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Abstract

In this paper, we investigate multi-scale methods for the inverse modeling in 1-D Metal-
Oxide-Silicon (MOS) capacitor. First, the mathematical model of the device is given and
the numerical simulation for the forward problem of the model is implemented using finite
element method with adaptive moving mesh. Then numerical analysis of these parameters
in the model for the inverse problem is presented. Some matrix analysis tools are applied
to explore the parameters’ sensitivities. And third, the parameters are extracted using
Levenberg-Marquardt optimization method. The essential difficulty arises from the effect of
multi-scale physical difference of the parameters. We explore the relationship between the
parameters’ sensitivities and the sequence for optimization, which can seriously affect the
final inverse modeling results. An optimal sequence can efficiently overcome the multi-scale
problem of these parameters. Numerical experiments show the efficiency of the proposed
methods.

Key words: Inverse problem, MOS capacitor model, Finite element method, Adaptive mov-
ing mesh, Levenberg-Marquardt method, Sequence for optimization, Multi-scale methods.

1. Introduction

Metal Oxide Silicon (MOS) transistors are the basic building block of MOS integrated
circuits. Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as
the dominant technology in semiconductor industry. The direct techniques for determining the
two-dimensional doping profiles, such as scanning capacitance microscopy and dopant selective
etching followed by atomic force microscopy (DSE/AFM), however, are less mature at the
moment. The device have to be destroyed in these direct techniques. In mathematical theory,
present implementation of technique does not determine unique physical solution and requires
excessive intervention to achieve acceptable results because of the high nonlinear character of
the mathematical model. Therefore much work for the design and analysis of circuits focuses
on scientific computing of the numerical simulation and the inverse modeling.

Since the accuracy of a device model in predicting device characteristics is fully dependent
on the accuracy of the model parameter values being used, parameters extraction, an elec-
tronics inverse problem, is one of most important aspects of the semiconductor industry. It
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is to characterize the complicated doping profiles inside the device by curve fitting the model
equations to a set of the data measured on its surface, such as the capacitance-voltage (C-V)
and/or current-voltage (I-V) data using nonlinear least square optimization techniques. This
is still a very challenging problem because of the lack of effective optimization methods or
ideas. Especially in practical problems, with ever decreasing device dimensions, the complexity
of the models used in circuit simulators have increased significantly and the physical scales of
these parameters often are various. Moreover, the effect of multi-scale physical difference of the
parameters is so serious that we usually can extract only part of the parameters.

The main purpose of this paper is to propose some numerical methods or strategies for
solving the inverse problem of parameters extraction in 1-D MOS capacitor using C-V technique,
particularly the difficulty in the multi-scale problem, based on our sensitivity analysis of the
parameters.

In section 2, we will formulate the mathematical model of 1-D MOS capacitor. The model is
a nonlinear two-point boundary value problem. In section 3 we use finite element method with
adaptive moving mesh in the discretization of the forward problem. Then sensitivity analysis
of the parameters is given in section 4. And section 5 outlines the algorithm used to solve the
inverse problem. Section 6 and 7 present the results and concluding remarks. Furthermore, we
will give different results based on two kinds of physical MOS models: low-frequency capacitance
model and deep depletion model.

2. The Mathematical Model of 1-D MOS Capacitor

Figure 1 represents a simple structure of 1-D MOS capacitor, which consists of Poly-Si
layer (metal), SiO; layer (oxide) and Si layer (silicon) from the left to the right.

Poly-Sil Si020 Si0
A L
00 . x10 x20 x30
—_—

Figure 1: The structure of MOS capacitor.

