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Abstract

In this paper, we investigate the finite element A−φ method to approximate the eddy

current equations with discontinuous coefficients in general three-dimensional Lipschitz

polyhedral eddy current region. Nonmatching finite element meshes on the interface are

considered and optimal error estimates are obtained.
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1. Introduction

The eddy current model emerges from Maxwell’s equations by formally dropping the dis-
placement currents, which amounts to neglecting capacitive effects (space charges) and provides
a reasonable approximation in the low frequency range and in the presence of high conductivity.
Various formulations of the eddy current problem have been suggested in [1], which differ in
their choice of the primary unknown. Instead of finding magnetic and electric fields directly,
the A−φ approach is to seek vector and scalar potentials. Although this method increases the
number of scalar unknowns and equations, this apparent complication is justified by a better
way of dealing with the possible discontinuities in process of the numerical approximations.

It is well-known that the A− φ method has been applied to the eddy current model exten-
sively in practice, but further theoretical research in this aspect has rarely shown so far. For
some recent relative work, we refer readers to [2, 8-12] for eddy current problem. In [4], Ciarlet
and Zou first studied both nodal finite element methods and edge finite element methods for
Maxwell equations. Chen et al. in [3] also discussed a fully discrete finite element method for
Maxwell equations with discontinuous coefficients by introducing Lagrangian multipliers. In
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this paper, we will study eddy current equations with discontinuous coefficients by using the
above methods and give their error estimates in the meanwhile.

This paper is organized as follows. In section 2, the eddy current model in eddy current
region is first presented. Second, we give its A−φ variational form based on an optimal control
formulation of the interface problem and study the feather of its solutions in section 3. Finally,
the fully-discrete coupled and decoupled A − φ schemes are proposed and their optimal error
estimates are obtained in section 4 and 5 respectively.

2. Eddy Current Problem

For simplification, this paper is only concerned with the following eddy current equations
in the eddy current region (high conductivity) neglecting the effect of outside source current:

curl H = σE, in Ω × (0, T ), (2.1)

curl E = −∂(µH)
∂t

, in Ω × (0, T ). (2.2)

Here Ω ⊂ R
3 is a simply-connected Lipschitz polyhedral domain with connected boundary which

is occupied by the dielectric material. We assume that the magnetic permeability parameter µ
and the conductivity σ of the medium are discontinuous across an interface Γ ⊂ Ω respectively,
where Γ is the boundary of a simply-connected Lipschitz polyhedral domain Ω1 with Ω1 ⊂ Ω
and Ω2 = Ω \ Ω1. Ω2 should be multiply-connected as Ω1 is simply-connected and lies strictly
in Ω. Without loss of generality we consider only the case with µ and σ being two piecewise
constant function in the domain Ω, namely,

µ =

{
µ1 in Ω1,

µ2 in Ω2,
σ =

{
σ1 in Ω1,

σ2 in Ω2,

and µi, σi (i = 1, 2) are positive constants. It is known that magnetic and electric fields must
satisfy the following jump conditions across the interface Γ:

[H× n] = 0, (2.3)

[E× n] = 0, (2.4)

where n is the unit outward normal to ∂Ω1. Throughout the paper, the jump of any function
A across the interface Γ is defined as

[A] := A2|Γ −A1|Γ

with Ai = A|Ωi , i = 1, 2. From (2.1) and (2.4) we can see that,

[
1
σ

curl H× n] = 0, on Γ × (0, T ). (2.5)

We supplement the equation (2.1)-(2.2) with the boundary condition

H× n = h(x, t), (2.6)

and the initial condition
H(x, 0) = H0(x), in Ω, (2.7)
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with
div(µH0) = 0.

By taking divergence to both hand sides of (2.2), we easily see that,

div(µH) = 0, in Ω × (0, T ).

