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Abstract

A new algorithm for inequality constrained optimization is presented, which solves
a linear programming subproblem and a quadratic subproblem at each iteration. The
algorithm can circumvent the difficulties associated with the possible inconsistency of QP
subproblem of the original SQP method. Moreover, the algorithm can converge to a
point which satisfies a certain first-order necessary condition even if the original problem is
itself infeasible. Under certain condition, some global convergence results are proved and
local superlinear convergence results are also obtained. Preliminary numerical results are
reported.

Key words: nonlinear optimization, SQP method, global convergence, superlinear conver-
gence.

1. Introduction

We consider the following nonlinear programming problem:

O (1)
st. ¢i(z) <0, iel
where f : R — R, ¢; : R" — R, i € I are continuously differentiable functions. I =
{1) 27 .. '7m}' Let g(l‘) = Vf(l'), C(l‘) = (cl (:L’), 62(1’), v )Cm(x))T and A(Z’) = (vcl (:L’),
Vea(z), ..., Ver(z)). In view of convenience, we usually use fi, for f(zy), Ci for C(zy), gi for
g(zr) and Ay for A(xy), etc.
SQP algorithms for constrained optimization are iteration-type methods. They generate a
sequence of points approximating to the solution by the procedure
Thy1 = T + Ardy (2)
where xj, is the current point, dj is a search direction which minimizes a quadratic model
subject to linearized constraints and Ay is the stepsize along the search direction (see details
in [12, 18, 25]). For k > 1 the original SQP method developed by Wilson, Han and Powell
employs the following () P subproblem

min gld+ %dTBkd 3)

s.t. Cr + A{d <0
where By, is a symmetric matrix which approximates to the Hessian of the Lagrangian function
L(z,p) = f(x) + p" C(x) (4)
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where p is an approximation to the Lagrangian multiplier vector.

Because of its nice convergence properties(for example, see Han (1977), Powell (1978), Bogg
et al (1982)), the SQP method has been absorbing attention from many researchers.

The requisite consistency of the linearized constraints of the P subproblem (3) is a serious

limitation of the SQ P method. Within the framework of the method, Powell suggested to solve
a modified subproblem at each iteration (Powell(1977)):

min  g7d+ $dTByd + $6;,(1 — p)?
s.t. pici(zr) + Vei(z)Td <0

()

1, ¢i(zx) <0
here u; = ’
e { ny i) 20
other technique, the computational investigation provided by Schittkowski (1981,1983) shows
that this modification works very well.

and 0 < p < 1, §p > 0 is a penalty parameter. With some

However, a simple example presented by Burke and Han (1989) and Burke (1992) indicates
that this approach may not be the best one.

On the other hand, based on the trust region strategy, Fletcher(1981) developed the Si; QP
method for problem (1). Burke and Han (1989) shows that Fletcher’s approach is still incom-
plete. One of the reasons is that the search direction generated by Sl; QP method may point
to the contrary of the optimal point.

Burke and Han (1989) and Burke (1989) presented approaches to overcome difficulties as-
sociated with the inconsistency of the QP subproblem (3). A feature different to the other
methods is that even when (1) is itself infeasible their methods can converge to a point which
meets a certain first-order necessary optimality condition. However, Burke and Han’s method
is conceptual.

Recently, Liu and Yuan (2000) presented a method which is a modification to SQP method.
Similar to Burke and Han’s methods, even when (1) is itself infeasible their method can converge
to a point which meets a certain first-order necessary optimality condition. Unlike the other
methods, their method solves two subproblem—one is an unconstrained piecewise quadratic
subproblem, the other is a quadratic subproblem. Their method has excellent theoretical prop-
erties and is implementable.

In this paper, we describe another implementable method which is a modification to SQP
method. The algorithm can circumvent difficulties associated with the infeasibility of the QP
subproblem. Our method is similar to Liu and Yuan’s method. At each iteration it solves two
subproblems—one is a linear programming, which is different from Liu and Yuan’s, the other
is a quadratic subproblem. Since solving a linear programming is much easier than solving
a piecewise quadratic programming, the computation at each iteration is less than Liu and
Yuan’s. Under certain conditions we can prove that the method is globally convergent and
locally superlinearly convergent.

Note that in our method we only deal with inequality constraints. In fact, for equality
constraints, we can convert it into two inequalities and our method can also deal with it.
Therefore, our method can solve optimization problem with general constraints.

Our algorithm can be easily combined with the trust region strategy. Thus the algorithm in
this paper can be extended to a trust region algorithm for constrained optimization problem.

