∀(U, p) ∈ X. (2.13)
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Let H = [L2(Ω)]2 × L2(Ω). It is clear that T is also well-defined on H. By using the
compactness embedding of H0(curl; Ω) ∩ H(divε; Ω) in [L2(Ω)]2 in [12], it is shown in [11,
Theorem 4] that T : H → H is compact.

Because of the inf-sup condition proved in Theorem 2.1, there is no nontrivial fields (E, E3)
satisfying (2.3) for λ = 0. Thus (λ, (E, E3)) solves (2.3) if and only if (λ−1, (E, E3)) is an
eigenpair of the compact operator T : H → H. Hence the spectral properties of the com-
pact operator T provide the information of the spectral properties of the variationally posed
eigenvalue problem (2.3).

Now we briefly recall the spectral property of compact operators. Further details can be
found in [1], for example. The resolvent set of a compact operator T , ρ(T ), is the set of complex
numbers z such that (z−T ) has a bounded inverse operator in H. The spectrum of T is the set
σ(T ) = C\ρ(T ). Classical spectral theory of compact operators implies that σ(T ) is countable
with no nonzero limit points. Nonzero numbers in σ(T ) are eigenvalues.

Let µ ∈ σ(T ) be nonzero. The ascent α of µ− T is the smallest number such that N((µ −
T )α) = N((µ − T )α+1), where N denotes the null space. N((µ − T )α) is finite dimensional
and its dimension is called the algebraic multiplicity of µ. The vectors in N((µ−T )α) is called
generalized eigenvectors of T corresponding to µ. The vectors in N(µ− T ) is the eigenvectors
of T corresponding to µ. The geometric multiplicity of µ is the dimension of N(µ − T ) which
is less than the algebraic multiplicity.

3. The Discrete Problem

Let Mh be a shape regular triangulation of Ω. For any K ∈ Mh, we denote hK its
diameter, and h = maxK∈Mh

hK . Let Qh ⊂ H1
0 (Ω) be the standard conforming linear finite

element space, and Wh ⊂ H0(curl; Ω) be the finite element space of the lowest order H(curl; Ω)
conforming edge element

Wh = {Vh ∈ H0(curl; Ω) : Vh|K = (aK − cKx2, bK + cKx1)T ,

where aK , bK , cK ∈ R, K ∈ Mh}.
Denote Xh = Wh × Qh. Then we introduce the following finite element approximation of the
variationally posed eigenvalue problem (2.3) as follows:

For a given frequency ω > 0, find all pairs (λh, (Eh, E3h)) ∈ C × Xh, such that

a((Eh, E3h), (Vh, qh)) = λhb((Eh, E3h), (Vh, qh)) ∀(Vh, qh) ∈ Xh. (3.1)

Notice that ∇Qh ⊂ Wh. The discrete inf-sup conditions formulated in the following theorem
can be proved exactly as in Theorem 2.1.

Theorem 3.1. Assume that the parameter Λ satisfies

max(k2
0ε1, k

2
0ε2) < Λ ≤ k2

0(ε1 + ε2),

then the sesquilinear form a(·, ·) satisfies the following properties:

(i) There exists a constant α̂1 > 0 independent of h such that, for any (Uh, ph) ∈ Xh,

sup
(Vh,qh)∈X

a((Uh, ph), (Vh, qh))
‖ (Vh, qh) ‖X

≥ α̂1‖ (Uh, ph) ‖X. (3.2)

(ii) There exists a constant α̂2 > 0 independent of h such that, for any (Vh, qh) ∈ X,

sup
(Uh,ph)∈X

a((Uh, ph), (Vh, qh))
‖ (Uh, ph) ‖X

≥ α̂2‖ (Vh, qh) ‖X. (3.3)
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Theorem 3.1 implies that there exists a unique bounded operator Th : Xh → Xh satisfying

a(Th(Uh, ph), (Vh, qh)) = b((Uh, ph), (Vh, qh)) ∀(Vh, qh) ∈ Xh. (3.4)

We also have that (λh, (Eh, E3h)) solves (3.1) if and only if (λ−1
h , (Eh, E3h)) is an eigenpair of

the operator Th : Hh → Hh.
The operator Th can be written as Th = PhT , where Ph is the projection from X to Xh

defined by

a(Ph(U, p), (Vh, qh)) = a((U, p), (Vh, qh)) ∀(Vh, qh) ∈ Xh, (U, p) ∈ X.