From the equation (2.1), we can suggest the introduction of a vector A, defined by

σE = curl A, in Ω1 ∪ Ω2 × (0, T ). (2.8)

We then have
H = A + ∇φ, in Ω1 ∪ Ω2 × (0, T ), (2.9)

where φ(t) is an arbitrary scalar function. We assume that ∇φ1 × n = ∇φ2 × n = 0 on Γ with
φi = φ|Ωi , i = 1, 2. So the system (2.1)-(2.2) is taken as the following A − φ form:

µ
∂(A + ∇φ)

∂t
+ curl (

1
σ
curl A) = 0, in Ω1 ∪ Ω2 × (0, T ), (2.10)

div(µ(A + ∇φ)) = 0, in Ω1 ∪ Ω2 × (0, T ) (2.11)

with the following interface and boundary conditions

[A × n] = 0, ∇φ1 × n = ∇φ2 × n = 0, on Γ × (0, T ), (2.12)

[
1
σ

curl A× n] = 0, on Γ × (0, T ), (2.13)

A× n = 0, ∇φ× n = h(x, t), on ∂Ω × (0, T ), (2.14)

and the initial conditions

φ(x, 0) = φ0(x) and A(x, 0) = H0(x) −∇φ0, in Ω. (2.15)

where φ0 is a given function with ∇φ0 × n = h(x, 0) on ∂Ω and ∇φ0 × n = 0 on Γ. For the
sake of simplicity, we assume that h(x, t) = 0 in the following theoretical analysis.

3. The Variational Formulation

For solving the system (2.10)-(2.15), the finite element method with a matching finite ele-
ment mesh on the interface Γ need impose a serious restriction: both must match with each
other on Γ. We are now going to relax this restriction and consider a nonmatching mesh on
the interface Γ that allows the triangulations in Ω1 and Ω2 to be generated independently.
This advantage, however, brings some difficulty to the convergence analysis since the result-
ing finite element spaces will be nonconforming for A. So we will deal with the constraint

[A × n] = [
1
σ

curlA× n] = 0 on Γ by a Lagrangian multiplier approach.
First, we introduce some notations that will be used throughout the paper.
Let Lp(0, T ;X) denote the set of all strongly measurable functions u(t, ·) from [0, T ] into

the Hilbert space X such that∫ T

0

‖u(t)‖p
X dt <∞, 1 ≤ p <∞.
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We say u ∈ Hs(0, T ;X) (s is a positive integer number) if and only if u,
∂u

∂t
, · · · , ∂

su

∂st
are in

L2(0, T ;X). Let
H(curl; Ω) = {v ∈ L2(Ω)

3
; curl v ∈ L2(Ω)

3},

Hα(curl; Ω) = {v ∈ Hα(Ω)3; curl v ∈ Hα(Ω)3}, (α > 0),

H0(curl; Ω) = {v ∈ H(curl; Ω); v × n = 0 on ∂Ω}

with the norms

‖v‖curl,Ω =
(
‖v‖2

0,Ω + ‖curl v‖2
0,Ω

)1/2

,

‖v‖α,curl,Ω =
(
‖v‖2

α,Ω + ‖curl v‖2
α,Ω

)1/2

.

Here and in what follows, ‖ · ‖0,Ω denotes the L2(Ω)3-norm (or the L2(Ω)-norm for scalar
functions) and for s > 0, ‖ · ‖s,Ω denotes the norm of the Sobolev space Hs(Ω)3 ( or Hs(Ω) for
scalar functions). Similar definitions are adopted for Ω1 and Ω2. The constant C will always
represent a generic constant independent of the time step and the mesh size.

For the convenience of presentation, let us introduce the following spaces:

X1 = H(curl; Ω1), X2 = {v ∈ H(curl; Ω2); v × n = 0 on ∂Ω},

Y1 = {ψ ∈ H1(Ω1); ∇ψ × n = 0 on ∂Ω1}, Y2 = {ψ ∈ H1(Ω2); ∇ψ × n = 0 on ∂Ω2}.

Set X = X1 ×X2 and Y = Y1 × Y2.
Second, to establish an appropriate variational formulation for the system (2.10)-(2.15), we

need use a few important mathematical analysis tools borrowed from [3].
Let

T (Γ) = {s ∈ H−1/2(Γ)3; ∃ v ∈ H0(curl; Ω) such that v × n = s on Γ}.

It is not difficult to see that T (Γ) is a Banach space under the norm:

‖s‖T (Γ) = inf{‖v‖curl,Ω;v ∈ H0(curl; Ω) and v × n = s on Γ}.

For any s ∈ T (Γ), we define

	 s,w 
1,Γ=
∫

Ω1

v · curl w dx−
∫

Ω1

curl v · w dx, ∀w ∈ X1, (3.1)

	 s,w 
2,Γ=
∫

Ω2

curl v ·w dx−
∫

Ω2

v · curl w dx, ∀w ∈ X2, (3.2)

where v ∈ H0(curl; Ω) such that v× n = s on Γ. We know that (3.1)-(3.2) are independent of
the choice of v ∈ H(curl; Ω) such that v × n = s on Γ.

