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Abstract

In this paper, we present a new line search and trust region algorithm for unconstrained
optimization problem with the trust region radius converging to zero. The new trust region
algorithm performs a backtracking line search from the failed point instead of resolving
the subproblem when the trial step results in an increase in the objective function. We
show that the algorithm preserves the convergence properties of the traditional trust region
algorithms. Numerical results are also given.
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1. Introduction

In this paper, we consider the line search and trust region method for the unconstrained
optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is continuously differentiable. In every iteration, a trial step is computed by
solving the subproblem

min
d∈Rn

gT
k d +

1
2
dT Bkd := φk(d)

s. t. ||d|| ≤ ∆k,
(1.2)

where gk = ∇f(xk), Bk is a n × n symmetric matrix which approximates the Hessian of f at
xk, ∆k > 0 is the current trust region radius, and || · || refers to the 2-norm.

Let dk be the solution of (1.2). The predicted reduction is defined by the reduction of the
approximate model, that is,

Predk = φk(0) − φk(dk), (1.3)

and the actual reduction is defined by

Aredk = f(xk) − f(xk + dk). (1.4)

The ratio between these two reductions is defined by

rk =
Aredk

Predk
, (1.5)

∗ Received November 19, 2002.
1) This work is partially supported Chinese NSFC grants 10371076, Research Grands for Young Teachers

of Shanghai Jiaotong University, and Institute of Computational Science, Shanghai University.



866 J.Y. FAN, W.B. AI AND Q.Y. ZHANG

and it plays a key role in the traditional trust region algorithm (TTR) to decide whether the trial
step is acceptable and to adjust the new trust region radius. If the trial step is not successful,
then we reject it, reduce the trust region radius, and resolves the subproblem (1.2), otherwise,
we accept the trial step, and enlarge the trust region radius. That is, in TTR, we choose:

xk+1 =
{

xk + dk, if rk > c0,
xk, otherwise, (1.6)

where c0 ∈ [0, 1) is a small constant, and choose

∆k+1 ∈
{

[c3||dk||, c4∆k], if rk < c2,
[∆k, c1∆k] otherwise, (1.7)

where 0 < c3 < c4 < 1 < c1, 0 ≤ c0 ≤ c2 < 1 are constants.
In TTR, when the sequence {xk} converges to the minimizer x∗ of the objective function

f , the ratio of the actual reduction and the predicted reduction rk will converge to 1. For the
details of trust region algorithms, please see [8, 9, 10]. It then follows from the updating rule of
the trust region radius (1.7) that ∆k will be larger than a positive constant for all sufficiently
large k, hence, the trust region will not play the role at the end. In fact, it suffices for the
convergence that ∆k be larger than O(||xk − x∗||) at every iteration. To prevent the trial step
from being too large near the minimizer, we present a trust region algorithm for (1.1) with the
trust region radius converging to zero [1]. We choose

∆k = µk||gk||, (1.8)

where µk is updated according to the ratio rk.
As we know, to resolve the subproblem (1.2) can be costly, since this requires solving one

or more linear systems as follows:

(Bk + λI)d = −gk, (1.9)

while line search methods require little computation to decide a new point. Nocedal and Yuan
creatively combine the trust region technique and line search technique in [5]. In this paper, we
apply the line search technique to our trust region algorithm with the trust region converging
to zero. The subproblem is solved by the algorithm given by Nocedal & Yuan in [5], hence the
trial step dk is always a direction of sufficient descent for the objective function. Thus we do
not need to resolve the subproblem (1.2) when f(xk + dk) > f(xk), in stead we can carry out
the backtracking line search along dk until we obtain the new trial point at which the value of
the objective function is less than f(xk).

In the next section, we present the new line search and trust region algorithm with the trust
region converging to zero, and show that the new algorithm preserves the global convergence
of the traditional trust region algorithm. In section 3, we discuss the superlinear convergence
of the algorithm. Finally in section 4, some numerical results are given.

2. The Algorithm and Global Convergence

In this section, we first give some properties of the trust region subproblem (1.2), then
present our new line search and trust region algorithm with the trust region converging to zero,
finally we discuss the global convergence of the new algorithm.

The following results are well known(see Moré and Sorensen [4] and Gay [2]).

