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FROM ENERGY IMPROVEMENT TO ACCURACY
ENHANCEMENT: IMPROVEMENT OF PLATE BENDING
ELEMENTS BY THE COMBINED HYBRID METHOD ∗1)

Xiao-ping Xie
(Mathematical College, Sichuan University, Chengdu 610064, China)

Abstract

By following the geometric point of view in mechanics, a novel expression of the com-
bined hybrid method for plate bending problems is introduced to clarify its intrinsic mech-
anism of enhancing coarse-mesh accuracy of conforming or nonconforming plate elements.
By adjusting the combination parameter α ∈ (0, 1) and adopting appropriate bending
moments modes, reduction of energy error for the discretized displacement model leads
to enhanced numerical accuracy. As an application, improvement of Adini’s rectangle is
discussed. Numerical experiments show that the combined hybrid counterpart of Adini’s
element is capable of attaining high accuracy at coarse meshes.

Mathematics subject classification: 65N12, 65N30.
Key words: Finite element, Combined hybrid, Energy error.

1. Introduction

The combined hybrid finite element method [6,7,8,9] is capable of remarkably enhancing
coarse-mesh accuracy of conventional lower order elements for linear elasticity problems. The
4-node plane quadrilateral CH(0-1) proposed in [9] is a successful example.

By following the geometric point of view in mechanics, a novel expression of the combined
hybrid method was introduced in [10] to clarify its intrinsic mechanism of enhancing coarse-
mesh accuracy and stability of lower order displacement schemes for linear elasticity problems.
For a fixed coarse mesh and a given stress mode, e.g. the piecewise constant stress mode, one
can adjust the energy of the finite element model such that the energy error reduces to zero by
optimizing the combined parameter α and by adding energy compatible bubble displacements
to the given conforming displacements. It was shown by numerical experiments that the smaller
the energy error is, the higher numerical accuracy will be, and that combined hybrid schemes
without energy error are of high accuracy at coarse meshes. This accuracy criterion of schemes
at coarse meshes is different from the gradual convergence of the h−version and the p−version,
i.e. it does not require the mesh size h being smaller or the degree p of elements being bigger
for the combined hybrid method to achieve higher accuracy.

In the reference [11], the combined hybrid finite element method was applied to 4th-order
plate bending problems. It was shown that the resultant schemes are stabilized, i.e., the conver-
gence of the schemes is independent of inf-sup conditions and any other patch test. Then the
deflection interpolant and the bending moments approximation can be chosen independently,
which provides possibility of optimizing bending moments modes so as to obtain accurate plate
elements.

Based on [11], the present paper is devoted to a further analysis of the mechanism of
enhancing coarse-mesh accuracy of conventional plate elements of the combined hybrid method.
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By adopting rational bending moments modes and adjusting the combination parameter α ∈
(0, 1), energy error of the discretized scheme can be reduced, and then an enhanced numerical
accuracy at coarse meshes can be acquired. As an application, improvement of Adini’s rectangle
is discussed and numerical experiments show that the combined hybrid counterpart of Adini’s
element is capable of attaining high coarse-mesh accuracy.

In what follows the letter C will represent a constant which is independent of the mesh size
h = max

K
{hK} and may be different at its each occurrence.

2. Combined Hybrid Variational Principle

Considering the following plate bending problem:
⎧⎨
⎩

divdivσ = f, in Ω,
σ = m(D2u), in Ω,
u = ∇u · n = 0, on Γ = ∂Ω.

(2.1)

where Ω ⊂ �2 is a bounded open set, u represents vertical deflection, σ the bending moments,
and n the outer normal unit vector along Γ. The operators divdiv,D2 and m are defined
respectively as follows:

divdivτ = ∂11τ11 + 2∂12τ12 + ∂22τ22,

D2v =
(
∂11v ∂12v
∂12v ∂22v

)
,

m(τ) =
(
τ11 + ντ22 (1 − ν)τ12
(1 − ν)τ12 ντ11 + τ22

)

for any symmetric tensor τ = (τij), i, j = 1, 2, and ν ∈ (0, 0.5) denotes the Poisson’s coefficient,
∂ij = ∂2

∂xi∂xj
, i, j = 1, 2.