A fundamental equation in MOS structure is Possion’s equation, which relates the charge
density p to the electrical potential ¢. The formulation is

i (052 ) = ptota).o), (2.1

where z is the depth from the left boundary of the device, ¢(x) is the electrical potential at x,
p(z) is the charge density, e(x) is the material’s dielectric number. And e(z) in the three layers
are constants €, €ox and eg; respectively. And the boundary conditions

kT . Nopo
Bla=0 = b0 + dBpoty = g0 + — In (—22L)
d i (2.2)
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The charge density:

p(¢(x),z) =
q{ni exp (W) — nj exp (W) + Npoly(x)} in Poly-Si layer
prx — Qitd(z2) in SiO, layer
q{ni exp (%&@) — 1n; exp <%(Taf)> — Nsi(x)} in Si layer,

(2.3)

where Npoiy () is the gate doping profile in Poly-Si layer. Exponential function is selected to
represent the doping profile in the layer.

r—t
Nypoty (%) = Nopoty [1 — exp <071p°‘y>} (2.4)

and N (z) is the substrate doping profile in S7 layer. Here we use Gaussian function to
describe the doping profile:

2
r — X
st(m) = Nosi €xp |:_< \/50_2 > :| + Neonst- (25)

The other fundamental equations in our problem are about the capacitances in MOS. The
MOS gate capacitance Cy equals the series combination of the capacitances of Cpoy, Csio, and
Csil

1 1 1 1
—_— = + + =, 2.6
Cg Cpoly Csi02 Csi ( )
where
dQ ol
C — poty
poly dUpoly
Eox
Csi02 = % (27)
siog
d si
Csi = Q )
dUsi

in which Qpoiy and @,; are the electric charge, Upoy and Uy; are the potential differences of the
Poly-Si layer and St layer respectively. Here we use the definitions of differential capacitance
(the ratio of the variation in charge to the corresponding variation in voltage) to compute Cpory
and Cj;, which are more important than those of static capacitance (the ratio of total charge to
total voltage) because the capacitance of an MOS structure is a nonlinear function of voltage
(see chapter 4 in [3]).

In fact, what we can measure is the gate voltage V,. It has the relationship with ¢g:

¢0 = va - ¢mSa (28)

in which ¢,s is the work function difference: ¢,,, = Wy — x, where W} is the work function,
x is the semiconductor’s electron affinity.
Here we give out other known parameters’ physical meanings in the above equations:

q is electron charge;

pax 18 fixed-oxide charge density;

0(x) is Delta function at x;

tpoly, tsi are thickness of the two layers.

k is Boltzman constant;

T is room temperature;

Qjt is the interface-trapped charge density;
n; is intrinsic carrier concentration;
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The unknown parameters that are to be extracted are:

1§i\fopoly; } in the gate doping profile Ny ()

1,

3) const;

‘;;fx\foﬁ, in the substrate doping profile N;(x)
0,

6)0’2,

T)tsio,: the thickness of the SiO, layer;

8)Wy: the work function.

3. The Forward Problem

Our forward problem is that given a gate voltage V;, on the left boundary of MOS, to
determine the corresponding gate capacitance Cy of MOS. The first step is to calculate the
distribution of the electrical potential ¢ by solving (2.1) and (2.2). The second step is to get
C, with (2.6) and (2.7).

Equations (2.1) and (2.3) show that we face a two-point boundary value problem with very
strong nonlinear character. We use finite element method with adaptive moving mesh to solve
it.

After finite element discretization, we can get an nonlinear algebraic equation:

AV = F(9) (3.1)

where ¥ is the vector of ¢; for i = 1,2,... ,n. Moreover, the coefficient matrix A is diagonally
dominant tridiagonal. The classical iterative Newton-Raphson method is used to solve (3.1)
(see [5)]).

In the second step, we find the fact that the distribution of voltage has a continuous de-
pendence on the boundary value ¢y is useful to get gate capacitance Cy. So by differentiating
equations (2.1) and (2.2) with respect to ¢g (for simplification, we use the denotation V' = ¢y),
a new equation about ¢y can be obtained

4 (5@) d‘z’g;m)) = —B(4(z), dv (2),2)

dvlo = 1 (3.2)
¢V|I:I3 = 07
where ®(¢(z), oy (z),z) = %‘i),m)a and

T)] (¢pv(z) —1)  in Poly-Si layer

0 in Si0O- layer

20, —
G () o (2o

(3.3)
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Obviously, ®(¢(z), dv (x),x) is a linear function of ¢y (). Then after solving this linear two-
point boundary value problem, we can get the distribution of ¢y .
According to Gauss’s law in electronics,