From Theorem 3.1 we easily deduce that Ph → I pointwise as h → 0. Since T : H → H is
compact, Th → T in the operator norm on H. Let λ be an eigenvalue of (2.3) with algebraic
multiplicity m, by which we mean that λ−1 is an eigenvalue of T with algebraic multiplicity
m. Let α be the ascent of λ−1 − T . Since Th → T in norm, m eigenvalues λ1(h), · · · , λm(h)
of (3.1) will converge to λ. The λj(h) are counted according to the algebraic multiplicities of
λj(h)−1 as eigenvalues of Th.

Let

M = M(λ) = {(U, p) : (U, p) is a generalized eigenvector of (2.3)
corresponding to λ, ‖(U, p)‖X = 1.}

M
∗ = M

∗(λ) = {(V, q) : (V, q) is a generalized adjoint eigenvector
of (2.3) corresponding to λ, ‖(V, q)‖X = 1.}

and define

εh = εh(λ) = sup
(U,p)∈M

inf
(Fh,gh)∈Xh

‖(U, p) − (Fh, gh)‖X

ε∗h = ε∗h(λ) = sup
(V,q)∈M∗

inf
(Fh,gh)∈Xh

‖(V, q) − (Fh, gh)‖X.

The following theorem which extends the result in [1] is proved in [11].

Theorem 3.2. There is a constant C such that

|λ− λj(h)|α ≤ Cεhε
∗
h, j = 1, · · · ,m.

This theorem shows that the rate of convergence depends on the ascent α and the interpo-
lation error for the eigenspaces, which in turn depends on the regularity of the corresponding
eigenfunctions.

Now we consider a special consequence of Theorem 3.2. Let Ω1 ⊂⊂ Ω and the interface
Γ is smooth (say C2). We assume the mesh Mh of Ω is so constructed that the domain Ω1

is approximated by a domain Ωh
1 with a polygonal boundary Γh whose vertexes all lie on the

interface Γ. Let Ωh
2 stand for the domain with ∂Ω and Γh as the exterior and interior boundaries.

In addition, we assume each K ∈ Mh is either in Ωh
1 or in Ωh

2 , and has at most two vertexes
lying on Γh. It is proved in [4, Lemma 2.1] that for any v ∈ Y = H1(Ω) ∩H2(Ω1) ∩H2(Ω2),
the following error estimate holds

‖ v − Ihv ‖L2(Ω) + h‖∇(v − Ihv) ‖L2(Ω) ≤ Ch2| log h|1/2‖ v ‖Y , (3.5)

where Ih : C(Ω̄) → Qh is the standard linear finite element nodal interpolant.
Similar to the argument in [4, Lemma 2.1], we can show that

‖U − ΠhU ‖curl,Ω ≤ Ch| log h|1/2‖U ‖Y , (3.6)
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where Πh : H1(Ω)∩H0(curl; Ω) → Wh is the canonical interpolant defined through the relation∫
e

ΠhU · τ ds =
∫

e

U · τ ds,

for any edges e of the mesh Mh, where τ is the unit tangential vector along e.
The following result is a direct consequence of Theorem 3.2 and the estimates (3.5)-(3.6).

Corollary 3.3. Let λ ∈ C be an eigenvalue of (2.3) with algebraic multiplicity m and ascent
α. Assume the corresponding generalized eigenvectors (E, E3) and adjoint eigenvectors (F, F3)
have the regularity properties: E,F ∈ [H2(Ω1)∩H2(Ω2)]2 and E3, F3 ∈ H2(Ω1) ∩H2(Ω2). Let
λ1(h), · · · , λm(h) be the eigenvalues of (3.1) that converge to λ as h → 0. Then there exists a
constant C independent of h such that

|λ− λj(h)|α ≤ Ch2| log h|, j = 1, 2, · · · ,m.

Things become more complicated, however, when the interface Γ is not smooth. In this
situation, it is well-known that the eigenfunctions usually display singularities which deteriorate
the finite element convergence if uniform mesh refinements are used. We will show one such
situation in next section. One possible way to overcome this difficulty is to use adaptive mesh
refinements based on a posteriori error estimation. This is a topic of our current research.