As shown in the reference [11], the combined hybrid variational principle equivalent to the
problem (2.1) reads as:

inf
(v,vc)∈U×Uc

sup
τ∈V

{ 1−α
2 d(v, v) − f(v) − b1(τ, v − vc) + α[b2(τ, v) − 1

2a(τ, τ)]} (2.2)

where

U := {v ∈
∏

K∈Th

H2(K);u = ∇u · n = 0, on Γ},

V :=
∏

K∈Th

H(divdiv;K) =
∏

K∈Th

{τ ∈ (L2(K))4s;divdivτ ∈ L2(K)}

and

Uc := H2
0 (Ω)/

∏
K∈Th

H2
0 (K)

are respectively the deflection space, the symmetric bending moments vector space and the
interelemental boundary deflection space, Th = {K} denotes a regular subdivision of Ω, with
mesh diameter hK for any K ∈ Th, (L2(K))4s the space of square integrable 2 × 2 symmetric
tensors, and
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a(σ, τ) =
∫
Ω

m−1(σ) : τdx,

b1(τ, v − vc) =
∑ ∮

∂K

[Mnn(τ)∇(v − vc) · n +Mns(τ)∇(v − vc) · s −Qn(τ)(v − vc)]ds,

b2(τ, v) =
∑ ∫

K

τ : D2vdx,

d(u, v) =
∑ ∫

K

m(D2u) : D2vdx,

f(v) =
∫
Ω

fvdx,

Mnn(τ) = (τn) · n, Mns(τ) = (τn) · s, Qn(τ) = ∇(tr(τ)) · n,
n = unit outer normal vector along ∂K,
s = unit tangent vector along ∂K.

According to optimality conditions of saddle point problems, the combined hybrid varia-
tional principle (2.2)is equivalent to:

Find (σ, u, uc) ∈ V × U × Uc such that

αa(σ, τ) − α b2(τ, u) + b1(τ, u− uc) = 0, ∀τ ∈ V (2.3)

αb2(σ, v) − b1(σ, v − vc) + (1 − α)d(u, v) = f(v), ∀(v, vc) ∈ U × Uc (2.4)

where the combination parameter α ∈ (0, 1).
To discuss finite element discretizations of the problem (2.2) or its equivalent problem

(2.3)(2.4), the weakly compatible finite dimensional deflection subspace Uh ⊂ U . is intro-
duced (see [11]), i.e. Uh satisfies:

(D1) ∀v ∈ Uh, d(v, v) = 0 implies v = 0;

(D2) A coupling linear mapping Tc : v ∈ Uh → vc = Tc(v) ∈ Uc can be determined by
the nodal parameters of v ∈ Uh, i.e. v ∈ Uh has a corresponding elemental boundary conform-
ing component Tc(v) ∈ Uh

c .

As pointed out in [11], all the conventional plate elements with C1−continuous vertices are
weakly compatible. In fact, the weakly compatible subspace Uh is of either one of the following
two characteristics:

C1) The set of nodal parameters of v ∈ Uh on each side K ′ of element K (a triangle or a
quadrilateral) is ∐

K′(v) = {v(Qi), ∂1v(Qi), ∂2v(Qi), i = 1, 2},
where Q1 and Q2 are the endpoints of K ′. And then Tc can be constructed as

∀v ∈ Uh, Tc(v)|K′ ∈ P3(K ′),∇Tc(v) · n|K′ ∈ P1(K ′) (2.5)

such that for i = 1, 2,

Tc(v)(Qi) = v(Qi), ∇Tc(v)(Qi) · s = ∇v(Qi) · s, (2.6)

∇Tc(v)(Qi) · n = ∇v(Qi) · n, (2.7)

where Pt(K) denote the set of polynomials of degree ≤ t for an integer t ≥ 0;

C2) The set of nodal parameters of v ∈ Uh on each side K ′ of element K is
∑

K′ = {v(Qi), ∂1v(Qi), ∂2v(Qi), i = 1, 2;∇v(Q3) · n},
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where Q3 = Q12 is the midpoint of K ′. Then Tc can be constructed as

∀v ∈ Uh, Tc(v)|K′ ∈ P3(K ′),∇Tc(v) · n|K′ ∈ P2(K ′) (2.8)

such that for i = 1, 2,

Tc(v)(Qi) = v(Qi), ∇Tc(v)(Qi) · s = ∇v(Qi) · s, (2.9)

and for i = 1, 2, 3,
∇Tc(v)(Qi) · n = ∇v(Qi) · n. (2.10)

Let Vh ⊂ V be a finite dimensional subspace of piecewise-independent bending moments
approximation.