Q=cE = 6(:1—[; (3.4)

in which F is electric-field intensity, U is the potential difference on the device, from (2.7) we
can compute the capacitance as follows:

dU, ol dy, ol
£gid P y)/dV ssid<#> /da:
C b = deoly _ deoly/dV _ < dz _ dv
poty dUpoty dUpory /dV dUpory /dV dUpory /dV

and

AUpoty /AV = d(@(2)|a=2, = #(&)|2=2:)/AV = ¢v (¥)|z=20 — ¢V (#)]2=z,,

then we have

d d Zo
C = - < ;Z;V T=x0 } % zm) _ /acl (=2(¢(2), dv (2), 2))dw \s
poly = v (2)|2=20 — OV (T)|o=2, - 1= ¢y (z1) ) (3.5)

similarly,

x2
| e,y (@),m)ds
— T3
Cei ) — g (36)
where the negative sign before the fraction in the right-hand side comes from the fact that Qg;
is negative charge. And Cj;p, = €ox/tsio, can be obtained easily if t4;0, is known. So with (2.6)
we can compute gate capacitance Cy. Hence, we finish the forward problem.

During the inversion, calculation of the forward problem is carried out thousands of time,
therefore, it is imperative that the forward model be both computationally efficient and accu-
rate. As we know, there is a sharp layer of electrical potential in the SiOs layer, see Figure 2.
If we use the uniform mesh, it must cost more to resolve in the SiO layer. Furthermore, the
mesh will not be smooth if more meshes are added in the SiO, layer and it will lose accuracy.
We have a good idea to create an adaptive mesh for the finite element method. There will be
the same accuracy for the uniform mesh only using 1/10 mesh for adaptive mesh. This method
can increase the accuracy of the numerical approximations and also decrease the computational
cost, see [6].

In Figure 3, we first compute a standard solution by setting uniform mesh n; = 25000,
ny = 2500, ng = 25000, which are the numbers of grids in three layers respectively; 200 points
of V, changes from —2V to 2V.

1) NOpoly =1x10*'em™?%;  2) oy = 0.002pm;

3) Neonst = 0.1 x 10'7cm—2 i 4) Nosi =5 % 107 cm 3 :
5) mo = 0.0pm; 6) o2 = 0.2um;

7) tszo2 = 25A, 8) Wf =4.9V.

Figure 4 shows the absolute errors compared with the standard solution when we use less
grids in uniform meshes. And Figure 5 show a good result about adaptive mesh. Here we use
only 1000 points as the total number of all grids in three layers with adaptive technique. The
solution with the technique, which is denoted by real line, attains much higher precision than
that one using uniform mesh with 21000 points as total. The high efficiency of the adaptive
mesh will save much computational time in the inverse problem while keeping high precision.
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Figure 2: The distribution of electrical po- Figure 3: Forward problem: C-V curve.
tential for ¢|gz=o0 = 1.0V.
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Figure 4: The error of the C-V using uniform  Figure 5: The error of the C-V using adap-
mesh. tive mesh.

4. Sensitivity Analysis

In this section, we do some numerical analysis about the eight parameters’ sensitivities.
These information will be very important to the inverse problem.

First, we use Figures 6-13 to show outwardly the sensitivities of the parameters. Figures 6
and 7 show that for the 1st and 2nd parameters Nopo, and o1, the shifts of the C-V curves
mainly arise on the interval [0, 2]. Figures 8 shows that for the 3rd parameter N¢opst, the C-V
curve changes very little on the whole interval [—2,2]. Figures 9-11 show that for the 4th, 5th
and 6th parameters Nys;, o and o, the shifts of the C-V curves mainly arise on the interval
[—1,1]. Figure 12 shows that the C-V curve changes on its two wings for the 7th parameter ;..
Figure 13 shows that for the 8th parameter Wy, the change in the C-V curve is a horizontal
parallel shift along the voltage axis. If Wy increases, the shift is to the right of the standard
curve Wy = 4.2V. A decreasing W; causes a shift to the left of the standard curve.

