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FOURIER-CHEBYSHEV COEFFICIENTS AND GAUSS-TURAN
QUADRATURE WITH CHEBYSHEV WEIGHT*Y

Shijun Yang" Xinghua Wang
(Department of Mathematics, Zhejiang University, Hangzhou 310028, China)

Abstract

The main purpose of this paper is to derive an explicit expression for Fourier-Chebyshev

1
2 dx

coefficient Ay, (f) = = / f(@)Tin(r) ——, k,n € Np, which is initiated by L.Gori and
L V1-—z?

C.A .Micchelli.
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1. Introduction

Throughout this paper let z,---,x, be zeros of the Chebyshev polynomial of first kind
T, (z) = cos(narccosz),|z| <1 and A the set of the natural numbers. Let the points &, ..., &,
be arbitrary and Py, the space of all polynomials of degree < k,then there exist weights Ay, ..., A,
such that the numerical quadrature of the type

| f@as =3 nr6) 0

is exact for f € P,_1. But it is exact for f € Py, 1 if the points &, ..., &, are the zeros of the
Legendre polynomial of degree n. Moreover, there is no quadrature using a linear combination
of n values of f such that Eq.(1) holds for all polynomials of degree 2n. This classical result
is the well-known Gauss-Legendre quadrature. Because of the above theorem of Gauss it is
natural to ask whether the points &1, ..., &, can be chosen so that quadrature rules of the form
1 n 2s
[ f@uis =YY x50 )
-1 i=1 j=0
will be exact for all f € Py(541)5—1,Where w(z) is a weight function. In his interesting paper
[13],Turdn showed that the answer is positive. Moreover he showed that the n zeros &, ..., &,
of the monic polynomials of degree n minimizing the expression

/ o) 2+ 2w()de 3)

-1
over all such polynomials gives a quadrature of maximum degree of accuracy,

[ reulds =3 Af@), 1€ P ()

As Turédn pointed out in [14],particularly interesting is the case when
w(z) = (1-2°)73. (5)
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In 1930, S.Bernstein [1] showed that 2'~"T,,(z) minimizes all integrals of the type

1 k
Ipn ()]
B 7\/@(&’ keN. (6)

So the Turdn-Chebyshev formula

[ o S ST ®
i=1 j=0
with z; = cos %,i =1,...,n, is exact for f € Py(s41)p—1. Turdn [14] has raised
Problem 26. Give an explicit formula for \;; and determine its asymptotic behavior as
n — 00.

In this regard, Micchelli and Rivlin [6] have proved the following

! f(z) _m - . 1 29\ pir, 2 2j
[ e = g e+ g () ) ¥

where f[z},...,2%] designates the divided difference of the function f with each z; repeated
2j times. For related work, see [5],[7]-[11] and references cited therein. Recently, Gori and
Micchelli [3] considered the class W,, of weight functions to consist of all nonnegative integrable
functions w on [—1, 1] such that

w1 —22= Z’ Pk Topn (), 9)

where the prime on the summation indicates that the term corresponding to & = 0 is halved.
Accordingly, for every w € W,, and f € C[—1, 1] we have

[ rete)s = 5300 piera (), (10)

k=0

where

/ f@ : _wQ (11)

Thus formula (10), and consequently (7), reduces to explicit expression for Az, (f). Gori and
Micchelli [3] obtained
Theorem A Let j,k,s € No,Vf € Py(s41)n—1. Then

A2kn(f) = ZHkal[l'?J,,l'?i]], (12)

where Hy; is implicitly defined by the following formal power series for j,k > 1, |z| < 4",

o0
S Hyjzd = n7t Ak TR /1 gmntig)2h(1 gt 7E (13)

j=1
for k=0, > 1,
S Hyjz = n i ((1-4M2) b o), fo <4n (14)
2
H, = - 15
00 ’I’L’ ( )
k>1,Hyp = O. (16)

Theorem B Let j,k,s € Ny,Vf € ”P(25+3 yn—1s

A(2k+1 ZHLJ I 2J+17"'xij+1]7 (17)
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where H. kj is defined by

> n
> H (25 +1)2 = %4@*1)’“2*’“*1(1 — 1 —dmntig)Zhtl) _gmntly =g
7=0

if 2] < 4n~t.

Two special cases, i.e., Ag(f) and A,,(f) were considered by Bojanov [2]. As we see, it is not
very convenient to use Theorems A and B because the coefficients Hy; for Asgy(f) and ]fij for
Ar4+1)n(f) are implicitly defined. The purpose of this paper is to find explicit expression for
all Agn(f), k € Np. Following the way and main idea used in [2], we give a simple and unified
approach to this question.

2. Main Result

Now we state our main results.
Theorem Let j,k,s € Ny, then Vf € Piosipi2)n—1,

2 [t dz
Aw(f) = 71f(ﬂf)Tlm(ﬁ'f)\/17_—562

2 (- 1

= E{Z%—nnf[:n'f,...,xfﬁl,mf+1,xf+1,...,a:fl]

i=1

> 1 2§+ kN . 254k 2tk

+ 2W< j )f[ﬂﬁ 1o Ty ]}, (18)
]:

Corllary If k> 0,Yf € Pasyrt2)n—1, we have

S

2 1 2§+ kN 4 2j+k 2j+k
A’“"(f)_ﬁz. 0(2j+/c)2<2a‘+k>"< j )“ml et 19)
=

and Vf € Pa(sq1yn-—1,

w00 = 23 10+ 3 g () 10 a). (20)

i=1 j=1 J

Remark. Note that Corollary 2.2 can be easily derived from (18).
In order to state our next result we need some more notation:

n

wo(@) = [ —w)=2""T,(w),
i=1
wn(x) .
li = — ) i=1,2,..n. 21
@) = SeE-a " @)
According to [12], let j € N,
1 .
biij = ﬁ(zi(m)—f)g;m, 1=0,1,..;i=1,2,...,n. (22)
Obviously,

W () =22 (1) (1 —2?)"2, i=1,2,..,n.