By virtue of the coupling operator Tc, we take Uh
c = Tc(Uh) as the approximation of the

interelemental boundary deflection subspace Uc so that the three variables in the continuous
problem (2.3)(2.4) will reduce to two in the discretized problem.

The subspaces Vh ⊂ V and Uh ⊂ U are equipped with the following norms:

||τ ||V := [
∫
Ω

m−1(τ) : τdx +
∑
K

h4
K |divdivτ |20,K ]

1
2 , ∀τ ∈ Vh,

||v||U := (
∑ ∫

K

m(D2v) : D2v)
1
2 , ∀v ∈ Uh.

The problem (2.3)(2.4) is discretized as:

Find (σh, uh) ∈ Vh × Uh such that

αa(σh, τ) − αb2(τ, uh) + b1(τ, uh − Tc(uh)) = 0, ∀τ ∈ Vh (2.11)

αb2(σh, v) − b1(σh, v − Tc(v)) + (1 − α)d(uh, v) = f(v), ∀v ∈ Uh. (2.12)

And the corresponding discretized variational problem is

ΠCH(σh, uh;α) = inf
v∈Uh

sup
τ∈Vh

ΠCH(τ, v;α) (2.13)

where the energy functional

ΠCH(τ, v;α) :=
1 − α

2
d(v, v) − f(v) − b1(τ, v − Tc(v)) + α[b2(τ, v) − 1

2
a(τ, τ)].

Remark 2.1. If the weakly compatible space Uh ⊂ C0(Ω̄), then by the construction of Tc one
has Tc(v)|∂K = v|∂K , and the following relation holds:

b1(τ, v − Tc(v)) =
∑ ∮

∂K

Mnn(τ)∇(v − Tc(v)) · nds, ∀(τ, v) ∈ Vh × Uh. (2.14)

Moreover, if Uh ⊂ C1(Ω̄), then

b1(τ, v − Tc(v)) = 0, ∀(τ, v) ∈ Vh × Uh. (2.15)

Remark 2.2. Since τ ∈ Vh is piecewise independent, the parameters of bending moments
can then be eliminated at elemental level. The derivation of element stiffness matrix of the
combined hybrid method (2.11)(2.12) is in a similar way to [9, Appendix].
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Remark 2.3. For the extreme case α = 1, the combined hybrid scheme (2.11)(2.12) reduces
to a hybrid scheme, i.e.:

Find (σh, uh) ∈ Vh × Uh such that

a(σh, τ) − b2(τ, uh) + b1(τ, uh − Tc(uh)) = 0, ∀τ ∈ Vh (2.16)

b2(σh, v) − b1(σh, v − Tc(v)) = f(v), ∀v ∈ Uh. (2.17)

And the following inf-sup condition is required for the finite dimensional subspace Vh and Uh:

sup
τ∈Vh

b2(τ, v) − b1(τ, v − Tc(v))
||τ ||V ≥ C||v||U , ∀v ∈ Uh. (2.18)

For the combined hybrid scheme (2.11)(2.12) it is not necessary to impose any inf-sup
condition a priori on finite element subspace Vh×Uh. In fact there holds the following gradual
convergence theorem (see [11]):
Lemma 2.1. Assume that (σ, u) is the exact solution to the problem (2.1). Then for ∀α ∈ (0, 1)
and for an arbitrary Vh which contains at least piecewise-constant bending moments mode, i.e.

Vh ⊃ Vh
0 := {τ ∈ V; τij |K = const., τij = τji, i, j = 1, 2, ∀K ∈ Th},

there exists a unique combined hybrid finite element solution (σh, uh) ∈ Vh×Uh to the problem
(2.11)(2.12) such that

||σ − σh||0,Ω + ||u− uh||U
≤ C{ inf

τ∈Vh
||σ − τ ||V + inf

v∈Uh

[||u− v||U + sup
τ∈Vh

b1(τ,v−Tc(v))
||τ ||V ]}. (2.19)

The Lemma 2.1 provides general reliability with the gradual convergence error estimates at
finer meshes. In the following section we will clarify the mechanism of enhancing coarse-mesh
accuracy of the combined hybrid method (2.11)(2.12) and discuss how to improve accuracy of
conventional plate elements at coarse meshes.