The paper is organized as follows. The algorithm model is presented in Section 2. In Section
3, the global convergence results of the algorithm are proved. We discuss the local properties of
the algorithm in Section 4. In Section 5, some numerical results are reported. Some discussions
are given in Section 6 to conclude the paper.
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2. The Algorithm Model

First, we consider the following linear programming subproblem:

min
(dT,z)TERm+1

LP(xy) s.t. Cr + Ald < ze (6)
z >0,
where e = (1,1,---,1)7 € R™. Let its solution be (df,z)”. Then we consider the following

quadratic programming subproblem:
P By, i T'd4+ 1d"Bid
QP(z, By) min  gyd+3d By
s.t. Cr + Al'd < zge.

(7)

Obviously, the feasible region of this subproblem is nonempty. In fact, dy, is a feasible solution
of (7). If we assume that By, is positive definite, the solution of (7) is unique. Let dj be the
solution of (7). Then dj, is used as the search direction at the current point zy.

In order to carry out a line search, we use the nondifferentiable exact penalty function as
the merit function.

Let

U(z) = max{c;(x),0}.
el
Given d € R™, let
U*(z;d) = rglealx{cl(a:) + Vei(x)Td, 0} — ¥ (x).

Let
o, (z) = f(z) + o¥(x),

and
0, (z;d) = g(2)"d + o0 (z; d)

where ¢ > 0 is a penalty parameter. The updating formula of the penalty parameter is given
in Step 3 in the algorithm model.
Now we state our algorithm as follows.
Algorithm 2.1 (A Robust Algorithm for Optimization)
Step 0. Given zg € R", By € R™ " is a symmetric positive definite matrix, 8 € (0, 1),
v€(0,1), 00 >0, k:=0;
Step 1. Solve (6) to obtain dy, zx. If dp = 0 and z;, # 0, stop;
Step 2. Solve (7) to obtain dy. If dj, = 0, stop;
Step 3. If 0,, (zk;dx) > —di Bydy, then
gFdy + df Bydy 9 } ]
T Tl .7\ Uk )
—U*(y; di)
Step 4. Choose )\, which is the largest one in the sequence {1,7v,~2,...} satisfying
b, (xg + Adg) — b, (zg) < 230, (zg; di)-

Ok = max {

Set
Thy1 = T + Apdy;

Step 5. Modify By, to obtain Byy1, k:=k + 1, go to Step 1.

Algorithm 2.1 is similar to the methods proposed by Burke and Han (1989), Burke(1989),
Zhou (1997) and Liu and Yuan (2000). But it is not identical to one of these. Comparing to
Burke and Han (1989), Burke(1989) and Zhou (1997) we do not employ bound constraints.
The algorithm can be implemented in the way as SQP algorithm. The difference between
Algorithm 2.1 and Liu and Yuan’s is that Liu and Yuan’s method solves a piecewise quadratic
programming and a quadratic programming but Algorithm 2.1 solves a linear programming
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and a quadratic programming. So the computation of Algorithm 2.1 at each iteration is less
than Liu and Yuan’s.

3. Global Convergence

Throughout this work, we assume that the following conditions hold.
Assumption 3.1:
(1). f(z), ¢;(x),i € I are twice continuously differentiable;
(2). B, k =1,2... are positive definite and there exist two positive constants M; and M,
such that
My|d|2 < d” Bed < Ma|d|1?, (9)

foralld € R" and k > 1;

(3). {zx}, {dr} are uniformly bounded.

It is a common assumption for convergence analysis of SQ P methods that {z} is bounded.
Since the objective function of (7) is coercive, the condition that {dj} is bounded is reasonable.
Because no restriction are imposed on the constraint functions, the cluster point of the sequence
generated by our algorithm can be one of three different types of points. Similar to Yuan (1995),
Liu and Yuan (2000), we give their definitions as follows.

Definition 3.1. x € R" is called
(1). a strong stationary point of problem (1) if x is feasible and there exists a vector p =
(p1, P25+ > pm)T € R™ such that

9(x) + A(z)p =0, (10)
pi >0, pici(z) = 0,i € I (11)

(2). an infeasible stationary point of problem (1) if x is infeasible and
min max{c;(x) + Ve;(z)7d,0} = ¥(x); (12)

deRr i€l
(8). a singular stationary point of problem (1) if x is feasible and there exists an infeasible
sequence {vy} converging to x such that
iy Minder maxier{ci(vi) + Vei(vg)"d, 0} _
k—o00 \I—'(’Uk)

1. (13)

Definition 3.1 is related to our algorithm closely. It should be noted that there are some
difference between our definition and that of Yuan (1995), Liu and Yuan (2000). A strong
stationary point defined above is precisely a K-T point of problem (1).

