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Abstract. In this paper, we study several iterative methods for finding the maximal-like
solution of the matrix equation X + A∗X−2A = I , and deduce some properties of the
maximal-like solution with these methods.
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1 Introduction

In this paper we consider the matrix equation

X + A∗X−2A = I (1)

where I is the n × n identity matrix and A is an n × n complex matrix.
Throughout this paper we denote ‖ · ‖ the Euclidean vector norm, or corresponding subor-

dinate matrix norm ( simply 2-norm). λ(M), ρ(M) are respectively the spectrum and spectral
radius of a square matrix M , A∗ is conjugate transpose of a matrix A. For two positive definite
(Hermitian) matrices P, Q of the same dimension, P > Q (P ≥ Q) means that P −Q is positive
definite (semi-definite). For any positive definite solution X of Eq. (1), we have XS ≤ X ≤ XL,
where XL and XS are respectively the maximal solution and minimal solution, and Xl is the
maximal-like solution whose inverse has the minimal 2-norm.

In the literature, matrix equations of type like Eq. (1) have been extensively studied. Articles
[3, 4, 11] discuss the matrix equation X + A∗X−1A = I and obtained some properties of the
equation, including the existence of maximal and minimal solutions. [1, 2, 10] generalize the
results, and [7, 8] directly discuss nonlinear matrix equation of type in Eq. (1). [7, 8] mainly
study the following algorithms:

{

X0 = αI
Xk = I − A∗X−2

k−1
A

,

{

X0 = αI

Xk+1 =
√

A(I − Xk)−1A∗
, (2)
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and provide some convergence properties under different conditions. However, they do not show
the existence of the maximal and minimal solutions and the properties of solutions. [5] proves
the existence of the minimal solutions. [9] studies more general matrix equations of the type
Xs ± AT X−tA = I.

In this paper, we discuss the maximal-like solution Xl, which is the maximal solution XL

when XL exists. In Sections 2 and 3 we propose two algorithms for finding Xl, and study
properties of these algorithms; in Section 4 we provide some numerical experiments.

2 An algorithm for computing Xl

In this section, we propose an iterative algorithm for computing Xl. We will prove that the
algorithm is linearly convergent, and derive some properties of Xl. Unlike the commonly used
algorithms given in Eq. (2) which involve computing the inverse, our algorithm only requires
matrix multiplications.

We first give a necessary condition for existence of a solution of Eq. (1)

Theorem 2.1 ( [5]). If Eq. (1) has a positive definite solution X, then

ρ(A) ≤ 2
√

3

9
.

Corollary 2.1. Suppose that A is normal. If Eq. (1) has a positive definite solution, then

‖A‖ ≤ 2
√

3

9
.

Lemma 2.1. Define

f(η) =
η

(1 + η)3
, η ≥ 0.

Then f is increasing for 0 ≤ η ≤ 1
2 , decreasing for 1

2 ≤ η ≤ +∞, and

fmax = f(
1

2
) =

4

27
.

Proof: From

f ′(η) =
1

(1 + η)4
(1 − 2η),

we know that f(η) is increasing in [0, 1
2], and decreasing in [12 , +∞]. When η = 1

2 , fmax =

f(1
2) = 4

27.

We now present the main result of this section.

Theorem 2.2. If ‖A‖ < 2
√

3
9 , then there exists a unique solution Xl of Eq. (1) satisfying

‖X−1

l ‖ <
3

2
.

Moreover, for any other positive definite solution X we have

‖X−1‖ ≥ 3

2
.
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Proof It is easy to verify that X is a solution of Eq. (1), if and only if Y = X−1 satisfies

Y = A∗Y 2AY + I. (3)

Now define matrix sequence {Yk}:

Y0 = 0, Yk = A∗Y 2
k−1AYk−1 + I, k = 1, 2, · · · . (4)

Obviously, for k = 0, 1, · · · ,
‖Yk‖ ≤ 1 + ηk, (5)

where
η1 = 0, ηk = ‖A‖2(1 + ηk−1)

3, k = 1, 2, · · · . (6)

We now prove by induction that,

1

2
> ηk+1 > ηk ≥ 0, k = 1, 2 · · · . (7)

In fact, for k = 1, 2 we have

η1 = 0 <
1

2
and η2 = ‖A‖2 <

4

27
<

1

2
.