Lemma 2.1. A vector d∗ ∈ Rn is a solution of the problem

min
d∈Rn

gT d + 1
2dT Bd := φ(d)

s.t. ||d|| ≤ ∆,
(2.1)
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where g ∈ Rn, B ∈ Rn×n is a symmetric matrix and ∆ > 0, if and only if ||d∗|| ≤ ∆ and there
exists λ∗ ≥ 0 such that

(B + λ∗I)d∗ = −g, (2.2)

(B + λ∗I) ≥ 0, (2.3)

and

λ∗(∆ − ||d∗||) = 0. (2.4)

Lemma 2.2. (Powell 1975) If d∗ is a solution of (2.1), then

φ(0) − φ(d∗) ≥ 1
2
||g||min{∆, ||g||/||B||}. (2.5)

The vector dk can be calculated by dog-leg type techniques (see Powell [6]) or by applying
the Newton’s method to the following nonlinear equation (see Gay [2], Moré and Sorensen[4]),

φ(λ) =
1

||(Bk + λI)−1gk|| −
1

∆k
= 0. (2.6)

The subproblem can also be solved by a preconditioned conjugate gradient method (Steihaug
[7]). In fact, the global convergence only requires that the predicted reduction satisfies

φk(0) − φk(dk) ≥ η||gk||min{∆k, ||gk||/||Bk||}, (2.7)

where η is a positive constant. To compute a vector dk that satisfies (2.7) is usually much
easier than solving (1.2) exactly. Recently, Nocedal and Yuan [5] propose a novel algorithm
that solves (2.1) approximately. The solution d∗ can be sufficiently downhill which is desirable
for line search. We present the algorithm as follows:

Algorithm 2.1. Step 1 Given constants γ > 1, ε > 0, set λ := 0; if B is positive
definite, go to Step 2; else find λ ∈ [0, ||B|| + (1 + ε)||g||/∆] such that B + λI is
positive definite.

Step 2 Factorize B + λI = RT R, where R is upper triangular; solve RT Rd = −g for d.

Step 3 If ||d|| ≤ ∆, stop; else solve RT q = d for q; and compute

λ := λ +
||d||2
||q||2

γ||d|| − ∆
∆

; (2.8)

go to Step 2.

Nocedal and Yuan show that if dk is computed by Algorithm 2.1, then there exists a positive
constant τ such that

φk(0) − φk(dk) ≥ τ ||gk||min{∆k, ||gk||/||Bk||}, (2.9)

and

dT
k gk ≤ −τ ||gk||min{∆k, ||gk||/||Bk||}. (2.10)

Thus dk is a direction of sufficient descent in the sense that the angle between dk and −gk will
be bounded away from π/2 if ||gk|| is bounded away from zero and ||Bk|| is bounded above.
Hence, if dk is not acceptable, we can safely perform a backtracking line search along dk: we
find the minimum positive integer ik such that

f(xk + αik dk) < f(xk), (2.11)

where α ∈ (0, 1) is a positive constant. We now present our new algorithm as follows:
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Algorithm 2.2. Step 1 Given x1 ∈ Rn, B1 ∈ Rn×nsymmetric, ε ≥ 0, c2 > c0 ≥ 0, 0 <
c5 < 1 < c6, 0 < c7, c8 < 1, 0 < α < 1, µ1 > 0, set ∆1 = µ1||g1||, k := 1.

Step 2 If ||gk|| ≤ ε, then stop; else solve (1.2) so that ||dk|| ≤ ∆k and (2.9)–(2.10) are
satisfied. (This can be done by Algorithm 2.1).

Step 3 Compute f(xk + dk); if f(xk + dk) < f(xk), go to Step 4; else find the minimum
positive integer ik such that

dik

k = αikdk and f(xk + dik

k ) < f(xk); (2.12)

compute

xk+1 = xk + dik

k , (2.13)

µk+1 = c7µk; (2.14)

go to Step 5.

Step 4 Compute rk = Aredk/Predk and

xk+1 = xk + dk; (2.15)

choose µk+1 as

µk+1 =

⎧⎨
⎩

c5µk, if rk < c2,
c6µk, if rk ≥ c2 and ||dk|| > c8∆k,
µk, otherwise.

(2.16)

Step 5 Compute

∆k+1 = µk+1||gk+1||; (2.17)

update Bk+1; k := k + 1; go to Step 2.

Theorem 2.1. Assume that f(x) is differentiable and bounded below, g(x) is uniformly con-
tinuously. If there exists a positive constant M such that

||Bk|| ≤ M and ||gk|| ≤ M (2.18)

hold for all k, then it follows that

lim inf
k→∞

||gk|| = 0. (2.19)

Proof. If the theorem is not true, then there exists a positive constant δ such that

||gk|| ≥ δ (2.20)

holds for all k. Define the set

K = {k | rk ≥ c2}. (2.21)

Since f(x) is bounded below, we have from (2.18),(2.20) and (2.9) that

+∞ >
∞∑

i=1

(fk − fk+1)

≥ ∑
k∈K

c2(φk(0) − φk(dk))

≥ ∑
k∈K

δτc2 min{∆k,
δ

M
}.