It is similar to Lemma 3.4 in Liu and Yuan (2000) that we can prove the following lemma,
which describes the properties of infeasible stationary point and singular stationary point.

Lemma 3.1. If x € R" is an infeasible stationary point or a singular stationary point,
there exist pg > 0 and p € R™ such that the following first-order necessary condition

pog(x) + > piVei(z) =0 (14)
=1
pi >0,i=0,1,....,m (15)

holds.

The following lemma shows that if our algorithm stops after finite many iterations, the last
iterate point must be a strong stationary point or an infeasible stationary point of problem (1).

Lemma 3.2. If Algorithm 3.1 terminates at xy, then xy, is either an infeasible stationary
point or a strong stationary point.

Proof. (i). If the algorithm terminates at Step 2, then z; = ¥(z},) and 2, # 0. Since z, # 0,
x, is an infeasible point. Now we prove that

drrel}%nn r?él;({c,(a:k) + Vei(wp)Td, 0} = U (xy). (16)
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In fact, if (16) does not hold, then there exists dj such that

5 . T 10
= i ; 1 v .
£= min rglealx{cz(mk) + Vei(zg) dy, 0} < O(zy)

Obviously, (dgT, 2)T is a feasible point of subproblem (6). It follows from the definition of
2k that
zp <2< U(xy),

which contradicts the fact zx = U(zy).
(ii). If the algorithm terminates at Step 3, then dy = 0 is the solution of subproblem (7).
In this case, d; = 0 satisfies the following K-T conditions

gk + Brd + Agp = 0, (17)
pi>0,iel, (18)

Cr + Ald < zpe, (19)

pi(ci(zr) + Vei(zg)Td—2,) =0, i€l (20)

Now we prove that zp = 0. If z; # 0, then xj, is infeasible. Since the algorithm does not
stop at Step 2, then z; < ¥(xg). This shows that d = 0 is not a feasible point of subproblem
(7). This is a contradiction. So z; = 0. In this case, (17)-(20) turn to

pi > 077/ € Ia
Ck S 07
pici(ry) =0, i€l
Namely zy is a strong stationary point.

The following lemma shows that the line search procedure is well defined.

Lemma 3.3. In Step 4 the line search procedure is well defined.

Proof. Since the algorithm arrives at step 4, then we have

Oy, (zr;di) < —di Brdy, < —M,||dg]|* < 0. (21)
If the algorithm is not feasible, then VA € (0,1) we have
(I>0'k (xk + Adk) - (P(fk (xk) > /\ﬁadk (mk; dk):

ie.,
Lo (7 ¥ /\d:) R IAC > B0, (k; di).- (22)
Let A — 0, we obtain
gl dy + op V' (z1;dy) > B84, (xr; di)- (23)
From Lemma 2.1 in Zhou (1997), we have
U (wp;dy) < O (zp;dy)- (24)
(23), (24) imply that
(1 — ﬁ)&ak (.Tk; dk) > 0. (25)

Note that 8 € (0, 1), (25) contradicts (21). This contradiction shows that the lemma holds.

If o, — 00, by Lemma 4.2 of Yuan (1992), limy_, o, ¥(z) exists.

Lemma 3.4. If o — oo and limy_, o, U(xg) > 0, then there exists a subsequence of {xy}
converging to an infeasible stationary point.

Proof. Let S be the set of accumulation points of {z}. If the lemma is not true, for any
xz €S, ¥(x) # 0 and (12) does not hold, then there exists v > 0 such that for k large enough,

H . . T p—
||CrlIH1;I%5 r?ealx{cz(mk) + Vei(zg)' d),0} < ¥(zg) — v (26)

where § is a positive constant.
Let d be a vector such that ||d}|| < and that

20 = r?ealx{ci(a:k) + Vei(zy)Td, 0} = \|§I||12igt5 r%alx{cl(a:k) + Vei(zy)7d, 0}.



252 J. ZHANG AND X. ZHANG

Hence
T*(zp;d) < —v.

Since (dgT, 2T is a feasible solution of subproblem (6),
2z < z,g.
So
zr — U(zg) < —v. (27)
On the other hand, by Step3 and o} — oo,
grdy, + dy, Bydy,

—‘I’*(:L‘k; dk)
Note that d and g are bounded, then we have
\I/*(Z’k; dk) — 0. (28)
The definition of ¥* and (27) imply that
U*(zg;dp) = maxier{ci(zr) + Vei(ze)Tdy, 0} — U (x)
<z — W(ay) (29)
< —v<0.

(29) contradicts to (28). This contradiction shows that the lemma is true.