4. Numerical Experiments

In this section we report several numerical examples to illustrate the performance of the
method studied in this paper. In the computations we used the PDE toolbox of MATLAB.
The stiffness matrix in (3.1) is assembled by choosing Λ = 0. The discrete algebraic eigenvalue
problems are solved by shifted inverse iteration algorithm with shift κ.
Example 1. This example is taken from [7] which concerns the simplest semi-filled rectangular
waveguide. Let Ω = [0, a] × [0, 1

2a] with a = 2.00µm. Set Ω1 = [0, a] × [0, 1
4a] and Ω2 =

[0, a] × [14a,
1
2a] (see Figure 4.1). We take ε1 = 4 and ε2 = 1.

Ω
1

Ω
2

a 

a/2 

Figure 4.1: Semi-filled rectangular dielectric waveguide

Let k0 = ω
√
ε0µ0 = 1.25 and κ = 0. The wave analysis in [6] indicates that the minimum

wave number β2 � 0.42044. Table 4.1 shows the computed eigenvalues λk and the corresponding
error |λk − β2| on successively uniformly refined meshes Mk with Nk nodes.

Figure 4.2 shows clearly that the meshes and the associated numerical complexity are quasi-
optimal: |λk − β2| ≈ CN−1

k is valid asymptotically for different choices of k0 = 1.25, 1.5, and
2.5. The performance of the quasi-optimal method is indicated by the dotted line of slope −1.
Example 2. We consider step-index circular waveguide.This example is taken form [9] and
concerns dielectric waveguide. Let Ω = [0, a]× [0, a] be a square with a = 20.00µm . Let Ω1 ⊂ Ω
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Table 4.1: Semi-filled rectangular dielectric waveguide: The level of mesh refinements k, the
number of nodes Nk, the computed minimum eigenvalue λk, and the error |λk − β2| when
k0 = 1.25.

k Nk λk |λk − β2|
1 13 0.47398020 0.05354020
2 41 0.43877230 0.01833230
3 145 0.42634740 0.00590740
4 545 0.42209659 0.00165659
5 2113 0.42087439 0.00043439
6 8321 0.42055350 0.00011350
7 33025 0.42047198 0.00003198
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Figure 4.2: Semi-filled rectangular dielectric waveguide: Performance of the error in terms of
the number of nodes of the meshes. The quasi-optimal decay is indicated by the dotted line of
slope −1.

be a circle with the radius r = 4.50µm, and Ω2 = Ω\Ω1 (see Figure 4.3). Let ε1 = 11.66 and
ε2 = 10.02.

Let k0 = 4.833219 and κ = 270. The analytical solution for the fundamental mode is
β ≈ 3.4130933k0. We still observe the asymptotically quasi-optimal decay of the error in terms
of the mesh complexity in Figure 4.4.
Example 3. This example also is taken form [9] but concerns the dielectric rib waveguide.
Let Ω = [0, a] × [0, h] with a = 4.00µm and h = 3.00µm . The rib waveguide is sketched
in Figure 4.5, where a1 = 2.00µm, h1 = 1.00µm, h2 = 1.10µm, and h3 = 1.80µm. Let
ε1 = 11.1556, ε2 = 11.8336, and ε3 = 1.

Let k0 = 4.053668 and κ = 185. The analytical solution is β ≈ 3.388687k0. Figure 4.6
indicates that |λh − β2| ≈ CN

−1/2
k which is not quasi-optimal. This can be explained by the
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Figure 4.3: Step-index circular dielectric waveguide: Performance of the error in terms of the
number of nodes of the meshes. The quasi-optimal decay is indicated by the dotted line of slope
−1.
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Figure 4.4: Step-index circular dielectric waveguide: Performance of the error in terms of the
number of nodes of the meshes. The quasi-optimal decay is indicated by the dotted line of slope
−1.

fact that that for the rib waveguide, the eigenfunctions have singularities which deteriorate
the finite element convergence. Adaptive finite element methods based on a posteriori error
estimates are known to be successful in resolving this difficulty [3]. We will report progress in
this direction in a future work.
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Figure 4.5: Rib dielectric waveguide
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Figure 4.6: Rib dielectric waveguide: Performance of the error in terms of the number of nodes
of the meshes. A dotted line of slope −1/2 is depicted.
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