3. Mechanism of Enhancing Coarse-mesh Accuracy for Plate
Elements

Let uh
1 ∈ Uh be the finite element solution of the conforming or nonconforming displacement

model, i.e.
ΠP (uh

1 ) = inf
v∈Uh

ΠP (v) (3.1)

where ΠP (v) := 1
2d(v, v)− f(v) is the potential energy functional. Then the variational energy

functional form (2.13) can be rewritten as:

ΠCH(σh, uh;α) = inf
v∈Uh

sup
τ∈Vh

ΠCH(τ, v;α)

= inf
v∈Uh

{ΠP (v) + sup
τ∈Vh

[−α
2 d(v, v) + αb2(τ, v) − α

2 a(τ, τ) − b1(τ, v − Tc(v))]}

= inf
v∈Uh

{ΠP (v) − inf
τ∈Vh

[α
2 a(τ − m(D2v), τ − m(D2v)) + b1(τ, v − Tc(v))]}.

(3.2)

From this novel expression of the combined hybrid energy functional, we easily obtain the
following two conclusions:
Lemma 3.1. Let α and Uh be given. Then a bending moments subspace V̄h larger than Vh

leads to a bigger energy, i.e. V̄h ⊃ Vh implies

ΠCH(σ̄h, ūh;α) = inf
v∈Uh

sup
τ∈V̄h

ΠCH(τ, v;α) > inf
v∈Uh

sup
τ∈Vh

ΠCH(τ, v;α) = ΠCH(σh, uh;α).
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Lemma 3.2. Let Uh and Vh be given. Then the energy function ΠCH(σh, uh;α) is monotone
decreasing with respect to α, i.e. ᾱ > α implies

ΠCH(σh, uh; ᾱ) = inf
v∈Uh

sup
τ∈Vh

ΠCH(τ, v; ᾱ) < inf
v∈Uh

sup
τ∈Vh

ΠCH(τ, v;α) = ΠCH(σh, uh;α).

For the weakly compatible subspace Uh, there holds one of the following three cases:
Case 1: Uh ⊂ C1(Ω̄), which indicates that the corresponding displacement scheme (3.1) is
conforming, and that the potential energy relation

ΠP (uh
1 ) > ΠP (u) = inf

v∈H2
0 (Ω)

ΠP (v) (3.3)

holds, where u ∈ H2
0 (Ω) is the exact deflection of the plate bending problem (2.1) and ΠP (u)

is the exact potential energy value;
Case 2: Uh 
⊂ C1(Ω̄) together with the potential energy relation (3.3) holds;
Case 3: Uh 
⊂ C1(Ω̄) together with the relation

ΠP (uh
1) < ΠP (u) (3.4)

holds.
As pointed out in [10], the combined hybrid method is of an intrinsic mechanism of enhancing

energy-accuracy of conforming and nonconforming displacement elements at coarse meshes for
linear elasticity problems. Numerical experiments in [6,10] and in Section 5 below also show
that higher energy-accuracy schemes always enjoy higher numerical accuracy. As far as the
fourth-order problem (2.1) is concerned, there holds the following proposition:
Proposition 3.1. By two ways: adopting rational bending moments mode Vh and choos-
ing appropriate combination parameter α, the conventional displacement scheme (3.1) can be
improved by the combined hybrid method (2.11)(2.12) in a sense that the energy-error inequality

|ΠCH(σh, uh;α) − ΠP (u)| < |ΠP (uh
1 ) − ΠP (u)| (3.5)

holds at coarse meshes, i.e. the corresponding combined hybrid scheme is of higher energy-
accuracy than the displacement scheme (3.1).