Similarly, we have the following results:

Lemma 3.5. If o, = oo and limy_, ¥(zr) = 0, then there exists a subsequence of {x}
which converges to a singular stationary point of problem (1).

Proof. Let = be any cluster point of {z}. Then z is a feasible point of problem (1). The
condition o} — oo implies that there exists an infinite subsequence {z; : k¥ € K} such that
U(x) #0,Vk € K.

If the results is not true, then for any convergent subsequence {z;, : k € K} (K C K), (13)
does not hold. Hence there exists a positive number v such that (26) holds. Similar to Lemma
3.4, the proof can be completed.

The above two lemmas imply that oy, is bounded if no subsequence of {z} converges to an
infeasible stationary point or a singular stationary point of problem (1).

In the following, we assume that oy is bounded above. Without loss of generality, we can
assume that o, =0, k=1,2,....

Lemma 3.6. Suppose that ©, — &, By, — B, then z;, — z, dj, — d, where zj, Z are
the solutions of LP(xy), LP(Z) respectively and dy., d are the solutions of QP(xy,By) and
QP(7, B) respectively.

Proof. The first part can be implied from the linear programming sensitivity analysis
theory.

Now we prove the second part. Assume that {d;} does not converge to d, then there exists
a subsequence {ds} C {d}} converging to d’ # d. By the first part, we know that

e A (30)
For any feasible solution d of QP(Z, B), there exists a feasible solution d,,, of QP(z,, Bs) such
that

dpm — d. (31)

Since d; is the solution of QP(xs, Bs),
grd, + %d{Bsds <gld, + %d},;Bsdm.
Let s = oo, m — 0o, we obtain
g@)Td + %d’TBd’ <g@Td+ %dTBd
i.e., d' is a solution of QP(Z, B). This contradicts to that QP(Z, B) has the unique solution.
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Lemma 3.7. Assume that o, = 0, k = 1,2,.... {zx} is an infinite sequence generated
by the algorithm and {xy : k € K’} is a convergent subsequence. Then dj — 0 for k € K and
k — oo.

Proof. 'We proceed by contradiction. Suppose that there exists an infinite subsequence
{x, - k € K' ¢ K} and a positive constant 7 such that ||di|| > 1, Vk € K'. From Step 3 and
Assumption 3.1(2), we have

Oy, (Tg;di) < —di Brdy, < —Myn, Vke K'.
It is similar to Proposition 3.2 of De O. Pantoja and Mayne (1991) that we can prove that there
exists a positive constant Ag > 0 such that
A >N, Vke K.
By Step 4,
Yy (zpr1) — o (w) e 805 (k5 di)
—AgﬁMlT], Vk € K'.

ININ

(32) can imply that
D (@o(wri1) = Bo(wr)) < — Y AoBMin = —o0.

keEK' kEK!

Hence
n—1

lim ®,(zn) — ®o(z0) = nlggo Z((I)a(xk+1) — @5 (2k))

n—00
k=0

S (@ (@p11) - B (ar))

kEK'

— Z AoﬂMl’f] = —.

kEK'

IN

IN

This contradicts to Assumption 3.1.

Theorem 3.1. Suppose that o, = o and {zy} is an infinite sequence generated by our
algorithm. {zy : k € K’} 15 a subsequence converging to x*. Then x* is a strong stationary
point.

Proof. By Assumption 3.1 (2), {By} is a bounded sequence. Without loss of generality, we
can assume that {By, : k € K} converges to B*. By Lemma 3.6, 3.7 d* = 0 is the solution of
QP(z*,B*), i.e., there exists a vector p* € R™ such that

g(z™) + A(z*)p* =0,
C(z*) < z*%,
pileia™) =z =0, i€l
pr>0,i€l.
It is similar to Lemma 3.2 (ii) that we can prove that z* = 0. Then z* is a strong stationary
point of problem (1).

4. Superlinear Convergence

To analyze local superlinear convergence of the algorithm, we make the following assumption,
which is similar to that in Liu and Yuan (2000) :

Assumption 4.1:

(1). x — x*, where z* is a Kuhn—Tucker point (strong stationary point) of problem (1);

(2). Let I* = {i € I : ¢;(z*) =0}, Ve;(z*)(i € I*) are linearly independent;

(3). o = o, for k > k, where o is a constant, k is a sufficiently large integer;

By Assumption 4.1 (1) (2), we know that z; = 0 for sufficiently large k. Then (7) is
equivalent to subproblem (3). Hence our algorithm is equivalent to standard SQP method for
k sufficiently large.
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Assumption 4.2: Suppose that p* is a Lagrangian multiplier vector associated with x*:

(1). The strict complementarity condition holds at (z*, p*);

(2). V2L(z*,p*) is positive definite for all nonzero d in the null space {d : Ve;(z*)Td =
0,i € I*}, where L(z, p) = f(z) + C(z)T p.