Now we give more refined numerical analysis as below with some matrix analysis tools.
Related details of these tools can be found in any books on numerical algebra such as [4]. For
simplification, we use z; (j = 1,...,8) to represent the eight parameters respectively, and
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Figure 6: Nopoi, = 1€20, le2l, 5e21, 1e22
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Figure 8: Neonst = 1e16, 5el6, 1el7 cm™3.

simplify the forward problem into:

Cg = C(l‘l,l'z,...

Figure 9: Nos; = lel7, 3el7, 5el7, 8el7
cm—3.

; L8, Vg)> (41)

where Cg,C, Vg € R™. These m different V, values are evenly selected from the V, range
[—2,2]. They can be expressed as Vg; = =2 +4i/m (i =1,...,m). The sensitivity of z; will

be obtained by analysing the jacobian of C.
The jacobian is

o0x, 0xo 85178
0z, Oxo Ozs
J = I ]RmX8, (42)
acmfl 60m71 acmfl
o0x, 0xo 85178
OCm, 0Cp, 0Cn,
61‘1 81’2 61'8
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Figure 12: t4,, =20, 23, 25, 28, 30 A. Figure 13: W; = 4.0, 4.2, 4.4 V.

it is an m by 8 rectangular matrix. And we define the sensitivity of each parameter. It can be
described by the values S; that is the Ly norm of every corresponding column in the jacobian:

S; :z{i@gjfﬂ; j=1,...,8, (4.3)

i=1

is obtained as follows:

where the derivate

oC;
0

oC; CZ(:L’J + Al‘j) — Cl(l‘]) . .

— = =1,....,m; j=1,...,8 44

8:1/.] A:L'] ? Y Y m’ .7 Y e ( )
where Az; = §; - x;. To make the results comparable, we let all (V;,C,) values lose their units
and take all 0; = 1% except for the 5th parameter (x5 = 0.0). We make Azs = 1% - t5; = 0.01.

Here we let m = 200 and get the results as below:

Table 1. The sensitivities of the eight parameters ( low-frequency capacitance model).
Sy So Ss S4 Ss Se Sz Ss
0.3304 0.2915 0.0292 1.4264 1.6993 0.0628 8.9043 41.0280

From the Table 1, we can see that the 3rd parameter N,,,s: has the lest sensitivity in the
eight ones. Then the next one is the 6th parameter o,. After them are the 2nd o; and 1st
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Nopoty parameters. The other ones 4th No,;, 5th xg, Tth £4,, and 8th Wy have comparatively
large sensitivities.
We can use an inequality to represent their sensitivities:

{N0.3: Neonst} < {No.6: 02} < {No.2: o1} < {No.L: Nopory}

4.5
< {No.4: Nos;} < {No.5: 2o} < {No.T: tgip, } < {No.8: W,} (4.5)

In next section, we may find (4.5) benefits the multi-scale method very much.

Remark 1. Before we finish this section, let us introduce another MOS capacitor model,
deep depletion model. It offers us much information in our research as well as the low-frequency
capacitance model.

Its difference with the low-frequency capacitance model lies only the charge density p(¢(zx), x)
in Si layer. Here

p(o(z),z) = q{ni exp <_ kqu(m)> - Nsi(m)] in Si layer, (4.6)
where the second term on the right-hand side in (2.3) disappear.

Since the process of sensitivity analysis for deep depletion model is same, we directly give
out the results. Figures 14-21 show outwardly the sensitivities of the parameters. Table 2 shows
the values of sensitivities.

Table 2. The sensitivities of the eight parameters (deep depletion model).
S1 So Ss Sy Ss Se Sz Ss
0.1122 | 0.1001 | 0.0261 | 1.2353 | 2.9130 | 0.1605 | 8.2958 | 31.6144

and inequality (4.7) represents the relationship of their sensitivities,

{N0.3: Neonst} < {No.2: 01} < {No.1: Nopory} < {No.6: 02}
< {No.4: Ny} < {No.5: o} < {No.7: tsi0, } < {No.8: W;}.