Proof. For Case 1, the relation Uh ⊂ C1(Ω̄), as pointed out in Remark 2.1, implies the
equality (2.15), and then (3.2) reduces to

ΠCH(σh, uh;α) = inf
v∈Uh

[ΠP (v) − inf
τ∈Vh

α

2
a(τ − m(D2v), τ − m(D2v))]. (3.6)

If Vh is such that Vh|K 
⊃ m(D2(Uh|K), the inequality a(τ, τ) > 0 will yield

ΠCH(σh, uh;α) < ΠCH(σh, uh; 0) = ΠP (uh
1 ). (3.7)

This inequality implies that the potential energy of the conforming model decreases by sub-
tracting the term inf

τ∈Vh

α
2 a(τ − m(D2v), τ − m(D2v)).

Thus by virtue of the continuity of the energy ΠCH(σh, uh;α) with respect to α, we know
that by adjusting the combination parameter α one can obtain (3.5). Further more, if we take
the piecewise-constant mode as the approximation of bending moments, i.e. Vh = Vh

0 , we can
conclude that there exists α∗ ∈ (0, 1) such that

ΠCH(σh, uh;α∗) = ΠP (u), (3.8)

that is to say, the scheme (3.6) with α = α∗ is of zero energy-error. In fact, when α = 1, the
hybrid scheme (2.16)(2.17) is divergent due to not satisfying the inf-sup condition (2.18), then
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the energy ΠCH(σh, uh;α) will far exceeding the exact energy ΠP (u) when α approaches to 1,
i.e. there exists α0 ∈ (0.5, 1) such that

ΠCH(σh, uh;α0)| < ΠP (u) < ΠP (uh
1 ). (3.9)

Note that when α = 0,
ΠCH(σh, uh; 0) = ΠP (uh

1),

then by the continuity of the energy ΠCH(σh, uh;α) with respect to α, there exists α∗ ∈ (0, α0)
such that (3.8) holds.

For Case 2, one can construct Vh such that (2.15) holds. Thus by an argument similar to
Case 1 the energy relation (3.5) can be obtained with an appropriate combination parameter
α. In fact, the piecewise-constant-bending-moments mode Vh = Vh

0 can also do if

a(τ − m(D2v), τ − m(D2v)) � |b1(τ, v − Tc(v))|, ∀(τ, v) ∈ Vh
0 × Uh. (3.10)

For Case 3, one can use a bending moments approximation subspace Vh large enough such
that

inf
τ∈Vh

[
α

2
a(τ − m(D2v), τ − m(D2v)) + b1(τ, v − Tc(v))] < 0. (3.11)

Thus by (3.2) there holds
ΠCH(σh, uh;α) > ΠP (uh

1),

and (3.5) can also be attained by adjusting α. Note that if only Vh is large enough, the
inequality (3.11) will always hold.
Remark 3.1. Adini’s rectangular element falls into Case 3, as will be discussed in next section.

From the proof of Proposition 3.1 we easily get the following corollary:
Corollary 3.1. Assume that Uh ⊂ C1(Ω̄) and Vh = Vh

0 . Then there exists a parameter
α ∈ (0, 1) such that the combined hybrid scheme (2.11)(2.12) is of zero energy-error, i.e. the
energy relation

ΠCH(σh, uh;α) = ΠP (u)

holds.

4. Application: Improvement of Adini’s Rectangular Element

As an application of the mechanism of enhancing coarse-mesh accuracy of the combined
hybrid method, this section is devoted to improvement of Adini’s rectangular element. For the
sake of simplicity, we assume that Ω is a polygonal domain and K ∈ Th is an arbitrary rectangle
with vertices Qi(xi, yi), i = 1, 2, 3, 4, central point (x0, y0), and side lengthes hx and hy.

The deflection subspace of Adini’s C0− interpolants is defined as

Uh
A := {v ∈ U

⋂
C0(Ω̄); v|K ∈ P3(K)

⊕ ∨
{xy3, x3y}, ∀K ∈ Th}

with the nodal parameters set of v ∈ Uh on K
∐A

K(v) = {v(Qi), ∂1v(Qi), ∂2v(Qi), i = 1, 2, 3, 4}.
Consider the piecewise-incomplete-quadratic mode Vh