Then, we have Lemma 3.1-3.2 which are proved in [3].
Lemma 3.1. For any s ∈ T (Γ), we have the equality

‖s‖T (Γ) = sup
w∈X1×X2

	 s,w 
1,Γ − 	 s,w 
2,Γ

‖w‖X1×X2

.

A direct consequence of this lemma is that T (Γ) is indeed a Hilbert space.
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In practice, Lemma 3.1 is rather inconvenient as it uses information from both Ω1 and Ω2

to define the norm on T (Γ). To overcome the inconvenience, we note that

‖s‖1,Γ = sup
w∈X1

	 s,w 
1,Γ

‖w‖X1

, ‖s‖2,Γ = sup
w∈X2

	 s,w 
1,Γ

‖w‖X2

(3.3)

are also norms of T (Γ). So we have
Lemma 3.2. The norms ‖ · ‖1,Γ and ‖ · ‖2,Γ are equivalent to ‖ · ‖T (Γ).

Taking any A ∈ X , ∇φ (any φ ∈ Y ) in (2.10) as test functions respectively and applying the
standard technique of integration by parts lead immediately to the following weak formulations
of (2.10)-(2.15):

Problem (I). Find (A, φ, p) ∈ H1(0, T ;X)×H1(0, T ;Y ) × L2(0, T ;T (Γ)) such that

2∑
i=1

{
(µ
∂(A + ∇φ)

∂t
,A)Ωi + (

1
σ

curl A, curl A)Ωi

}
+ 	 p,A 
2,Γ − 	 p,A 
1,Γ= 0, ∀A ∈ X,

(3.4)

2∑
i=1

(µ
∂(A + ∇φ)

∂t
,∇φ)Ωi = 0, ∀φ ∈ Y, (3.5)

	 A, p 
2,Γ − 	 A, p 
1,Γ= 0, ∀p ∈ T (Γ). (3.6)

The system (3.4)-(3.6) is consistent with the finite element discretization on a nonmatching grid
on the interface Γ and can be derived based on an optimal control formulation of the interface
problem (2.10)-(2.15).

In order to analyze the feature of the solution of Problem (I), we first study the existence
and uniqueness of the solution to the following problem:

Problem (II). Find (H, p) ∈ H1(0, T ;X)× L2(0, T ;T (Γ)) such that

2∑
i=1

{
(µ
∂H
∂t

,H)Ωi + (
1
σ

curl H, curl H)Ωi

}
+ 	 p,H 
2,Γ − 	 p,H 
1,Γ= 0, ∀H ∈ X,

(3.7)

	 H, p 
2,Γ − 	 H, p 
1,Γ= 0, ∀ p ∈ T (Γ). (3.8)

Furthermore, we only need to discuss the following stationary variational problem, whose result
can be extended to Problem (II) by the standard analytic method.

Problem (III). Given f ∈ L2(Ω)3, find (Q, p) ∈ X × T (Γ) such that

2∑
i=1

{
(αi curl Q, curl Q)Ωi + (βi Q,Q)Ωi

}
+ 	 p,Q 
2,Γ − 	 p,Q 
1,Γ=

2∑
i=1

(f ,Q)Ωi , ∀Q ∈ X,

(3.9)

	 Q, p 
2,Γ − 	 Q, p 
1,Γ= 0, ∀ p ∈ T (Γ). (3.10)

Here αi and βi are piecewise positive constants in Ωi for i = 1, 2.
Theorem 3.1. There exists a unique solution (Q,p) ∈ X × T (Γ) to Problem (III).
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Proof. First, define a bilinear form a : X ×X → R:

a(u,v) =
2∑

i=1

{
(αi curl u, curl v)Ωi + (βi u,v)Ωi

}
, u, v ∈ X.