(2.22)

The above relation and (2.17) indicate that
∑
k∈K

min{µk,
1
M

} < +∞. (2.23)
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If K is finite, we have µk+1 = c5µk or µk+1 = c7µk for all sufficiently large k, thus it follows

lim
k→∞

µk = 0. (2.24)

If K is infinite, then we have from (2.23) that

lim
k∈K

µk = 0, (2.25)

which together with (2.14) and (2.16) also gives (2.24). Hence it follows from (2.17), (2.18) and
||dk|| ≤ ∆k that

lim
k→∞

dk = 0. (2.26)

Therefore, we have

|rk − 1| = |Aredk − Predk

Predk
|

=
o(||dk||) + O(||dk||2||Bk||)

Predk

≤ o(||dk||) + O(||dk||2||Bk||)
||gk||min{∆k, ||gk||/||Bk||}

≤ o(||dk||)
∆k→ 0,

(2.27)

thus

lim
k→∞

rk = 1. (2.28)

Hence, there are no performs of line search for k sufficiently large. The inequality (2.28) also
implies that there exists a positive constant µ∗ such that

µk > µ∗ (2.29)

holds for all sufficiently large k, which gives a contradiction to (2.24). Therefore we see that
assumption (2.20) can not be true. The proof is completed.

3. Local Convergence

In the traditional trust region algorithm, the trust region radius will be larger than a positive
constant for all sufficiently large k, so the trial step will take the Quasi-Newton step at the end,
which guarantees the superlinear convergence of the algorithm. In this section, we show that
our new line search and trust region algorithm with the trust region radius converging to zero
preserves the superlinear convergence under some certain conditions.

Theorem 3.1. Suppose the sequence {xk} generated by Algorithm 2.2 converges to x∗, and
suppose dk is the exact solution of subproblem (1.2) and a direction of sufficient descent. If
∇2f(x) is continuous in a neighbourhood of x∗ and ∇2f(x∗) is positive definite, and if the
condition

lim
k→∞

||(∇2f(x∗) − Bk)dk||/||dk|| = 0 (3.1)

is satisfied, then the sequence {xk} converges to x∗ Q-superlinearly.

Proof. It follows from (3.1) and the positive definiteness of ∇2f(x∗) that there exists a
constant δ̄ > 0 such that

dT
k Bkdk ≥ δ̄||dk||2 (3.2)
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holds for all sufficiently large k. Since dk is a solution of the subproblem (1.2), there exists
λk ≥ 0 such that

gk + (Bk + λkI)dk = 0. (3.3)

Define the sets

I1 = {k | for which xk+1 is defined by Step 3 of Algorithm 2.2}, (3.4)

and

I2 = {k | for which xk+1 is defined by Step 4 of Algorithm 2.2}. (3.5)

Then, it follows from (3.2) and (3.3) that for all k ∈ I2,

Predk =
1
2
dT

k Bkdk + λk||dk||2 ≥ 1
2
δ̄||dk||2, (3.6)

and

Aredk = −gT
k dk − 1

2
dT

k ∇2f(x∗)dk + o(||dk||2)
= Predk +

1
2
dT

k (Bk −∇2f(x∗))dk + o(||dk||2)
= Predk + o(||dk||2).

(3.7)

On the other hand, for all k ∈ I1, we have from (3.3) that

gk + (Bk + λkI)α−ik dik

k = 0. (3.8)

Then it follows from α < 1, ik ≥ 1 and (3.2) that the reduction of f(x) from xk to xk + dik

k is

Predk = −gT
k dik

k − 1
2
dikT

k Bkdik

k

= (α−ik − 1
2
)dikT

k Bkdik

k + α−ik λkdikT
k dik

k

>
1
2
δ̄||dik

k ||2,
(3.9)

and the actual reduction from xk to xk + dik

k is

Aredk = −gT
k dik

k − 1
2
dikT

k ∇2f(x∗)dik

k + o(||dik

k ||2)
= Predk +

1
2
dikT

k (Bk −∇2f(x∗))dik

k + o(||dik

k ||2)
= Predk + o(||dik

k ||2).
(3.10)

Combining (3.6)–(3.10), we have

lim
k→∞

rk =
Aredk

Predk
= 1. (3.11)

Now, we prove that {µk} is bounded. Otherwise, µk → +∞, so the inequality

||dk|| > c8∆k = c8µk||gk|| (3.12)

holds for infinitely k ∈ I2. The positive definiteness of ∇2f(x∗) indicates that there exist
M̂ > δ̂ > 0 such that

M̂ ||xk − x∗|| ≥ ||gk|| ≥ δ̂||xk − x∗||, (3.13)

M̂ ||xk − x∗||2 ≥ f(xk) − f(x∗) ≥ δ̂||xk − x∗||2 (3.14)
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for all sufficiently large k. Thus, (3.12)–(3.14) show that

M̂ ||xk − x∗||2 ≥ f(xk) − f(x∗)
≥ f(xk + dk) − f(x∗)
≥ δ̂||xk + dk − x∗||2
≥ δ̂(||dk|| − ||xk − x∗||)2
≥ δ̂(c8µk δ̂ − 1)2||xk − x∗||2,

(3.15)

which is impossible if µk → +∞. Therefore we see that {µk} is bounded. This implies

||dk|| ≤ c8∆k (3.16)

for all large k. Thus, the trust region is inactive for all large k. Consequently, the superlinear
convergence result follows from the standard results of Dennis and Moré.