* 2 =k
(3). limg_y o0 P (B’“_v”diﬁz 2 ))diellz 0, where P* is a projection matrix on the null space

{d:Veij(z*)Td=0,i € I*}.
Under Assumption 4.2, Boggs et al (1982) proved the following results for SQ P method
Lemma 4.1. Suppose that Assumption 4.1, 4.2 holds, then

+dy —
ok +dp ="l _

lim
k—o0 ||£Uk —x* ||
A superlinear convergence step may be truncated due to the nonsmoothness of the merit
function, which is known as “the Maratos effect” (see Maratos (1978), Yuan and Sun (1997)).
In order to avoid this case, the second-order correction technique is considered by Mayne and
Polak (1982), Coleman and Conn (1982), Fletcher (1982), De O. Pantoja and Mayne (1991)
and so on. For our algorithm, we solve the linear equation system
ci(zp + di) + Vei(zp)Td =0, i€ I(xy) 2 {i € I|pl, > 0} (33)
where py is the Lagrangian multiplier of QP(xy, By). Let di, be the least norm solution of
(33). If (33) is inconsistent or the norm of its least norm solution is greater than the norm of
l|di || we set dj, = 0. After we obtain the second-order correction step dj, the line search in Step
4 is replaced by the following arc search:
Step 4°. Let A be the largest one of the sequence {1,v,v?,...} satisfying
B, (xr + My, + N2dp) — B4, (1) < MN304, (23 d). (34)
Similar to the analysis in Mayne and Polak (1982), Yuan and Sun (1997), DE O. Pantoja
and Mayne (1991), we have the following results:
Theorem 4.1. Under Assumption 4.1, 4.2, {zy} is an infinite sequence generated by
Algorithm 2.1 in which Step 4 is replaced by Step 4’. Then

. ek + di +dy, —2*||
im =
k—o00 ||1‘k —x* ||

and there ezists a sufficiently large Ky such that Ay = 1 for k > K. Then {z,} converges

Q-superlinearly.

0 (35)

5. Numerical Results

A MATLAB subroutine was programmed to test our algorithm. The standard internal func-
tions LP and QP in Optimization Toolbox are used to solve subproblem (6) and (7) respectively
in our program.

For each problem, the standard initial point is used. We choose initial parameters g = 0.25,
v =0.5,0 =1and € = 1075 The initial Lagrangian Hessian estimate By = I and By is
updated by the damped BFGS formula ([18]):

Byisisi Br | yryi

Byi1 = By, — ,
st Bysy, sty
where
_ YkSk > O.QSszsk,
Yk = TYk + (1 — 7%)Bsk, otherwise,

and r = gr1 — gk + (Aky1 — Ar) ks Sk = Tpor — Th, Tk = 0.85] Brsi/(s{ Brsk — s{ i), pr is
a multiplier associated with (7).

The first test problem that we solved is taken from Sahba (1987) (see Liu and Yuan (2000)
also) and the standard starting point is zo = (0,5)?. As in Liu and Yuan (2000), the solution
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given by our algorithm is (—0.886227,0.886226), which is an approximate minimum point. IF
(the number of functional calculation) is 8 and IG (the number of gradient calculation) is 8.
The other test problems are from Hock and Schittkowski (1981). The numerical results are
listed in Table 1. However, we do not list the solutions and the residuals given by our method
since the solutions given by our method are the same as the solutions given in Hock and
Schittkowski (1981). Comparing the results given by our method with the results in Liu and
Yuan (2000), our algorithm is comparable to VMCWD and Liu and Yuan’s method. Although
our algorithm is proposed for optimization problems with inequality constraints, it can handle
equality constraint problem, for example, we can solve HS42 which has only equality constraints.
Therefore, our method can solve optimization problem with general constraints.

Table 1
Problem IF 1G
HS22 7 6
HS42 59 26
HS43 55 26
HS44 4 4
HS76 7 7
HS86 7 5
HS113 19 14

6. Conclusion

In this paper, we proposed a new robust SQ P method, which can overcome the difficulties as-
sociated with the infeasibility of QP subproblem. In this algorithm, we solve two subprolems—
one is a linear programming and the other is a quadratic programming. Since solving a linear
programming is very easy, so the method can be implemented easily. Theoretical analysis and
numerical experiments show that the method has excellent theoretic properties and notable
numerical efficiency.

Acknowledgements: The authors are grateful to the referees for their valuable comments
in improving this paper.
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