It is obvious that
a(u,u) ≥ a0‖u‖2

X (3.11)

for some constant a0 > 0.
Next, we verify the inf-sup condition: there exists a constant C > 0 such that

sup
B∈X

	 s,B2 
2,Γ − 	 s,B1 
1,Γ

‖B‖X
≥ C‖s‖T (Γ), ∀ s ∈ T (Γ), (3.12)

where B = Bi in Ωi for i = 1, 2. Let B ∈ H(curl; Ω1) be the solution of the following problem:

(curl B, curl B)Ω1 + (B,B)Ω1 =	 s,B 
1,Γ, ∀B ∈ H(curl; Ω1). (3.13)

We define

B̃ =

{
−B in Ω1,

0 in Ω2.
(3.14)

It is obvious that B̃ ∈ X and
‖B̃‖X = ‖B‖curl,Ω1 . (3.15)

Thus, by (3.13), we are able to obtain

	 s, B̃2 
2,Γ − 	 s, B̃1 
1,Γ=	 s,B 
1,Γ= ‖B‖2
curl,Ω1

which yields, together with Lemma 3.2,

	 s, B̃2 
2,Γ − 	 s, B̃1 
1,Γ

‖B̃‖X

= ‖B‖curl,Ω1 = ‖s‖1,Γ ≥ C‖s‖T (Γ).

From (3.11)-(3.12), we then have finished the proof of the theorem.
Thus, from the result of Theorem 3.1, we conclude that the solution (H, p) of Problem (II)

is existing and unique. Meanwhile, by using an appropriate application of the Green’s formula,
the Lagrange multiplier p in Problem (II) satisfies the following relation:

p =
1
σ

curl H× n, in T (Γ) × (0, T ).

For the solution H of Problem (II) and a given φ ∈ Y , let A = H − ∇φ. Especially, if we
append the divergence-free property of A, A is unique. Taking H = A and H = ∇φ for any
A ∈ X and φ ∈ Y respectively in (3.7)-(3.8), we conclude that A, φ, p satisfy Problem (I);
that is:
Theorem 3.2. The solution (A, φ, p) of Problem (I) is existing, but only p is unique. Fur-
thermore, the Lagrange multiplier p in Problem (I) satisfies:

p =
1
σ

curl A× n, in T (Γ) × (0, T ). (3.16)
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4. A Fully-discrete Coupled A − φ Scheme with a Nonmatching Grid
for Eddy Current Problem

In this section we propose a finite element method for solving Problem (I), which allows a
nonmatching finite element grid on the interface Γ.

Let T h1 and T h2 be a shape regular triangulation of Ω1 and Ω2 respectively. They induce
naturally two finite element triangulations Γh1 and Γh2 on the interface Γ. Let Γh0 be an another
shape regular triangulation over Γ. Note that Γhi , i = 0, 1, 2, are allowed to be different from
each other. However, we make the following reasonable assumption:

(H1) Each triangle in Γh1 and Γh2 must be contained in some triangles of Γh0 .
We introduce the Nédélec H(curl,Ωi)-conforming edge element space defined by

Xhi = {vh ∈ Xi; vh = aK + bK × x on K, ∀K ∈ T hi}, i = 1, 2

where aK and bK are two constant vectors. It is known that any function vh ∈ Xhi is uniquely
determined by the degrees of freedom in the setME(v) of the moments on each elementK ∈ Γhi ,
which is given by

ME(v) =
{∫

e

v · τ ds; e is an edge of K
}
.

Here τ is the unit vector along the edge. For i = 1, 2 and any v ∈ Hs(Ωi)3 with curl v ∈
Lp(Ωi)3, where s > 1/2 and p > 2, we can define an interpolation πhv ∈ Xhi , and πhv has the
same degrees of freedom (defined by ME(v)) as v on each K in Γhi .

Let Th0(Γ) be the Nédélec T (Γ)-conforming edge element space defined by

Th0(Γ) = {sh ∈ T (Γ); sh = (ατ + βτ × n) × n, on any τ ∈ Γh0 , ατ , βτ ∈ R3}.

We also define the following finite element spaces

Yhi = {ϕh ∈ Yi; ϕh|K ∈ P1, ∀K ∈ T hi}, i = 1, 2,

where P1 is the space of linear polynomials. Let Πh be the standard interpolating operator.
Now set

Xh = Xh1 ×Xh2 , Yh = Yh1 × Yh2 .

We will assume the inf-sup condition:
(H2) There exists a constant C∗ > 0 independent of h0, h1, h2 such that

sup
whi

∈Xhi

	 sh,whi 
i,Γ

‖whi‖curl,Ωi

≥ C∗‖sh‖T (Γ), ∀sh ∈ Th0(Γ), i = 1 or 2. (4.1)

The assumption (H2) indicate that the mesh Γh0 should be coarse enough compared with the
meshes T h1 or T h2 in order to stabilize the effect of the introduced Lagrangian multiplier. In
subsection 4.4 of [3], by using a general compactness argument, (4.1) is verified to be valid at
least when the mesh h1 or h2 is suitably small compared with h0.