Remark 2. In fact, m can be set to other values such as 100, 1000, etc. After several
computations, we may see that although these sensitivity values are different for different m
used, the relationship of these sensitivities are the same. The inequalities (4.5) and (4.7) are
still right and give us the indication for the multi-scale method.

(4.7)

5. The Inverse Problem As an Optimization Problem

The basic idea of this approach for solving the inverse problem of parameters extraction
is by curve fitting the equations in the forward model to a set of measured C-V data using
nonlinear least- squares optimization methods. Starting from the educated guess values for
these parameters, a complete set of optimum parameters are extracted using numerical methods
to minimize the error between the model and the measured data.

5.1. The Objective Function

Here we again simplify the forward model:

C =C(X,V), (5.1)

where X € R” is the vector of parameters, n is the total number of parameters and C,V € R™,
m is the number of data points that are to be fitted.

We define function F(X) as the simulation error that is caused by the parameters X. F(X)
is called objective function. It denotes the extent how the computed or simulated parameters’
results approach the experimentally measured or desired data. It is assured that F'(X) is a real-
valued function and is at least once continuously differentiable with respect to the parameters
X, although not necessarily in a strict mathematical sense. When F'(X*) is the minimum of
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Figure 19: o2 = 0.01, 0.03, 0.05, 0.1, 0.2, 0.4

Figure 18: o = 0.0, 0.1, 0.2, 0.3 um. pm,
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Figure 20: t4,, =20, 23, 25, 28, 30 A. Figure 21: Wy =4.0, 4.2, 44 V.

F(X), X* is the optimal parameter values. Then the inverse problem of parameters extraction
is reduced to finding X such that F(X) is minimized.

So choosing an appropriate objective function is very pivotal step. In most practical prob-
lems, the least-square function is a good one:

F(X) = f: {wr (5.2)

W
i=1 ¢

in which C; is experimentally measured capacitance value , C'(X;V;) is the simulated value and
w; is weight factor which denotes more weight to the specific data points in a certain region
of the device characteristics than to others, so that the model is forced to fit adequately the
data in those regions. Here, we take the simplest case w; = 1, then each data point is equally
weighted. In general,

m(number of data points (C;,V;)) > n(number of model parameters)

In our problem, we use an expression with the relative error sense

ro - 3[A=0x] o

instead of (5.2). In most softwares for parameters extraction [7, 12, 13, 14, 15], the equation
(5.3) is used. Once we gain the minimum of the objective function, the error of the modeling
can be obtained by the following expression:

F(X)

FE =4/ —+= 5.4
rror oy (5.4)

which would be a good criterion for quantitatively evaluating agreement between the model
equations and measured characteristics.

5.2. The Optimization Methods and the Multi-Scale Problem

For the nonlinear least-squares problem, there are many researchers who have studied and
developed various algorithms such as the steepest descent method, the Guass-Newton method
and the Levenberg-Marquardt method. Here we do not discuss the details about these methods.
The readers can find them in any books or papers on optimization methods [2, 8, 9, 11].

In this paper we mainly show some optimization strategies, not only optimization methods.
After some computation, we find it difficult to extract these parameters simultaneously using
the Levenberg-Marquardt method solely because the physical scales of these parameters are
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various, which make their sensitivities widely divergent. Some parameters’ sensitivities are
very weak, even on the whole device operating range of voltage. Other sensitivities are strong
on part of the range, while weak on other part. So it is more practical to extract the parameters
by coupling the optimization technique with the analysis of the parameters’ sensitivities. In the
next subsection, we will give the detailed strategy based on the Levenberg-Marquardt method.