0−2 defined by: ∀τ ∈ Vh
0−2,

τ |K =

⎛
⎝ τ11

τ22
τ12

⎞
⎠ =

⎛
⎝ 1 0 0 η 0 0 0 ξ2 0 0 η2 0 0

0 1 0 0 ξ 0 0 0 ξ2 0 0 η2 0
0 0 1 0 0 η ξ 0 0 ξ2 0 0 η2

⎞
⎠

⎛
⎜⎝

β1

...
β13

⎞
⎟⎠ , (4.1)
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where β = (βi) ∈ �13 are the parameters of bending moments, ξ and η are the local co-ordinates
defined as:

ξ = (x − x0)/hx, η = (y − y0)/hy

for ∀(x, y) ∈ K.
By (2.5), (2.6), (2.7) and (2.14), there holds

Lemma 4.1. For ∀(τ, v) ∈ Vh
0−2 × Uh

A,

b1(τ, v − Tc(v)) = 0. (4.2)

Proof. Let us argue on the referential square K̂ = [−1, 1]2 with four vertices

Q̂1 = (ξ1, η1) = (−1,−1), Q̂2 = (ξ2, η2) = (1,−1),

Q̂3 = (ξ3, η3) = (1, 1), Q̂4 = (ξ4, η4) = (−1, 1).

Then for ∀v̂ ∈ PK̂ = P3(K̂)
⊕∨{ξη3, ξ3η}, we can write

v̂ =
4∑

i=1

(v̂(i)pi + v̂ξ(i)φi + v̂η(i)ψi

with ⎧⎪⎨
⎪⎩

pi = (1+ξiξ)(1+ηiη)
4 (1 + ξiξ+ηiη

2 − ξ2+η2

2 ),
φi = − (1+ηiη)(1+ξiξ)

2(1−ξiξ)
8 ξi,

ψi = − (1+ξiξ)(1+ηiη)2(1−ηiη)
8 ηi,

where v̂(i), v̂ξ(i), v̂η(i) (i = 1, 2, 3, 4) denote the twelve degrees of freedom of K̂.
In what follows we will prove that for ∀τ ∈ Vh

0−2 and v̂,
∮

∂K̂

Mnn(τ)(∇v̂ −∇Tc(v̂)) · nds

=
∫

e12+e34

τ22(∇v̂ −∇Tc(v̂)) · nds+
∫

e23+e41

τ11(∇v̂ −∇Tc(v̂)) · nds

:= (I) + (II) = 0,

where eij denote the edge of rectangle K̂ with endpoints Q̂i and Q̂j.
In fact, for the term (I), some trivial calculations show that

∇Tc(v̂) · n|η=±1 =
∑

i=1..4

v̂η(i)
∂ψi

∂η
|η=±1,

∂p1

∂η
|η=±1 =

(1 − ξ)ξ(1 + ξ)
8

=
∂p3

∂η
|η=±1,

∂p2

∂η
|η=±1 = − (1 − ξ)ξ(1 + ξ)

8
=
∂p4

∂η
|η=±1,

∂φ1

∂η
|η=±1 = − (1 − ξ)2(1 + ξ)

8
= −∂φ4

∂η
|η=±1,

∂φ2

∂η
|η=±1 =

(1 + ξ)2(1 − ξ)
8

= −∂φ3

∂η
|η=±1.
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Then we have

(I) =
∫

e12

−τ22
∑

(v̂(i)∂pi

∂η + v̂ξ(i)∂φi

∂η )ds+
∫

e34

τ22
∑

(v̂(i)∂pi

∂η + v̂ξ(i)∂φi

∂η )ds

=
∫ 1

−1[(τ22|η=1 − τ22|η=−1)
∑

(v̂(i)∂pi

∂η + v̂ξ(i)∂φi

∂η )|η=±1]dξ = 0.

Similarly, we can prove (II) = 0.
Thus the relation (4.2) is obtained.
Numerical experiments in Section 5 show that for Adini’s displacement element Uh

A, the
energy inequality (3.4) holds, i.e.

ΠPA := ΠP (uh
1) = inf

v∈Uh
A

ΠP (v) < ΠP (u). (4.3)

So according to (3.11) and the relation (4.2), a bending moments subspace larger than Vh
0−2

is needed for improving Adini’s element Uh
A by the combined hybrid method. To this end we

introduce

Vh
2 := {τ ∈ V; τij |K ∈

∨
{1, ξ, η, ξ2, η2}, τij = τji, i, j = 1, 2, ∀K ∈ Th}.