Let us divide the time interval (0, T ) into M equally-spaced subintervals by using nodal
points

0 = t0 < t1 < · · · < tM = T

with tn = nτ and τ = T/M , and denote n-th subinterval by In = (tn−1, tn]. For a continuous
mapping u : [0, T ] → L2(Ω) or L2(Ω)3, we define un(·) = u(·, tn) for 1 ≤ n ≤M .
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Now we are in a position to introduce the discrete version of Problem (I).
Problem (VI). For n = 0, 1, · · · ,M − 1, find (An+1

h , φn+1
h , pn+1

h ) ∈ Xh × Yh × Th0(Γ) such
that

A0
h = πhA0, φ0

h = Πhφ0 (4.2)

and

2∑
i=1

{
(µ

An+1
h − An

h

τ
,Ah)Ωi + (

1
σ

curl An+1
h , curl Ah)Ωi + (µ∇φn+1

h − φn
h

τ
,Ah)Ωi

}
+ 	 pn+1

h ,Ah 
2,Γ − 	 pn+1
h ,Ah 
1,Γ= 0, ∀Ah ∈ Xh,

(4.3)

2∑
i=1

{
(µ

An+1
h − An

h

τ
,∇φh)Ωi + (µ∇φn+1

h − φn
h

τ
,∇φh)Ωi

}
= 0, ∀φh ∈ Yh, (4.4)

	 An+1
h , ph 
2,Γ − 	 An+1

h , ph 
1,Γ= 0, ∀ ph ∈ Th0(Γ). (4.5)

We then have the following result:
Theorem 4.1. Under the assumptions (H1)-(H2) and An+1

h × n = 0 on ∂Ω, the solution
(An+1

h , φn+1
h , pn+1

h ) ∈ Xh × Yh × Th0(Γ) of Problem (VI) is existing.
Proof. We first introduce the following discrete version of Problem (III) and prove that it

has a unique solution.
Problem (V). Find (Qh, ph) ∈ Xh × Th0(Γ) such that

2∑
i=1

{
(αi curl Qh, curl Qh)Ωi + (βi Qh,Qh)Ωi

}
+ 	 ph,Qh 
2,Γ − 	 ph,Qh 
1,Γ=

2∑
i=1

(f ,Qh)Ωi , ∀Qh ∈ Xh.

(4.6)

	 Qh, ph 
2,Γ − 	 Qh, ph 
1,Γ= 0, ∀ ph ∈ Qh0(Γ). (4.7)

Furthermore, we only need verify the inf-sup condition: for any sh ∈ Th0(Γ), there exists a
constant C > 0 such that

sup
Bh∈Xh

	 sh,Bh2 
2,Γ − 	 sh,Bh1 
1,Γ

‖Bh‖1,Ω
≥ C‖sh‖T (Γ), (4.8)

where Bh = Bhi in Ωi for i = 1, 2. Without loss of generality we assume that (4.1) is valid for
i = 1. Thus there exists a wh1 ∈ Xh1 such that

	 sh,wh1 
1,Γ

‖wh1‖curl,Ω1

≥ C∗‖sh‖T (Γ). (4.9)

Let Bh1 ∈ Xh1 be the solution of the following problem:

(curl Bh1 , curl Bh1)Ω1 + (Bh1 ,Bh1)Ω1 =	 sh,Bh1 
1,Γ, ∀Bh1 ∈ Xh1 . (4.10)

Taking Bh1 = Bh1 and Bh1 = wh1 as test functions respectively and using (4.9), we obtain

C∗‖sh‖T (Γ) ≤ ‖Bh1‖curl,Ω1 ≤ ‖sh‖1,Γ ≤ C‖sh‖T (Γ). (4.11)
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We define

B̃h =

{
−Bh1 in Ω1,

0 in Ω2.

Then,
‖B̃h‖X = ‖Bh1‖curl,Ω1 . (4.12)

Thus, by (4.11), we are able to obtain

	 sh, B̃h2 
2,Γ − 	 sh, B̃h1 
1,Γ=	 sh,Bh1 
1,Γ= ‖Bh1‖2
curl,Ω1

which yields,

	 sh, B̃h2 
2,Γ − 	 sh, B̃h1 
1,Γ

‖B̃h‖X

=
	 sh,Bh1 
1,Γ

‖Bh1‖curl,Ω1

= ‖Bh1‖curl,Ω1 ≥ C‖sh‖T (Γ).