If we expand the second term in the right-hand side of Ag(f) in (20) by proposition 96 of
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chapter 4(P. 235) in [15] we easily obtain

_%zn:f Zzyzlpn <2J>f[ R =)

- %g{f +Z4j 2 ) S @)

- %g{f i +]i;2:z§ 2]11_21] nl _n;; 2 b2jflfl,i,2jf(l“)(ﬂfi)}
:gg{f " +;; 1:1 2; ;)mn)%b?] tiaaf O (i) |
I S S

which is a main result in [9]. Similarly, it is not hard to derive Theorems 3 and 4 from Theorem
5 in [8].

3. Proof of our main result

To prove our main result, we need the following auxiliary lemmas.
Lemma 3.1 Let f(x) be sufficiently differentiable on [a,b],
m € N ,then

n

mYy ol a2 aly e = e e (23)

i=1

Lemma 3.2. Let k > j € Ny, then

[ 1T,{(m)Tkn(x)\/%_w2 =0

Proof. T3(z) € Pjn,j < k, and orthogonality prove the result.
Lemma 3.3, Ifj € Ny, then

! . dx
T2+ ()0 1 (2) e =0, V1 € Pry.
/_1 n (:L‘) 1(x)m 1 1

Lemma 3.4. Let j,k € Ny and j + k be odd, then

v dx
T3 () Ton () Q1 (£) —e = 0, VQp_1 € Pp_i. 24
[ T T @00 ) L€ P 29

Proof. Observing Ty, (z) = T(T,(z)) and recalling the expansion of Tj(z), we see that
Tin(x), a polynomial of degree k in T, (z), has only power terms of T, (z) of degrees with the
same oddity as k. Noticing that k + j is odd, we conclude that the expansion of T (x) Ty, (z)
has only odd power terms of T, (z) . Hence (24) follows from Lemma 3.3.

Lemma 3.5. If j,k € Ny, then

1 .
. dx T 2]+ k
2j+k
/_1 Tn (l')Tkn (1') AY 1— 22 22]+k < .7 ) - (25)
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Proof. By making the change of variable x = cos#f, we get

1
/_1 T4k (2) T (2 )\/i—mz / cos? % n@ cos kndd

1 nmw z+1 )

= = / cos? Tk 9 cos kOdh = Z / cos? Tk 9 cos kOdo
n Jo

_ T 2tk _ T 2] +k

= /0 cos 0 cos kBdb = P ( i .

The last equality can be found in [4](see Formula 3.631.17 on P.374).
Lemma 3.6. Ifj, ke Ng,v e N andv <2n —1, then
1
. dx
T2+ () Thon (2) Ty () —— = 0.
Proof. 1t is not very hard to check that
Jj+k Jj+k

Tsj+k Tkn Z Clsz Z ﬁszn

for afs and f}s being constant. Now Eq.(26) follows from Eq.(27) and orthogonality.

Lemma 3.7. If j,k € Ny, then

1 .
) dx m 2]+ k .
T2k () T (2)1; = =1,..,n.
/_1 w (@) Tin (@)1 (2) G 2%,%( i > i=1,.,n

Proof. First note that [;(x) can be rewritten as

1 n—1
T) = n + §7vTv(m)

where 7, s are constant. According to Eq.(29), Eq. (25) and Eq.(26) , we obtain

[ T @)

1
V1—2a2

n

7 2]+ k
T 922j+kp j :

Lemma 3.8, If f(z) is sufficiently differentiable on [a,b] and m € N, then

n m
Z Z floy, ozl it el g, alwl () (2)

i=1 v=0
[ et 2wt (@),

") ’I’L

Proof of the Theorem

- _[1T3i+k(x)Tkn(x)L + i%/ T3j+k(m)Tkn(m)Tv(m)L2

193

(28)

(30)

Proof. Multiplying both sides of (30) by T, (z) and then integrating from —1 to 1 with
respect to weight \/d—L we obtain from Lemma 3.2 and also the fact w,(z) = 2'="T),(z) that

1—:1:2

EAknf /f ) Then (T

n m d
DI I LV I nl/ T (@) T ()1 (0) e + R (f)

V1— 22

=1 v=~k

=5 + Ryt (f),
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where
dx

NI
According to Lemma 3.4, all but the terms such as v = 2j + k,k € A in I; are equal to

zero. So without loss of generality, we suppose that m = 2s+k, s € Ny. It follows from Lemma,
3.7 that
n

S
_ 2j+k)(1—n) pr,.25+k 2k 2k 254k 2j+k
L —222(7 J(1=n) f1g2 e X, X S TTL e Ty ]

1
Rypya(f) = 20m+00=m / FleP 2 2T (2) T ()
—1

i=1 j=0

1
: dz
2j+k () — =
x /_ T )T @)
T 1 2j +k 2j+k 2tk 2j+k+l 25tk 2j+k
= EZZm( J >f[.’171 s L 5Ty ,.’Ei+1 ,...,.’En‘] ]
j=0 i=1
Dividing >>_, into j = 0 and >>_,, simplified by Lemma 3.1,we obtain the desired formula
as claimed.
Next, we consider R, 1(f) = Rasrrs1(f). It is easy to check that flz2 ATt | g2sth+1l 4]
€ Pn_1, since f € Pagppt2)n—1- And therefore Rysy g1 1(f) = 0 follows from Lemma 3.4.
Acknowledgment. The authors would like to express our gratitude to the anonymous
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