Suppose that ηk < 1
2 for 2 ≤ k ≤ p. Then

ηp+1 = ‖A‖2(1 + ηp)
3 < ‖A‖2 × 27

8
<

4

27
× 27

8
=

1

2
.

Hence there exists a positive number η with 0 < η < 1
2 , such that η = lim

k→∞

ηk, and it follows

from Eq. (6) that
η = ‖A‖2(1 + η)3,

and from Lemma 2.1,

0 < η <
1

2
. (8)

Consequently, we have
‖Yk‖ ≤ 1 + ηk ≤ 1 + η, k = 1, 2, · · ·

Therefore, the iterative sequence {Yk} satisfies

‖Yk+1 − Yk‖ = ‖A∗Y 2
k AYk − A∗Y 2

k−1
AYk−1‖

= ‖A∗

[

Yk(Yk − Yk−1)AYk + (Yk − Yk−1)Yk−1AYk + Y 2
k−1

A(Yk − Yk−1)
]

‖
≤ ‖A‖2(‖Yk‖2 + ‖Yk−1‖‖Yk‖ + ‖Y 2

k−1‖)‖Yk − Yk−1‖
≤ 3‖A‖2(1 + η)2‖Yk − Yk−1‖
≤ ρ‖Yk − Yk−1‖
≤ ρk‖Y1 − Y0‖ = ρk,

where ρ = 3‖A‖2(1+ η)2 < 3× 4
27 × 9

4 = 1. It follows that {Yk} is a Cauchy sequence, therefore

is convergent. Let Ȳ = lim
k→∞

Yk, then Ȳ is a solution of Eq. (3) satisfying ‖Ȳ ‖ ≤ 1 + η.

In order to prove that Ȳ is a positive definite matrix, we consider the following matrix
equation

Y = I +
1

2
(A∗Y 2AY + Y A∗Y 2A). (9)
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It turns out that for any solution Y of Eq. (3), Y must satisfy Eq. (9). In fact, if Y is a solution
of Eq. (3), then

(I − A∗Y 2A)Y = I,

which implies that I − A∗Y 2A is the inverse of Y , and so

Y (I − A∗Y 2A) = I.

That means
Y = Y A∗Y 2A + I

and Y is a solution of Eq. (9). Now define the sequence {Zk}:

Z0 = 0, Zk+1 = I +
1

2
(A∗Z2

kAZk + ZkA∗Z2
kA), k = 1, 2, · · · .

Notice that Zk are Hermitian for k = 0, 1, · · · . Following the same way as in the proof for ‖Yk‖,
it can be proved that

‖Zk‖ ≤ 1 + η <
3

2
, ‖Zk+1 − Zk‖ ≤ ρk.

Define Mk = 1
2(A∗Z2

kAZk+ZkA∗Z2
kA). Then Mk is Hermitian, and because ‖Mk‖ ≤ ‖A‖2‖Zk‖3 <

1/2 we have Zk+1 = I +Mk is positive definite. Therefore, there exists a positive definite matrix
Z, such that

Z = lim
k→∞

Zk, and ‖Z‖ ≤ 1 + η <
3

2
.

The next task is to prove that Eq. (9) has a unique solution Y satisfying ‖Y ‖ < 3
2. In fact, for

any solution Y of Eq. (9) satisfying ‖Y ‖ < 3/2,

‖Zk+1 − Y ‖ = 1
2‖A

∗Z2
kAZk + ZkA∗Z2

kA − A∗Y 2
k AYk − YkA∗Y 2

k A‖
≤ ‖A∗Z2

kAZk − A∗Y 2
k AYk‖

≤ ‖A‖2(‖Zk‖2 + ‖Zk‖‖Y ‖ + ‖Y ‖2)‖Zk − Y ‖
≤ ‖A‖2((1 + η)2 + (1 + η)‖Y ‖ + ‖Y ‖2)‖Zk − Y ‖
= ρk+1

1 ‖Y ‖,

where ρ1 = ‖A‖2((1 + η)2 + (1 + η)‖Y ‖ + ‖Y ‖2) < 1. Hence

Y = lim
k→∞

Zk = Z.