Therefore, Problem (V) has a unique solution (Qh,ph).
From the definition of the edge element space, ∇ϕh ∈ Xh for any ϕh ∈ Yh. Thus, for the

solution Qh of Problem (V) and a given φn+1
h ∈ Yh, An+1

h = Qh −∇φn+1
h ∈ Xh. Noting that

div An+1
h = 0, we have that An+1

h is unique; while φn+1
h depending on its boundary condition

is not unique. α =
1
σ

, β =
µ

τ
and f =

µ

τ
(An

h + ∇φn
h). Taking Qh = Ah and Qh = ∇φh for any

Ah ∈ Xh and φh ∈ Yh in (4.6)-(4.7) respectively and noting that

ph =
1
σ

curl Qh × n = pn+1
h , in T (Γ),

we see that (An+1
h , φn+1

h , pn+1
h ) satisfies Problem (VI). Thus, we finish the proof of Theorem

4.1.
Now we can state the following theorem on the relevant error estimate.

Theorem 4.2. Under the condition of Theorem 4.1, let (An+1, φn+1, pn+1) and (An+1
h , φn+1

h ,
pn+1

h ) be the solutions of Problem (I) and Problem (VI) at time t = tn+1 respectively. Supposing
that for some α > 1/2,

A ∈ H2(0, T ;Hα(curl; Ω1) ×Hα(curl; Ω2)), φ ∈ H2(0, T ;Y ∩H1+α(Ω1) ×H1+α(Ω2)).

Then, we have the following error estimate:

max
0≤n≤M−1

( 2∑
i=1

‖(An+1
h + ∇φn+1

h ) − (An+1 + ∇φn+1)‖2
0,Ωi

)
≤ Cτ2 +

2∑
i=1

Cih
2α
i + C0h

2α
0 .

Proof. For the convenience of presentation, let b : X × T (Γ) → R the bilinear form as
follows:

b (Q,p) =	 Q,p 
2,Γ − 	 Q, p 
1,Γ, ∀ (Q, p) ∈ X × T (Γ).

Define the elliptic projection operator Ph: X×T (Γ) → Xh×Th0(Γ). For any (Q, p) ∈ X×T (Γ),
we have

2∑
i=1

{
(PhQ− Q,Qh)Ωi + (

1
σ

curl (PhQ− Q), curl Qh)Ωi

}
+b (Qh, Php− p) = 0, ∀Qh ∈ Xh,

(4.13)
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b (PhQ− Q,ph) = 0, ∀ ph ∈ Th0(Γ). (4.14)

Let Qh = ∇ψh ∈ Xh for any ψh ∈ Yh. Then, for any Q ∈ X , we have by (3.16) and the
definition of the spaces Yh and Th0(Γ),

2∑
i=1

(PhQ− Q,∇ψh)Ωi = 0. (4.15)

We use the backward difference at t = tn+1 for (3.4)-(3.5) and obtain

2∑
i=1

{
(µ

An+1 − An

τ
,A)Ωi + (

1
σ
curl An+1, curl A)Ωi + (µ∇φn+1 − φn

τ
,A)Ωi

}
+b (A,pn+1) = −

2∑
i=1

{
(µRn+1

1 ,A)Ωi + (µRn+1
2 ,A)Ωi

}
, ∀A ∈ X,

(4.16)

2∑
i=1

{
(µ

An+1 − An

τ
,∇φ)Ωi + (µ∇φn+1 − φn

τ
,∇φ)Ωi

}
= −

2∑
i=1

{
(µRn+1

1 ,∇φ)Ωi + (µRn+1
2 ,∇φ)Ωi

}
, ∀φ ∈ Y,

(4.17)

b (An+1,p) = 0, ∀ p ∈ T (Γ), (4.18)

where

Rn+1
1 =

(
∂A
∂t

)
tn+1

− An+1 − An

τ
, ‖Rn+1

1 ‖0;Ωi = O(τ), (4.19)

Rn+1
2 =

(
∂∇φ
∂t

)
tn+1

−∇φn+1 − φn

τ
, ‖Rn+1

2 ‖0;Ωi = O(τ). (4.20)

Let A = Ah, φ = φh and p = ph. Subtracting (4.16)-(4.18) from (4.3)-(4.5), we have