Take Uh = Uh
A in the problem (2.11)(2.12) or in its equivalent form (2.13), and let Vh

be taken respectively as Vh
0 , Vh

0−2 and Vh
2 , we then get the combined hybrid plate elements

Vh
0 × Uh

A, Vh
0−2 × Uh

A and Vh
2 × Uh

A which are denoted respectively by CHA0(α), CHA1(α)
and CHA2(α). These combined hybrid elements are all with 12 parameters on K due to the
elimination of the bending moments parameters (see Remark 2.2), as same as Adini’s element.

For convenience we also denote the energies of the combined hybrid elements CHA0(α),
CHA1(α) and CHA2(α) respectively by ΠCHA0(α), ΠCHA1(α) and ΠCHA2(α).

Since
Vh

0 ⊂ Vh
0−2 ⊂ Vh

2 ,

by Lemma 3.1 there hold

ΠCHA0(α) < ΠCHA1(α) < ΠCHA2(α). (4.4)

And by (4.2) and (4.3) there hold

ΠCHA1(α) < ΠPA < ΠP (u). (4.5)

The inequalities (4.4) and (4.5) are also confirmed by numerical experiments in Section 5. From
Table 1-4 one can see that ΠCHA2(0.5) > ΠP (u) > ΠPA, which indicate by Lemma 3.2 that
an appropriate parameter α bigger than 0.5 can lead to a scheme of more accurate energy (see,
e.g. CHA2(0.8) and CHA2(0.9) in Table 1-4).

5. Numerical Experiments

Some test problems are now calculated for the case of a thin isotropic square plate of side
length L = 1 and Poison’s ratio ν = 0.3 which is modelled by (4 × 4), (8 × 8) and (16 × 16)
finite element meshes respectively.

Two types of boundary conditions are considered: simply-supported boundary conditions
and clamped conditions. The applied transverse loading is in the form of a unit uniform load
or a unit center concentrated load. Numerical results of energy and central displacement of the
square plate are given in Table 1-4.

The numerical results of the combined hybrid elements CHA0(0.5), CHA1(0.5) and CHA2(0.5)
show that

ΠCHA0(0.5) < ΠCHA1(0.5) < ΠPA
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which is conformable to (4.4), that

ΠPA < ΠP (u) < ΠCHA2(0.5),

and that the energy results of CHA2(0.5) are more accurate than those of Adini’s element, so
do the results of central displacement.

The numerical results of CHA2(α) with α = 0.8, 0.9 are also calculated. From Table 1-4
one can see that CHA2(0.8) and CHA2(0.9) are of high accuracy for energy and displacement
at the coarse mesh (4×4). Comparisons are also made with the conforming Bogner-Fox-Schmit
(BFS) element [3] with 16 parameters, the 12-parameter and 16-parameter rectangular elements
proposed by Prof. Shi and his coauthor[5].

Note that the hybrid element CHA2(1) (see Remark 2.3) also gives uniformly good results.
In fact, one can test the inf-sup condition (2.18) for Vh

2 × Uh
A by some trivial calculations.

Table 1. Energy Π and central displacement u of square plate under
simply-supported boundary conditions and a unit uniform load

Elements 4 × 4 8 × 8 16 × 16 Exact

Adini -9.053e-4 -8.653e-4 -8.548e-4
CHA0(0.5) -9.619e-4 -8.812e-4 -8.589e-4
CHA1(0.5) -9.360e-4 -8.748e-4 -8.573e-4

Π CHA2(0.5) -8.423e-4 -8.462e-4 -8.499e-4 -8.512e-4
CHA2(0.8) -8.586e-4 -8.503e-4 -8.509e-4
CHA2(0.9) -8.628e-4 -8.511e-4 -8.511e-4
CHA2(1) -8.673e-4 -8.518e-4 -8.513e-4

Adini 0.004330 0.004129 0.004079
CHA0(0.5) 0.004592 0.004195 0.004096
CHA1(0.5) 0.004468 0.004165 0.004088
CHA2(0.5) 0.003977 0.004037 0.004056

u CHA2(0.8) 0.004043 0.004056 0.004061 0.004062
CHA2(0.9) 0.004054 0.004060 0.004062
CHA2(1) 0.004061 0.004063 0.004062

12-parameter 0.004052 0.004062 0.004062
16-parameter 0.004052 0.004062 0.004062

BFS 0.004065 0.004063 0.004062

Table 2. Energy Π and central displacement u of square plate under
simply-supported boundary conditions and a unit center concentrated load