5.3. The Multi-Scale Method for the Inverse Problem

We first consider the case in low-frequency capacitance model. The case in deep depletion
model is similar and shown later. According to the parameters’ sensitivities in Table 1 and
(4.5), we divide the eight parameters into four groups on different levels. The first group is
No.7 and No.8 parameters that have the largest two sensitivities among the eight ones. Then
the second group is No.4 and No.5 parameters, the sensitivities of which are of order 10°. The
following group is No.1 and No.2 parameters with sensitivities’ of order 10~*. The last group
is No.6 and No.3 parameters, the sensitivities of which are the smallest with their order 1072,
We use the levels to arrange the sequences of the parameters’ optimization.

After these preparation, we proceed the optimization strategy in following steps:

Step 1: Invert No.7 and No.8 parameters together.

Because No.7 and No.8 parameters have the largest two sensitivities, we invert them firstly.
And in Figures 12 and 13, C' change on the majority of interval [—2,2]. We use all data points
on the whole interval [-2, 2].

Step 2: Invert No.4, 5, 7, 8 parameters together.

In this step, we begin to invert No.4 and No.5 parameters that belong to the second group.
In Figures 9 and 10, the shifts of C' arise on the majority of interval [—1,1]. We use all data
points on the interval [—1,1]. But please note the values of No.7 and No.8 parameters are not
frozen, we still invert them with No.4 and No.5 together at the same time.

Step 3: Invert No.1, 2, 4, 5, 7, 8 parameters together.

In this step, we add No.1 and No.2 parameters with smaller sensitivities to the group No.4,
No.5, No.7 and No.8. We invert them on the interval [0, 2] because for No.1 and No.2 parameters,
C' change mainly on the interval [0, 2] as Figure 6 and 7 show.

Step 4: Invert No.1, 2, 4, 5, 6, 7, 8 parameters together.

Still according to our analysis, we begin to invert No.6 parameter with the parameters in
Step 3. We invert them on the interval [—1, 1] because for No.6 parameter, the shift of C' arises
on the interval [—1,1] (see Figure 11).

Step 5: Invert all eight parameters together.
After Step 4, we begin to invert No.3 parameter, whose sensitivity is the smallest. We invert
all the eight parameters on the whole interval [—2, 2].

Steps Continue: Return back to Step 1.
After a cycle of these five steps, we return back to Step 1 and continue the iterations. We
hope that the big cycles can lead the parameters’ values to the standard values at last.

A flow diagram for the strategy is shown in Figure 22.

Remark 3. In the procedure, you may note that we control the stop of every step by a fiz
number besides the relative error. The number comes from the Levenberg-Marquardt method.
In fact, there are several interior cycles of iterations in every step. In Figure 22, for example
in step 2, 40 x 2 means there are two cycles, each of which contains 40 iterations. Usually in
well-posed problem, the iteration can converge soon. On the other hand, at the beginning of
iteration, the effect of convergence is very obvious. But sometimes in ill-posed problem or in
the later of the procedure, the convergence is very slow and much more iterations are needed.
So the number can be used to restrict the procedures constrainedly. In addition, we use cycle
number to limit the total times of the big cycle including the five steps. In our problem, we
find these chosen numbers are very effective after many numerical experiments.
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Figure 22: Optimization Flow Diagram.

For the deep depletion model, the method is similar except for several details. One is
the warranty to classify the parameters, which is different from that for the low-frequency
capacitance model. From Figure 14-21 we note that the C-V curve of the deep depletion model
is very distinct. When the gate voltage V; is increased above threshold, the C-V curve does
not rise anymore. About the physical background of the model, please see related books on
semiconductor devices (Chapter 4 in [1], Chapter 4 in [3]). We classify the parameters mainly
according to both different intervals where C of these parameters change and their sensitivities.

We still choose No.7 and No.8 parameters that have the largest two sensitivities as the the
first group with the interval [—2, —1] on which the main shifts of their C-V curves arise (see
Figure 20 and 21). Then the second group is No.4, No.5 and No.6 parameters with the interval
[—1,2] (see Figures 17, 18 and 19). The following group is No.1 and No.2 parameters with the
interval [—2, —1] (see Figures 14 and 15). The last group is No.3 parameter, the sensitivity of
which is the smallest (Figures 16).