2∑
i=1

{
(µ

(An+1
h − An+1) − (An

h − An)
τ

,Ah)Ωi + (
1
σ
curl (An+1

h − An+1), curl Ah)Ωi

+(µ∇ (φn+1
h − φn+1) − (φn

h − φn)
τ

,Ah)Ωi

}
+ b (Ah,pn+1

h − pn+1)

=
2∑

i=1

{
(µRn+1

1 ,Ah)Ωi + (µRn+1
2 ,Ah)Ωi

}
, ∀Ah ∈ Xh,

(4.21)

2∑
i=1

{
(µ

(An+1
h − An+1) − (An

h − An)
τ

,∇φh)Ωi

+(µ∇ (φn+1
h − φn+1) − (φn

h − φn)
τ

,∇φh)Ωi

}
=

2∑
i=1

{
(µRn+1

1 ,∇φh)Ωi + (µRn+1
2 ,∇φh)Ωi

}
, ∀φh ∈ Yh,

(4.22)

b (An+1
h − An+1,ph) = 0, ∀ ph ∈ Th0(Γ). (4.23)
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Set Θn+1
h = An+1

h − PhAn+1 and ηn+1
h = φn+1

h − Πhφ
n+1. Taking Ah = Θn+1

h and φh = ηn+1
h

in (4.21)-(4.22), together with the definition of the projection operator Ph, we come to

2∑
i=1

{
(µ

Θn+1
h − Θn

h

τ
,Θn+1

h )Ωi + (
1
σ
curl Θn+1

h , curl Θn+1
h )Ωi

+(µ∇ηn+1
h − ηn

h

τ
,Θn+1

h )Ωi

}
=

2∑
i=1

{
(µ

(An+1 − PhAn+1) − (An − PhAn)
τ

,Θn+1
h )Ωi

+(An+1 − PhAn+1,Θn+1
h )Ωi

+(µ∇ (φn+1 − Πhφ
n+1) − (φn − Πhφ

n)
τ

,Θn+1
h )Ωi

+(µRn+1
1 ,Θn+1

h )Ωi + (µRn+1
2 ,Θn+1

h )Ωi

}
,

(4.24)

2∑
i=1

{
(µ

Θn+1
h − Θn

h

τ
,∇ηn+1

h )Ωi + (µ∇ηn+1
h − ηn

h

τ
,∇ηn+1

h )Ωi

}
=

2∑
i=1

{
(µ

(An+1 − PhAn+1) − (An − PhAn)
τ

,∇ηn+1
h )Ωi

+(µ∇ (φn+1 − Πhφ
n+1) − (φn − Πhφ

n)
τ

,∇ηn+1
h )Ωi

+(µRn+1
1 ,∇ηn+1

h )Ωi + (µRn+1
2 ,∇ηn+1

h )Ωi

}
.

(4.25)

Now adding up (4.24) and (4.25), multiplying both sides by τ and using (4.15) and a(a− b) �
a2/2 − b2/2, for any real numbers a and b, we have

2∑
i=1

{
1
2
‖√µ(Θn+1

h + ∇ηn+1
h )‖2

0;Ωi
− 1

2
‖√µ(Θn

h + ∇ηn
h)‖2

0;Ωi
+ τ‖ 1√

σ
curl Θn+1

h ‖2
0;Ωi

}
≤

2∑
i=1

{
τ(µ

(An+1 − PhAn+1) − (An − PhAn)
τ

,Θn+1
h + ∇ηn+1

h )Ωi

+τ(An+1 − PhAn+1,Θn+1
h + ∇ηn+1

h )Ωi

+τ(µ∇ (φn+1 − Πhφ
n+1) − (φn − Πhφ

n)
τ

,Θn+1
h + ∇ηn+1

h )Ωi

+τ(µRn+1
1 ,Θn+1

h + ∇ηn+1
h )Ωi + τ(µRn+1

2 ,Θn+1
h + ∇ηn+1

h )Ωi

}
.

(4.26)
On the other hand, for the projection operator Ph, we have

2∑
i=1

‖An+1 − PhAn+1‖curl,Ωi + ‖pn+1 − Phpn+1‖T (Γ)

≤ C inf
Qh∈Xh

‖An+1 − Qh‖curl,Ωi + C inf
qh∈Th0 (Γ)

‖qh − pn+1‖T (Γ).
(4.27)

Now using the edge element interpolation estimate in [5], we get

inf
Qh∈Xhi

‖An+1 − Qh‖curl,Ωi ≤ Chα
i ‖An+1‖α,curl,Ωi . (4.28)
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Next we introduce a triangulation T h0 in Ω1 whose restriction on Γ coincides with Γh0 and let
Xh0 be the Nédélec H(curl,Ω1)-conforming edge element over the mesh T h0 . Then from the
definition of Th0(Γ) we know that

Th0(Γ) = {vh × n; vh ∈ Xh0}.