Because Ȳ is a solution of Eqs. (3) and (9) satisfying ‖Ȳ ‖ ≤ 1 + η < 3
2, therefore Ȳ = Z = Y.

It follows that for any other positive definite solution Y of Eq. (3), we have ‖Y ‖ ≥ 3
2, which

completes the proof of the theorem.

As an immediate consequence of Theorem 2.2, we have

Corollary 2.2. If ‖A‖ < 2
√

3
9 , then we have

κ(Xl) = ‖Xl‖‖X−1

l ‖ <
3

2
,

therefore Xl is well-conditioned.



Minghui Wang and Musheng Wei 71

Remark 2.1. Corollary 2.1 shows that we cannot improve the condition of Theorem 2.2 if only
a spectral norm bound is used.

Remark 2.2. X ≥ Y > 0 implies ‖Y −1‖ ≥ ‖X−1‖, therefore, when Eq. (1) has the maximal
solution XL, then

Ȳ = X−1

L

and Xl in Theorem 2.2 and Corollary 2.2 can be replaced by XL.

Remark 2.3. From the proof of Theorem 2.2 we see that, when ‖A‖ < 2
√

3
9 , the optimization

problem

min{‖Y ‖ : Y > 0, Y = A∗Y 2AY + I}

has a unique solution Y . Moreover, Y is positive definite satisfying ‖Y ‖ < 3
2 .

Remark 2.4. The proof of Theorem 2.2 proposes an iterative method for evaluating X−1

l ,

Method 1:

{

Y0 = 0,
Yk = A∗Y 2

k−1
AYk−1 + I, k = 1, 2, · · · (10)

This method only involves matrix multiplications, and the algorithm is linearly convergent.

3 Another algorithm for computing Xl

In this section we will prove that the iterative sequence

Method 2:

{

X0 = I
Xk = I − A∗X−2

k−1
A, k = 1, 2, · · · (11)

converges to Xl under the condition of Theorem 2.2. This algorithm is commonly used, and has
been extensively discussed in the literature, while the sequence converges to what solution is not
discussed.

Theorem 3.1. If ‖A‖ < 2
√

3
9 , then the iterative sequence {Xk} defined by Method 2 converges

to Xl.

Proof Because ‖A∗A‖ < 4
27, there exist two constants α and β satisfying 1 ≥ α ≥ β > 2

3,
such that

α2(1 − α)I ≤ A∗A ≤ β2(1 − β)I.

By Theorem 5 of [5], the sequence {Xk} converges to X̄ which satisfies

βI ≤ X̄ ≤ I, ‖X̄−1‖ ≤ 1

β
<

3

2
.

By applying Theorem 2.2, Xl = X̄.
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Table 1: Computational results for Method 1

n cpu-time norm(X) cond(X) abs
5 0 9. 999994987e-001 1. 000756149e+000 7. 535543911e-016
10 5e-002 9. 999862301e-001 1. 002397325e+000 2. 447112065e-016
20 0 9. 999978680e-001 1. 006290253e+000 4. 099287099e-015

Table 2: Computational results for Method 2

n cpu-time norm(X) cond(X) abs
5 0 9. 999994987e-001 1. 000756149e+000 1. 301720233e-017
10 0 9. 999862301e-001 1. 002397325e+000 2. 131704101e-015
20 0 9. 999978680e-001 1. 006290253e+000 4. 557376069e-017

Table 3: Differences of solutions between two methods

n 5 10 20
5. 6330885e-016 1. 354791659e-015 3. 080567139e-015

4 Numerical experiments

In this section we provide several examples to verify the results obtained in the previous sections.
In the following examples, matrices A are obtained by MATLAB function randn and n are the
orders of A,

abs= ‖X + A∗X−2A − I‖∞, norm(X)= ‖X‖2, cond(X)= ‖X‖2‖X−1‖2.

From the tables we see that Xl’s satisfy Corollary 2.2, and the both iterative solutions by using
Methods 1 and 2 converge to Xl.

Many other examples have been tested. It is observed from all these numerical experiments

that Xl’s are well-conditioned and κ(Xl) < 3
2.
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