We briefly proceed the strategy for deep depletion model in following steps:

Step 1: Invert No.7 and No.8 parameters together.
We use all data points on the interval [—2, —1].

Step 2: Invert No.4, 5, 6, 7, 8 parameters together.
We use all data points on the interval [—1,2].

Step 3: Invert No.1, 4, 5, 6, 7, 8 parameters together.
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In this step, we invert them on the whole interval [—2,2] because for No.1, No.7 and No.8
parameters, the interval is [—2, —1], while the interval is [—1, 2] for No.4, No.5 and No.6.

Step 4: Invert No.1, 2, 7, 8 parameters together.
We invert them on the interval [-2, —1].

Step 5: Invert all eight parameters together.
We invert them on the whole interval [—2, 2].

Steps Continue: Return back to Step 1.

6. Results

6.1. The Results of Low-Frequency Capacitance Model

We set the number of data points m = 40. To show the inversion results clearly, we list all
data in the form of the ratios of the parameters’ initial guess values or their inversion values
to their standard values so that the data are centered at 1.0 (except for the No.5 parameter
whose standard value is 0.0, we let its initial guess value or its inversion value divided by the
thickness of Si layer tg;). Table 3 shows the results with several kinds of initial deviations:

Table 3. The results of low-frequency capacitance model.
Parameter No.l1 |No.2 |[No.3 |No4 |No.5b |No6 |No.7 |No.8
Standard value | 1.0 0.002 |0.1 5.0 0.0 0.1 0.0025| 4.2

Ex. 1 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+10% Initial ratio 1.1 1.1 1.1 1.1 0.1 1.1 1.1 1.1
deviation | Inversion ratio | 1.0006 | 1.0007 | 0.9755 | 1.0005 | 0.0000 | 1.0002 | 1.0000 | 1.0000

Ex. 2 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+10% Initial ratio 0.9 1.1 0.9 1.1 0.1 1.1 0.9 0.9
deviation | Inversion ratio | 1.0005 | 1.0006 | 0.6772 | 1.0064 | 0.0000 | 1.0034 | 1.0000 | 1.0000

Ex. 3 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+20% Initial ratio 1.2 1.2 1.2 1.2 0.2 1.2 1.2 1.2
deviation | Inversion ratio | 1.0022 | 1.0025 | 0.4959 | 1.0010 | 0.0000 | 1.0052 | 1.0000 | 1.0000

Ex. 4 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+30% Initial ratio 1.3 1.3 1.3 1.3 0.2 1.3 1.2 1.2
deviation | Inversion ratio | 0.9998 | 0.9998 | 0.2624 | 1.0147 | 0.0000 | 1.0077 | 1.0000 | 1.0000

Example 1. We let all initial deviations be +10%. The inversion result matches the
standard values very well with the last deviations smaller than 10~2, except for No.3 parameter.

Example 2. We take some initial deviations as +10% and some as —10%. The result still
matches the standard values well with some last deviations smaller than 10~ (No.1, 2, 5, 7
and 8) some smaller than 1072 (No.4 and 6) , except for No.3 parameter. In fact, we have
many other results with various combinations of upper and lower deviations. They all match
the standard values well except for No.3 parameter. Limited to space, we do not list them here.
These results show the generality of the optimization strategy.

Example 3. Here we increase all initial deviations to +20%. The result is still very
satisfying. The last deviations are smaller than 102 except for No.3 parameter.

Example 4. Here we increase some deviations to 30% (No.1, 2, 3, 4 and 6). The result
keeps good except for No.3 parameter.