Now using the fact that pn+1 =
1
σ
curl An+1 × n := Tn+1 × n, we can easily show that, by

(2.10), Tn+1 ∈ Hα(curl,Ω1) and

‖Tn+1‖α,curl,Ω1 ≤ C(‖An+1‖α,curl,Ω1 + ‖φn+1
t ‖1+α,Ω1 + ‖An+1

t ‖α,Ω1).

Thus we have by Lemma 3.2 and the standard edge element error estimate in [5] that

inf
qh∈Th0 (Γ)

‖qh − pn+1‖T (Γ)≤ C inf
vh∈Xh0

‖vh − Tn+1‖curl,Ω1≤ C hα
0 ‖Tn+1‖α,curl,Ω1 . (4.29)

From (4.28)-(4.29), we derive

2∑
i=1

‖An+1 − PhAn+1‖curl,Ωi ≤
2∑

i=1

Cih
α
i + C0h

α
0 . (4.30)

Similar to the proof of Theorem 3.2 in [11], using the discrete Gronwall’s inequality, the
finite element interpolation element estimate and (4.30) to (4.26), we easily complete the proof
of the theorem with the help of the triangle inequality. We omit the details.

5. A Fully-discrete Decoupled A− φ Scheme with a Nonmatching
Grid for Eddy Current Problem

To avoid increasing the number of freedoms and equations by solving Problem (VI) directly,
we present a new decoupled A − φ scheme in this part.

First, we need to extend A and φ with some regularity from the time interval [0, T ] to the
interval [−τ, T ]. Let

A−1 = 0 and φ−1 = 0.

Then, the decoupled A − φ scheme is:

A0
h = πhA0, φ0

h = Πhφ0, φ−1
h = 0 (5.1)

and for n = 0, 1, · · · ,M − 1, find (An+1
h , pn+1

h ) ∈ Xh × Th0(Γ) such that

2∑
i=1

{
(µ

An+1
h − An

h

τ
,Ah)Ωi + (

1
σ

curl An+1
h , curl Ah)Ωi

}
+ 	 pn+1

h ,Ah 
2,Γ

− 	 pn+1
h ,Ah 
1,Γ= −

2∑
i=1

(µ∇φn
h − φn−1

h

τ
,Ah)Ωi , ∀Ah ∈ Xh,

(5.2)

	 An+1
h , ph 
2,Γ − 	 An+1

h , ph 
1,Γ= 0, ∀ ph ∈ Th0(Γ), (5.3)
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and find φn+1
h ∈ Yh such that

2∑
i=1

(µ∇φn+1
h − φn

h

τ
,∇φh)Ωi = −

2∑
i=1

(µ
An+1

h − An
h

τ
,∇φh)Ωi , ∀φh ∈ Yh. (5.4)

From the discussion to Problem (V) in Theorem 4.1 we know that under the same assumptions
of Theorem 4.1, the system (5.2)-(5.3) has a unique solution (An+1

h , pn+1
h ) at each time step.

Moreover, by introducing the elliptic projection operator ( referring to the proof of Theorem
4.2) and imitating the proof of Theorem 3.3 in [11], we have
Theorem 5.1. Under the same assumptions of Theorem 4.1, let (An+1, φn+1, pn+1) and
(An+1

h , φn+1
h , pn+1

h ) be the solutions of Problem (I) and the decoupled A − φ approximation
(5.1)-(5.4) at time t = tn+1 respectively. Supposing that for some α > 1/2,

A ∈ H3(0, T ;Hα(curl; Ω1) ×Hα(curl; Ω2)), φ ∈ H2(0, T ;Y ∩H1+α(Ω1) ×H1+α(Ω2)).

Then, we have the following error estimate:

max
0≤n≤M−1

( 2∑
i=1

‖(An+1
h + ∇φn+1

h ) − (An+1 + ∇φn+1)‖2
0,Ωi

)
≤ Cτ2 +

2∑
i=1

Cih
2α
i + C0h

2α
0 .
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