Elements 4 × 4 8 × 8 16 × 16 Exact

Adini -6.166e-3 -5.914e-3 -5.835e-3
CHA0(0.5) -6.957e-3 -6.176e-3 -5.916e-3
CHA1(0.5) -6.759e-3 -6.116e-3 -5.898e-3

Π CHA2(0.5) -5.647e-3 -5.752e-3 -5.786e-3 -5.801e-3
CHA2(0.8) -5.778e-3 -5.795e-3 -5.799e-3
CHA2(0.9) -5.815e-3 -5.807e-3 -5.802e-3
CHA2(1) -5.854e-3 -5.819e-3 -5.805e-3

Adini 0.01233 0.01183 0.01167
CHA0(0.5) 0.01392 0.01235 0.01183
CHA1(0.5) 0.01352 0.01223 0.01180
CHA2(0.5) 0.01129 0.01150 0.01157

u CHA2(0.8) 0.01156 0.01159 0.01160 0.01160
CHA2(0.9) 0.01163 0.01161 0.01160
CHA2(1) 0.01171 0.01164 0.01161

12-parameter 0.01136 0.01155 0.01159
16-parameter 0.01140 0.01155 0.01159

BFS 0.01147 0.01157 0.01159
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Table 3. Energy Π and central displacement u of square plate under
clamped boundary conditions and a unit uniform load

Elements 4 × 4 8 × 8 16 × 16 Exact

Adini -2.114e-4 -2.002e-4 -1.960e-4
CHA0(0.5) -2.840e-4 -2.225e-4 -2.020e-4
CHA1(0.5) -2.754e-4 -2.200e-4 -2.013e-4

Π CHA2(0.5) -1.882e-4 -1.919e-4 -1.939e-4 -1.946e-4
CHA2(0.8) -1.930e-4 -1.935e-4 -1.943e-4
CHA2(0.9) -1.942e-4 -1.939e-4 -1.944e-4
CHA2(1) -1.952e-4 -1.942e-4 -1.945e-4

Adini 0.001403 0.001304 0.001275
CHA0(0.5) 0.001741 0.001398 0.001299
CHA1(0.5) 0.001680 0.001381 0.001295
CHA2(0.5) 0.001211 0.001248 0.001261

u CHA2(0.8) 0.001239 0.001259 0.001264 0.001265
CHA2(0.9) 0.001244 0.001261 0.001265
CHA2(1) 0.001248 0.001263 0.001265

12-parameter 0.001236 0.001260 0.001265
16-parameter 0.001249 0.001263 0.001265

BFS 0.001321 0.001272 0.001266

Table 4. Energy Π and central displacement u of square plate under
clamped boundary conditions and a unit center concentrated load

Elements 4 × 4 8 × 8 16 × 16 Exact

Adini -3.067e-3 -2.901e-3 -2.836e-3
CHA0(0.5) -3.944e-3 -3.192e-3 -2.925e-3
CHA1(0.5) -3.789e-3 -3.141e-3 -2.910e-3

Π CHA2(0.5) -2.679e-3 -2.760e-3 -2.793e-3 -2.806e-3
CHA2(0.8) -2.774e-3 -2.798e-3 -2.804e-3
CHA2(0.9) -2.802e-3 -2.809e-3 -2.807e-3
CHA2(1) -2.832e-3 -2.820e-3 -2.810e-3

Adini 0.006135 0.005803 0.005672
CHA0(0.5) 0.007887 0.006384 0.005851
CHA1(0.5) 0.007577 0.006282 0.005819
CHA2(0.5) 0.005357 0.005520 0.005585

u CHA2(0.8) 0.005547 0.005597 0.005608 0.005612
CHA2(0.9) 0.005604 0.005618 0.005614
CHA2(1) 0.005664 0.005640 0.005620

12-parameter 0.005324 0.005544 0.005597
16-parameter 0.005387 0.005561 0.005600

BFS 0.005622 0.005597 0.005606
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