6.2. The Results of Deep Depletion Model

Table 4 shows the results with several kinds of initial deviations for deep depletion model:
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Table 4. The results of deep depletion model.
Parameter No.l |No.2 |No.3 |Nod |[No.b |No.6 |No.7 |No.8
Standard value | 1.0 0.002 |0.1 5.0 0.0 0.1 0.0025| 4.2

Ex. 5 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+10% Initial ratio 1.1 1.1 1.1 1.1 0.1 1.1 1.1 1.1
deviation | Inversion ratio |1.0134 | 1.0139 | 1.0997 | 0.9980 | 0.0000 | 0.9989 | 1.0000 | 1.0000

Ex. 6 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+10% Initial ratio 0.9 1.1 0.9 1.1 0.1 1.1 0.9 0.9
deviation | Inversion ratio | 0.9876 | 0.9860 | 1.0996 | 0.9965 | 0.0000 | 0.9980 | 1.0000 | 1.0000

Ex. 7 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+10% Initial ratio 1.1 0.9 1.1 0.9 0.1 1.1 1.1 0.9
deviation | Inversion ratio | 0.9879 | 0.9865 | 1.0994 | 0.9980 | 0.0000 | 0.9988 | 1.0000 | 1.0000

Ex. 8 Standard ratio | 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0
+20% Initial ratio 1.2 1.2 1.1 1.2 0.2 1.2 0.8 1.2
deviation | Inversion ratio | 1.0120| 1.0135 | 1.0999 | 0.9980 | 0.0000 | 0.9989 | 1.0000 | 1.0000

Example 5. We let all initial deviations be +10%. The result is good. The last deviations
are smaller than 1072 except for No.3 parameter.

Example 6 and 7. Here we give two results with various combinations of upper and
lower deviations. The two results are still satisfying, which again show the generality of the
optimization strategy except for No.3 parameter.

Example 8. Here the initial deviations reach 20% except for No.3 parameter. The result
keeps good except for this parameter.

Remark 4. From Table 3 and 4, we may note that for No.1 and No.2 parameters, the results
of deep depletion model are not good as those of low-frequency capacitance model. The last
deviations of deep depletion model are larger than 102 and those of low-frequency capacitance
model are smaller than 1072, We think the sensitivity difference is the cause. In Figure 14
and 15 the C-V curves of deep depletion change slightly on the whole interval [—2,2], even
like it changes in Figure 16 of No.3 parameter. But in Figure 6 and 7, the C-V curves of low-
frequency capacitance model change at least on [0, 2]. Numerically, according to Table 1 and 2,
the sensitivities for No.1 and No.2 parameters of low-frequency capacitance model are 0.3304
and 0.2915, while those of deep depletion are 0.1122 and 0.1001, which produce the difference
in last deviations. This phenomena again indicates the importance of sensitivity analysis.

Remark 5. Although No.3 parameter is still a difficulty in our problem because of its ex-
traordinarily weak sensitivity, we must emphasize the effectiveness of the optimization strategy.
Before applying the strategy, we can extract only five parameters (No.1l, 2, 4, 5 and 7) simul-
taneously using the Levenberg-Marquardt method solely for low-frequency capacitance model.
Now we can extract seven parameters for both two models.

7. Conclusions and Future Work

In this paper the multi-scale methods for the inverse modeling in 1-D MOS capacitor are
described. Numerical experiments show the efficiency of the methods for both low-frequency
capacitance and deep depletion models. In fact, these methods are some practical optimization
strategies based on our sensitivity analysis of the parameters and those popular optimization
algorithms. However, the multi-scale physical difference of parameters widely exists in all kinds
of practical problems and is an unavoidable obstacle in solving forward and inverse problems.
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It has become a key point in parameters extraction not only from semiconductor industry, but
also from others, e.g. petroleum exploitation industry, seismic tomography in geology, large-
scale weather forecasting, etc. So we hope our study can give some illumination or help to the
researchers or engineers in these aspects.

Current and future work with these methods includes application into a more complicated
MOS model with quantum transport, the extension to 2-D and 3-D modeling problems and im-
proving the initial guess with which to begin the iterative process. In the model with quantum
transport, the effect of multi-scale physical problem will be more serious because not only the
physical difference of parameters is great, but also the equations for the forward problem lie on
very different physical levels i.e. Possion’s equation on classical macrostructure and Schrodinger
equation on quantum microstructure. In addition, in practical problem the values of the pa-
rameters are unknown and to be extracted, we can not make initial guess of them by some

deviations from standard values like in this paper, so getting a good initial guess is necessary
and helpful.
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