4. Numerical Results

In this section, we implement our new line search and trust region algorithm with the trust
region radius converging to zero (L–NTR), and compare it with three other algorithms: the
traditional trust region algorithm (TTR), TTR with line search (L–TTR), and the trust region
algorithm with the trust region radius converging to zero without line search (NTR).

The test problems are those given by Moré, Garbow and Hillstrom [3], and we use the same
numbering system as that in [3]. In all the tests, the trial step is computed approximately by
Algorithm 2.1. The initial approximate Hessian matrix B1 is chosen as the identy matrix, and
Bk is updated by the BFGS formula. However, we do not update Bk if

sT
k yk > 0 (4.1)

fails, where {
sk = xk+1 − xk,
yk = gk+1 − gk.

(4.2)

In all the tests, we choose ∆1 = µ1||g1|| with µ1 = 10. In the tests of TTR and L–TTR, we
compute

∆k+1 =

⎧⎪⎨
⎪⎩

min{∆k

4
,
||dk||

2
}, if rk < 0.25,

∆k, if rk ∈ [0.25, 0.75],
max{4||dk||, 2∆k}, otherwise.

(4.3)

In the tests of NTR and L–NTR, we choose c2 = c5 = c7 = 0.25, c6 = 10 and c8 = 0.5. When
f(xk + dk) ≥ f(xk), we resolve the subproblem (1.2) in the tests TTR and NTR, while we
perform the line search in L–TTR and L–NTR. Moreover, we test L–TTR and L–NTR in two
versions. In Version 1, we choose α = 0.1, while in Version 2, we compute

αk = max
{

0.1,
0.5

1 + (fk − f(xk + dk))/dT
k gk

}
, (4.4)

which is based on truncated quadratic interpolation, set dk = αkdk, and repeat this process
until a lower function value is obtained.

The algorithm is terminated when the norm of the gradient at the k-th iterate ||gk|| is less
than ε = 10−8, or when the number of the iterations exceeds 100(n + 1). The results are listed
in the following table. “NF” and “NG” represent the numbers of function calculations and
gradient calculations, respectively; if the method fails to find the stational point in 100(n + 1)
iterations, we denote it by the sign “–”.

From the table above, we can see that line search is desirable not only for the traditional
trust region algorithm but also for the trust region algorithm with trust region converging to
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zero. Usually we require little computation on the values of the objective function and its
gradient when combining trust region and line search techniques. Moreover, algorithm L–NTR
often performs better than algorithm L–TTR whatever the version is. Hence, our new line
search and trust region algorithm with the trust region converging to zero is more efficient for
small size problems.

Results on some of the problems of Moré, Garbow and Hillstrom
L–TTR L–NTR

TTR
Version 1 Version 2

NTR
Version 1 Version 2

Problem n NF/NG NF/NG NF/NG NF/NG NF/NG NF/NG

1 3 46/30 37/31 38/30 44/28 44/33 42/31

2 6 42/39 77/72 74/71 48/41 43/40 46/41

3 3 8/6 6/5 7/6 9/6 7/6 7/6

4 2 206/144 301/242 230/188 261/148 263/207 229/181

5 3 34/31 40/37 40/37 43/34 37/32 33/28

6 3 18/12 14/11 14/11 17/10 14/11 14/11

7 9 76/67 75/70 69/64 92/71 79/71 77/68

8 8 249/179 112/93 86/75 251/167 64/54 74/60

9 2 13/11 19/16 15/13 14/10 12/11 12/11

10 2 55/31 31/25 25/20 – 26/18 44/30

12 3 41/36 35/32 42/35 61/39 38/35 46/37

13 6 25/24 28/26 25/24 29/25 30/27 27/26

14 6 90/69 89/79 83/69 127/71 93/72 86/69

15 8 88/78 99/91 84/77 93/74 100/86 79/68

16 2 18/15 17/15 19/17 22/17 20/17 18/15

17 4 55/42 65/55 59/48 142/88 126/97 116/89

18 9 45/33 48/39 38/30 55/31 37/27 40/29
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